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Abstract

Domain generalization (DG) aims to learn domain-
generalizable models from one or multiple source domains
that can perform well in unseen target domains. Despite
its recent progress, most existing work suffers from the mis-
alignment between the difficulty level of training samples
and the capability of contemporarily trained models, lead-
ing to over-fitting or under-fitting in the trained general-
ization model. We design MoDify, a Momentum Difficulty
framework that tackles the misalignment by balancing the
seesaw between the model’s capability and the samples’ dif-
ficulties along the training process. MoDify consists of two
novel designs that collaborate to fight against the misalign-
ment while learning domain-generalizable models. The
first is MoDify-based Data Augmentation which exploits an
RGB Shuffle technique to generate difficulty-aware train-
ing samples on the fly. The second is MoDify-based Net-
work Optimization which dynamically schedules the train-
ing samples for balanced and smooth learning with appro-
priate difficulty. Without bells and whistles, a simple imple-
mentation of MoDify achieves superior performance across
multiple benchmarks. In addition, MoDify can complement
existing methods as a plug-in, and it is generic and can work
for different visual recognition tasks.

1. Introduction

Deep neural networks (DNNs) [23, 30, 48] have
achieved significant progress in recent years with numerous
network architectures and learning algorithms designed for
various discriminative tasks. In the area of computer vision,
DNNs have achieved great success in various visual recog-
nition tasks such as image segmentation [7, 58, 52], object
detection [45, 5], etc. However, deep network training often
suffers from a misfitting problem, being either over-fitting
or under-fitting due to the misalignment between the capac-
ity of networks under training and the complexity of train-
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Figure 1. Illustration of the proposed MoDify framework. Train-
ing domain-generalizable models often suffer from clear under-
fitting (or over-fitting) if keep feeding over-difficult (or over-easy)
training samples, especially at the early (or later) training stage,
both leading to degraded generalization of the trained models
(as illustrated in yellow/blue lines). Inspired by the Flow The-
ory [16] that a learner usually has better learning outcome when
the learner’s skill and the task difficulty are well aligned (i.e., ly-
ing within the Flow Channel), the proposed MoDify schedules the
training samples adaptively according to the alignment between
the sample difficulty and the capability of contemporarily trained
models (as illustrated in red line).

ing data. While applying a misfit deep network model to the
data from a different domain, the misfitting problem can be
greatly enlarged due to the distribution bias and distribution
shift across domains.

Domain generalization aims to mitigate the misfitting
problem by learning a domain generalizable model that can
work well in new domains. It has been widely studied via
different augmentation strategies, e.g., domain randomiza-
tion [41, 56, 26, 51], feature augmentation [31, 40, 11], and
data augmentation [61, 39], targeting to obtain generaliza-
tion capability by seeing more training data with various
diverse characteristics. However, the aforementioned meth-
ods mostly neglect the misalignment between the difficulty
level of training samples and the capability of the contem-
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porary models along the training process, leading to misfit
deep network models and degraded performance.

The Flow Theory [16] has been widely studied in the
field of learning and education, which suggests that a
learner has optimal learning outcomes when the capabil-
ity of the learner is well aligned with the difficulty level
of learning tasks throughout the learning process. Inspired
by this theory, we design MoDify, a Momentum Difficulty
framework that aims to tackle the misfitting problem in deep
network training. The idea is to dynamically gauge the
difficulty level of training samples along the training pro-
cess, and feed training samples whose difficulty level is
well aligned with the capability of the contemporary deep
network model under training. This directly leads to a bal-
anced learning process between the difficulty level of train-
ing samples and the model capability as illustrated in Fig. 1,
which helps mitigate the misfitting problem effectively.

MoDify consists of two novel designs for balanced
and smooth learning. The first is MoDify-based Data
Augmentation (MoDify-DA) that produces augmented
training samples with relevant difficulty levels on the
fly. The second is MoDify-based Network Optimization
(MoDify-NO) that achieves progressive network training
by considering the difficulty level of training samples. The
two designs work in a collaborative manner to maintain
the difficulty-capability balance, which coordinate the aug-
mentation and network training smoothly according to the
model’s capability. Moreover, we employ an efficient yet
effective RGB Shuffle technique that enables online sample
augmentation by shuffling the color channels while preserv-
ing spatial structures efficiently. RGB Shuffle improves the
generalization of the trained model effectively. MoDify has
three desirable features: 1) it is generic and performs well
across different visual recognition tasks such as image se-
mantic segmentation and object detection; 2) it is an online
technique with negligible computational cost; 3) it is com-
plementary with existing DG methods and can be incorpo-
rated with consistent performance boosts.

In summary, the contributions of this work are threefold.
First, we propose MoDify, a novel momentum difficulty
framework that effectively addresses the network misfitting
problem by maintaining the balance between the difficulty
level of training samples and the capability of the contem-
porary models along the training process. Second, we de-
sign MoDify-DA and MoDify-NO, the former generates
difficulty-aware augmentation samples on the fly while the
latter coordinates for a smooth learning process by dropping
over-simple samples and postponing over-difficult samples
to a later training phase. Third, extensive experiments show
that a simple implementation of MoDify achieves superior
performance consistently across multiple benchmarks and
visual recognition tasks.

2. Related Work
Domain generalization (DG) aims to generalize the

model learned on one or multiple domains to unseen tar-
get domains which have been explored in various computer
vision tasks, such as object detection [39, 26, 33], seman-
tic segmentation [39, 56, 41, 26, 31, 61]. Most existing
DG methods can be broadly categorized into single-source
DG [26, 11, 39, 56, 41, 61, 51, 40, 31, 62] and multi-source
DG [60, 36, 35, 28, 2, 32, 20, 19, 18, 11, 61, 43, 59], both
targeting to learn domain-invariant feature representations
from various aspects, including domain alignment [60, 36,
35, 28], meta-learning [2, 32, 20, 19, 18] and augmentation
strategies [26, 11, 39, 56, 41, 61, 51, 40, 31]. Our work be-
longs to single-source DG, aiming to address a more chal-
lenging issue when only one single source domain is avail-
able during training.

Single-source DG usually works by domain randomiza-
tion that augments data [61, 62, 43, 59] or domains [41, 56,
26, 51]. Most existing methods aim to enhance the varia-
tion of synthetic images in a source domain by adversarial
data augmentation [43, 59] or designing customized mod-
ules [61, 62]. However, they largely neglect the misalign-
ment between the difficulty level of training samples and the
capability of contemporary models during training, leading
to degraded generalization performance. In this work, we
design an effective and efficient strategy to address the mis-
fitting problem.

Flow Theory [15, 14, 16], which is a well-established
theory in psychology, suggests that optimal learning could
be achieved when the skills level of the learner is aligned
with the difficulty level of the tasks during learning. It has
been extensively studied in the field of education [13, 24]
and has more recently been applied to game designs [6, 29].
We introduce the Flow Theory into computer vision re-
search for tackling the domain generalization challenge.
The idea is that domain generalization often suffers from
unbalance between the difficulty level of training samples
and the capability of contemporarily trained models. Flow
theory can fit in perfectly by scheduling the training samples
according to their difficulties while training domain gener-
alizable networks.

Curriculum Learning [3] is a widely studied learning
strategy, which involves starting with easier training sam-
ples [50, 9, 22] or sub-tasks [1, 42, 37, 34] and gradually
increasing the difficulty level. It has attracted increasing at-
tention recently with the advance of deep learning, and it
has been studied in various visual recognition tasks such as
domain adaption [57, 10]. For instance, [57] divides the
semantic segmentation task into sub-tasks and learns from
easy to difficult ones, aiming to decrease the learning dif-
ficulty in the early training period. [10] ranks the train-
ing samples according to pseudo-label correctness proba-
bilities and learns from them sequentially during training.
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Figure 2. Overall architecture of the proposed Momentum Difficulty (MoDify). In the MoDify-DA flow (highlighted by blue arrows), the
network takes the original image xi as input and generates its loss Lda

i , and applies the loss to compute the difficulty level ddai with the
Loss Bank. MoDify-DA dynamically adjusts the strength of data augmentation according to the ddai . In the MoDify-NO flow (highlighted
by red arrows), the network takes the augmented image x̃i as input (with a difficulty level of ddai ). Then the difficulty degree dno

i of the
augmented image x̃i is calculated in the same way. MoDify-NO decides whether postpone, drop, or learn from this sample based on the
dno
i from the Loss Bank. Noted the sample is fed for training only if its difficulty level is aligned with the model’s capability. Additionally,

MoDify-DA introduces little computational overhead without involving any back propagation.

However, most existing curriculum learning methods re-
quire the pre-defined difficulty levels of the samples in train-
ing. We instead dynamically augment and feed difficulty-
aware training samples according to the capability of con-
temporarily trained network models along the training pro-
cess.

3. Method
This section presents the proposed Momentum

Difficulty (MoDify) framework. First, the problem
definition and overview are presented in Sec. 3.1 and
Sec. 3.2, respectively. The detailed designs of MoDify
are then introduced, including Loss Bank-based Difficulty
Assessment in Sec. 3.3 and Difficulty-Aware Training
Strategy in Sec. 3.4. Finally, loss functions are presented in
Sec. 3.5.

3.1. Problem Definition

Domain generalization (DG) aims to learn a generaliz-
able model (trained in source domain S) that can work in
various unseen target domains T = {T1, ..., TK}. During
training, only the dataset Ds = {(xs, ys)} of the source
domain is available.

3.2. Momentum Difficulty (MoDify)

The proposed MoDify aims to address the imbalance
issue between the difficulty level of augmented training
samples and the capability of contemporarily trained mod-
els while training domain generalizable networks. It tack-
les this challenge by augmenting and scheduling difficulty-
aware training samples dynamically according to the capa-
bility of contemporarily trained network models.

Overview. Fig. 2 illustrates the overall architecture of
the proposed MoDify, which includes a loss bank and a
difficulty-aware training framework comprising two spe-
cific strategies (i.e. MoDify-DA and MoDify-NO).

In the MoDify-DA flow, the original image xi is fed into
the visual task network to obtain its loss Lda

i . Then, the loss
bank takes Lda

i as input and outputs the difficulty degree ddai
of xi, where the loss bank is updated in a momentum-based
manner. Finally, the augmented samples x̃i are generated
based on the difficulty degree ddai . In the MoDify-NO flow,
the difficulty degree dnoi of the augmented image x̃i is ob-
tained using the same approach as in the MoDify-DA flow.
The network is updated only when the value of dnoi falls
within a moderate range, allowing it to prioritize learning
samples with appropriate difficulty.

This dual flow mechanism ensures that the model learns
samples whose difficulty is aligned with the model’s capa-
bility, thus making the training process more efficient and
smooth by rejecting undesirably samples.

3.3. Loss Bank-based Difficulty Assessment

The Loss Bank is a crucial component of MoDify that
establishes a consistent measure of training samples’ diffi-
culty by maintaining a list containing loss values for each
sample processed by the visual task network. The size of
the Loss Bank is based on the total number of samples in
the training dataset, rather than the mini-batch size, pro-
viding a global-scale measurement of the training samples’
difficulty.

The overall process of Loss Bank updating is shown in
Algorithm 1. Specifically, the values of Loss Bank B =
{Vi | i ∈ {1, ..., N}} are defined on-the-fly by a set of data

18995



Algorithm 1 Loss Bank during training
1: Initialization:
2: B = {Vi = α | i ∈ {1, ..., N}}, epoch j
3: for j = 1 to j = M do
4: for i = 1 to i = N do
5: Update Vi by Eqn. 1 and Lda

i

6: Update ddai by Eqn. 2 and Lda
i

7: Update dnoi by Eqn. 2 and Lno
i

8: end for
9: end for

samples. N equals the number of samples in the training
dataset. We adopt a momentum manner to update the Loss
Bank during training:

Vi = λV ′
i + (1− λ)Lda

i , (1)

where V ′
i and Vi denote the i-th sample’s value of the last

epoch and the current epoch separately, and λ is the mo-
mentum coefficient.

Difficulty Degree. The proposed loss bank is utilized to
assess the difficulty level of the samples, which provides a
global and dynamic perspective on the samples’ loss values.
For each sample xi, we first fed it into the visual task net-
work and output its loss Li, where the loss has a different
formulation according to the tasks. Then we use the relative
rank of the loss Li in the loss bank as the difficulty degree,
which is formulated as below:

di =

∑N
k=1 I(Li < Vk)

N
, (2)

where Vk ∈ B represents the loss value of xk in Loss Bank
and I(x) is an indicator function.

Remark 1. MoDify is an efficient training framework
using the lightweight and simple Loss Bank. For instance,
in comparison to DG methods using image translation
GANs [44], which typically utilizes 9 convolutional layers
with about 11,000,000 parameters, MoDify is much more
efficient, which only utilizes a fixed-length list with approxi-
mately N parameters. Here N equals to the size of samples
contained in the training dataset.

3.4. Difficulty-Aware Training Strategy

This subsection introduces the designed difficulty-aware
training strategies of MoDify, including MoDify-DA and
MoDify-NO. Besides, the data augmentation strategy used
in MoDify-DA is also introduced.

MoDify-DA. We propose the MoDify-DA strategy that
dynamically adjusts the strength of data augmentation. For
each input original image xi, MoDify-DA calculates its
augmentation degree based on the sample’s difficulty de-
gree ddai using Eqn. 2. We utilize 1 − ddai as the augmen-
tation degree of xi and use it as the probability to augment

the input image so that samples with higher difficulty levels
remain unchanged and at the same time simpler samples are
augmented.

A simple yet effective data augmentation method is uti-
lized to improve the domain invariance in this section.
In Domain Generalization (DG) tasks, learning domain-
invariant features is crucial for better generalization per-
formance, especially as the source and target domains fre-
quently differ in style and color but share spatial layout sim-
ilarities. Leveraging spatial information such as edges and
shapes can be beneficial. For instance, while the color of a
simulated car and a real car may differ, their shape is often
similar. Motivated by this observation, we select an appro-
priate data augmentation method called RGB Shuffle. This
method randomly permutes the R, G, and B channels of a
training image, effectively altering its style while preserv-
ing its structural information.

Compared with offline data augmentation methods [25,
17], MoDify-DA is designed to perform strategy online. In
contrast to online data augmentation techniques like [53],
which involves multi-round perturbation, and [49], requir-
ing an extra model for parameter selection of data augmen-
tation, MoDify-DA requires just one additional round for
deciding the degree of data augmentation, eliminating the
need for an auxiliary parameter optimization model. There-
fore, MoDify-DA exhibits more efficiency that brings only
little computational cost.

MoDify-NO. We propose MoDify-NO strategy that en-
ables the network focus on samples with a moderate dif-
ficulty degree. For each input image x̃i, MoDify-NO de-
cides whether or not to learn from this sample based on its
difficulty level dnoi using Eqn. 2. To achieve this, we dy-
namically adjust the weight wi used for the sample’s loss
function wiLi, which is formulated as:

wi =

{
1.0, dnoi ∈ (Teasy, Thard)

0.0, others
, (3)

where Thard and Teasy represent the thresholds for filtering
out samples that are either too easy or too difficult. We set
Thard = 0.95 and Teasy = 0.05 in experiments.

Remark 2. The MoDify framework dynamically adjusts
the data augmentation degree of training samples in line
with the model’s capability. Model capability is gauged by
the loss of each iteration: Mc = 1.0 − Li−Lmin

Lmax−Lmin
, where

Lmax and Lmin denote the max and min losses in training.
Fig. 3 provides an in-depth explanation. During training, it
is noticeable that points with a specific color ranging from
red to blue are distributed from the left-bottom corner to
the top-right corner, which matches the distribution of the
flow channel in Fig. 1. This phenomenon indicates that with
the proposed MoDify strategy, the difficulty level of aug-
mented samples increases along with the improvement of
the model’s capability.
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Figure 3. Visualization of the model’s capability versus the aug-
mentation degree for new training samples (indicating the diffi-
cult level of augmented training samples) along the training iter-
ations. Colors indicate different training iterations, ranging from
red to blue as the number of iterations increases. The illustration
shows that a low (or high) data augmentation degree is automati-
cally adopted to generate training samples of low (or high) diffi-
cult levels at the early (or late) training stage when the capability
of contemporarilytrained models is low (or high).

MoDify achieves a balance between the model’s capa-
bility and training samples’ difficulty in an online manner,
using only an additional forward pass. This approach im-
proves the model’s generalization performance by alleviat-
ing over-fitting and under-fitting issues.

3.5. Loss Functions

There are two tasks chosen as instantiation to evaluate
the effectiveness of the proposed method, including seman-
tic segmentation and object detection. For the semantic seg-
mentation task, the loss function used to supervise between
the predicted segmentation result and the ground truth is the
Cross Entropy loss [54]. For the object detection task, two
losses are adopted, including the bounding box loss and the
classification loss. Specifically, the bounding box loss Lbbox
is the smooth L1 loss [21], and the classification loss Lcls is
the Cross Entropy loss [54].

4. Experiments
This section presents experiments including datasets,

metrics, and implementation details, domain generalization
evaluations for semantic segmentation and object detection
tasks, ablation studies, and discussions respectively. More
details are described in the ensuing subsections.

4.1. Datasets and Metrics

Datasets. We evaluate MoDify over multiple datasets
across different visual DG tasks on semantic segmenta-
tion and object detection, which involve two synthetic
source datasets including GTAV [46] and SYNTHIA [47]
and three real target datasets including Cityscapes [12],

BDD100K [55], and Mapillary [38]). GTAV is a large-scale
dataset containing 24,966 high-resolution synthetic images
with a size of 1914×1052, which shares 19 classes with
Cityscapes, BDD100K, and Mapillary. SYNTHIA consists
of photo-realistic synthetic images containing 9,400 sam-
ples with a resolution of 960×720, which shares 16 classes
with the three target datasets. Cityscapes, BDD100K, and
Mapillary consist of 2975, 7000, and 18000 real-world
training images and 500, 1000, and 2000 validation images
respectively.

DG for Semantic Segmentation. We study two
synthetic-to-real semantic segmentation tasks, including
GTAV → {Cityscapes, BDD100K, Mapillary} and SYN-
THIA → {Cityscapes, BDD100K, Mapillary}.

DG for Object Detection. We evaluate our methods on
several DG scenarios for object detection: SYNTHIA → {
Cityscapes, BDD100K, Mapillary}.

Metrics. The evaluation metric is the mean Intersection-
over-Union (mIoU) for the semantic segmentation task and
is the mean Average Precision (mAP) with an IoU threshold
equals to 0.5 for the object detection task.

4.2. Implementation Details

Semantic Segmentation. We employ DeepLab-V2 [7]
as the segmentation model. Two backbones are used for ex-
periments, including ResNet-50 and ResNet-101 [23]. We
use SGD [4] with momentum 0.9 as the optimizer. The
weight decay is set to 5e−4 and the learning rate is 2.5e−4,
which is decayed by the polynomial policy [7].

Object Detection. Faster R-CNN [45] is adopted as
the detection model. ResNet-101 is used as the backbone.
SGD [4] with momentum 0.9 and weight decay 1e−4 is
adopted. The initial learning rate is set to 2e−2, which is
decayed to 2e−3 and 2e−4 at the 16 and 22 epochs, respec-
tively.

4.3. Domain Generalizable Semantic Segmentation

We compare MoDify against state-of-the-art DG-based
semantic segmentation methods, including IBN-NET [39],
DRPC [56], GLTR [41], FSDR [26], WildNet [31], and
SHADE [61], on Cityscapes, BDD100K and Mapillary val-
idation sets. The results are reported in Tab. 1 and Tab. 2 us-
ing GTAV and SYNTHIA as source domains respectively.
Moreover, we compare the methods using two backbones
for a fair comparison. The performance is analyzed in de-
tail as follows:

GTAV → {Cityscapes, BDD100K, Mapillary}. As
shown in Tab. 1, the setting GTAV → {Cityscapes,
BDD100K, Mapillary} is used for comparison. MoDify
achieves the best performance with 46.8% and 44.2% mean
mIoU on both backbones. Specifically, when using ResNet-
101 as the backbone, MoDify significantly outperforms ex-
isting best methods by 2.1%, 0.5%, and 2.0% mIoU on
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Figure 4. Qualitative illustration of domain generalizable semantic segmentation for GTAV to Cityscapes (Row 1), BDD (Row 2), and
Mapillary (Row 3). White boxes highlight regions with clear differences across the compared methods. Compared with other methods,
MoDify predicts better building shapes in Row 1, better sidewalk in Row 2, and more accurate fence structures in Row 3.

Net Method Cityscapes BDD100K Mapillary Mean

R
es

N
et

-1
01

IBN-Net [39] 37.4 34.2 36.8 36.1
DRPC [56] 42.5 38.7 38.1 39.8
GLTR [41] 43.7 39.6 39.1 40.8
FSDR [26] 44.8 41.2 43.4 43.1

WildNet [31] 45.8 41.7 47.1 44.9
SHADE [61] 46.7 43.7 45.5 45.3

MoDify (Ours) 48.8 44.2 47.5 46.8

R
es

N
et

-5
0

SW [40] 29.9 27.5 29.7 29.0
IterNorm [27] 31.8 32.7 33.9 32.8

ASG [8] 31.9 N/A N/A N/A
IBN-Net [39] 33.9 32.3 37.8 34.6
DRPC [56] 37.4 32.1 34.1 34.6
ISW [11] 36.6 35.2 40.3 37.4

GLTR [41] 38.6 N/A N/A N/A
SiamDoGe [51] 43.0 37.5 40.6 40.4

SHADE [61] 44.7 39.3 43.3 42.4
WildNet [31] 44.6 38.4 46.1 43.0

MoDify (Ours) 45.7 40.1 46.2 44.0

Table 1. Benchmarking Domain generalization over semantic seg-
mentation task GTAV → {Cityscapes, BDD100K, Mapillary} in
mIoU. Best in bold, second underlined.

the Cityscapes, BDD100K, and Mapillary datasets, respec-
tively. Moreover, MoDify achieves better performance with
ResNet-50, surpassing the second-best methods with 1.8%,
1.7%, and 0.1% mIoU on three datasets, respectively.

SYNTHIA → {Cityscapes, BDD100K, Mapillary}.
Tab. 2 shows the results under the setting SYNTHIA →
{Cityscapes, BDD100K, Mapillary}. We can see that
MoDify achieves the best performance on ResNet-50 and
ResNet-101 backbones. Specifically, MoDify (ResNet-50)
outperforms previous methods with 3.2%, 2.2%, and 3.5%
mIoU on the three datasets, respectively. Moreover, MoD-
ify (ResNet-101) improves 2.6%, 2.1%, and 2.7% mIoU as
compared with the second-best performance.

As the two tables show, MoDify outperforms all state-
of-the-art DG methods clearly and consistently across both
tasks and two network backbones. The superior segmenta-

Net Method Cityscapes BDD100K Mapillary Mean

R
10

1

IBN-Net [39] 37.5 33.0 33.7 34.7
DRPC [56] 37.6 34.3 34.1 35.4
GLTR [41] 39.7 35.3 36.4 37.1
FSDR [26] 40.8 37.4 39.6 39.3

MoDify (Ours) 43.4 39.5 42.3 41.7

R
50 DRPC [56] 35.7 31.5 32.7 33.3

MoDify (Ours) 38.9 33.7 36.2 36.3
Table 2. Benchmarking domain generalization over semantic seg-
mentation task SYNTHIA →{Cityscapes, BDD100K, Mapillary}
in mIoU. R50 and R101 represent ResNet-50 and ResNet-101, re-
spectively. Best in bold, second underlined.

Method Cityscapes BDD100K Mapillary Mean
Faster R-CNN [45] 24.3 20.1 20.8 21.7

IBN-Net[39] 30.1 23.1 22.3 25.1
FSDR[26] 33.5 25.2 24.9 27.8

MoDify (Ours) 37.0 26.1 26.9 30.0
Table 3. Benchmarking domain generalization over object de-
tection task SYNTHIA → {Cityscapes, BDD100K, Mapillary} in
mIoU. Faster-RCNN with ResNet-101 is the base framework for
all methods. Best in bold, second underlined.

tion performance is largely attributed to the proposed MoD-
ify which balances the model’s capability and the samples’
difficulties along the training process, mitigating the mis-
alignment issue effectively. Moreover, qualitative illustra-
tions in Fig. 4 demonstrate the effectiveness of the proposed
MoDify which produces better semantic segmentation con-
sistently across different target datasets and domains.

4.4. Domain Generalizable Object Detection

Apart from semantic segmentation, the object detection
task is also used to evaluate the effectiveness of the pro-
posed method over the DG-based object detection tasks
SYNTHIA → {Cityscapes, BDD100K, Mapillary}. State-
of-the-art methods IBN-NET [39] and FSDR [26] are used
to compare with MoDify. As shown in Tab. 3, on all
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Figure 5. Qualitative illustration of domain generalizable object detection for GTAV to Cityscapes (1st row), BDD (2nd row), and Mapillary
(3rd row). The images are cropped and zoomed in for better visualization. In the first row, MoDify performs the best for finding the persons
on the sidewalk. In the second row, MoDify predicts both objects accurately with correct categories. In the last row, two objects including
a person and a bicycle are predicted correctly by MoDify while Faster R-CNN misses both objects.

Index RGB Shuffle MoDify-DA MoDify-NO mIoU
1 36.6
2 ✓ 43.8
3 ✓ ✓ 46.3
4 ✓ 43.3
5 ✓ ✓ 46.5
6 ✓ ✓ ✓ 48.8

Table 4. Ablation study of the proposed components in MoDify
over the domain generalizable semantic segmentation task GTAV
→ Cityscapes, using ResNet-101 as the backbone.

three datasets, MoDify beats the second-best performance
by 3.5%, 0.9% and 2.0% mAP improvements, respectively.
The qualitative comparison results are shown in Fig. 5,
showing cases of all three datasets. Compared with the re-
sults of other methods, the detection results of MoDify are
more precise with fewer false positive predictions.

4.5. Ablation Study

We examine different MoDify designs to find out how
they contribute to network generalization in semantic seg-
mentation. Specifically, we trained six models over the
UDG task GTAV → Cityscapes, and Tab. 4 presents the cor-
responding experimental results.

We can observe that the baseline trained with the GTA
data only does not perform well due to domain bias.
MoDify-DA and MoDify-NO outperform the Baseline by
a significant margin, which demonstrates the importance of
balancing the seesaw between the model’s capability and
the samples’ difficulty level throughout the training process
to achieve domain-generalizable models. When combined

with RGB Shuffle, MoDify-NO achieves slightly better re-
sults than MoDify-DA, which can be largely attributed to
its direct connection to network updates during training.
Furthermore, MoDify consistently achieves the best per-
formance. This indicates that MoDify-DA and MoDify-
NO are complementary, where the two designs work col-
laboratively to generate difficulty-aware augmentation sam-
ples and coordinate the augmentation and network training
smoothly. Besides, the Color shuffle augmentation strategy
improves the Baseline by a large margin, demonstrating the
effectiveness of this simple yet effective technique.

4.6. Discussions

This section covers three main parts, including analysis
on the losses of different methods during training, the com-
patibility of our method with existing approaches, as well
as its computational cost.

Fig. 6 shows the loss curves of the methods using strong
data augmentation, no data augmentation, and MoDify dur-
ing training, as well as the mIoU performance in the tar-
get domain. As shown in Fig 6, we can observe that the
proposed MoDify balances the model’s fitting to the source
domain data between the Strong DA-based method and the
No DA-based method during training. The method with no
data augmentation has the lowest loss during training, but
the worst performance due to over-fitting on the source do-
main (as illustrated in yellow line). Strong data augmen-
tation leads to high loss and sub-optimal performance due
to under-fitting on the source domain (as illustrated in red
line). Our method achieves the best performance with mod-
erate loss, indicating that MoDify alleviates the misfitting
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Cityscapes BDD100K Mapillary
Base +Ours Base +Ours Base +Ours

ISW [11] 36.6 40.8 35.2 38.0 40.3 43.7
SHADE [61] 44.7 46.0 39.3 40.5 43.3 44.2

Table 5. MoDify’s training strategies are complementary to
existing domain generalization methods. For the task GTAV
→ {Cityscapes, BDD100K, Mapillary} (using ResNet-50 as the
backbone), including MoDify (Ours) consistently boosts the per-
formance of domain generalization.

Models Params FLOPs Inference Time
ISW [11] 45.1M 556.22G 13.6ms

WildNet [31] 45.1M 556.19G 21.3ms
SHADE [61] 45.1M 556.19G 14.5ms

Ours 45.1M 556.19G 13.7ms
Table 6. Comparison of computational cost. The tests are carried
out using the image size of 1024 × 2048 on NVIDIA V100 GPU.

issue during training (as illustrated in green line).
MoDify is complementary to existing domain general-

ization networks, which can be easily incorporated into
them with consistent performance boosts but little extra pa-
rameters and computation. We evaluated this feature by in-
corporating MoDify’s training strategies into two compet-
itive domain generalization networks including ISW [11]
and SHADE [61] as shown in Tab. 5. During training, we
balance the difficulty level of the augmented samples and
the capability of networks. As Tab. 5 shows, the incorpo-
ration of MoDify improves the semantic segmentation of
state-of-the-art networks consistently. As the incorporation
of MoDify just includes a training-free loss bank without
changing network structures, the inference has few extra pa-
rameters and computation once the model is trained.

To validate the computational efficiency of our proposed
method, we conducted a detailed analysis of its parame-
ters, floating-point operations per second (FLOPs), and in-
ference time. The results are presented in Tab. 6. It can be
observed that our approach incurs only a minor additional
computational cost during testing. Additionally, we calcu-
lated that the training time required by our proposed method
is only 1.4 times that of the baseline method’s training time.
These findings confirm the practicality and efficiency of our
proposed method.

5. Methodology Limitation
MoDify enhances the model’s generalization ability by

adjusting the strength of image-level data augmentation
during the training process, which leads to better perfor-
mance of visual task models in several challenging scenar-
ios. However, there are certain region-level difficult sam-
ples where the performance of the model is relatively poor.
To illustrate this, some failure cases are visualized in the
supplementary material. Future work could explore a fine-

Figure 6. Visualization of the losses during the training process for
strong data augmentation (Strong DA), MoDify, and no data aug-
mentation (No DA), respectively. No data augmentation results
in low loss but poor performance due to over-fitting. Strong data
augmentation leads to high loss and sub-optimal performance due
to under-fitting. Our method achieves the best performance with
moderate loss, indicating that MoDify alleviates the misfitting is-
sue effectively. Results are obtained on the semantic segmentation
task from GTAV [46] to Cityscapes [12] with ResNet-101.

grained region adaptive strategy, applying data augmen-
tation with appropriate levels to different image regions,
which is a more targeted approach.

6. Conclusion

This paper presents the Momentum Difficulty (MoDify)
technique that tackles domain generalization challenges by
mitigating the misalignment between the overall difficulty
degree of training samples and the capability of the contem-
porary deep network model along with the training process.
Specifically, we designed MoDify-based Data Augmenta-
tion (MoDify-DA) and MoDify-based Network Optimiza-
tion (MoDify-NO), which coordinate the augmentation and
the network training smoothly. The proposed MoDify has
three valuable features: 1) it is generic to various visual
recognition tasks with consistently superior performance;
2) it is an online yet lightweight technique in various down-
stream; 3) it complements with existing domain generaliza-
tion methods with consistent performance boosts.
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[4] Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In Proceedings of Computational Statis-
tics, pages 177–186. Springer, 2010.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Proceedings of the
IEEE/CVF European Conference on Computer Vision, pages
213–229. Springer, 2020.

[6] Jenova Chen. Flow in games (and everything else). Commu-
nications of the ACM, (4):31–34, 2007.

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, (4):834–848, 2017.

[8] Wuyang Chen, Zhiding Yu, Zhangyang Wang, and Ani-
mashree Anandkumar. Automated synthetic-to-real general-
ization. In International Conference on Machine Learning,
pages 1746–1756. PMLR, 2020.

[9] Xinlei Chen and Abhinav Gupta. Webly supervised learning
of convolutional networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1431–
1439, 2015.

[10] Jaehoon Choi, Minki Jeong, Taekyung Kim, and Changick
Kim. Pseudo-labeling curriculum for unsupervised domain
adaptation. British Machine Vision Conference, 2019.

[11] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improving
domain generalization in urban-scene segmentation via in-
stance selective whitening. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11580–11590, 2021.

[12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, 2016.

[13] Mihaly Csikszentmihalyi. Flow and education. NAMTA jour-
nal, (2):2–35, 1997.

[14] Mihaly Csikszentmihalyi. Flow and the psychology of dis-
covery and invention. HarperPerennial, New York, 1997.

[15] Mihaly Csikszentmihalyi. Flow: The psychology of happi-
ness. Random House, 2013.

[16] Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. Flow:
The psychology of optimal experience. Harper & Row New
York, 1990.

[17] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
113–123, 2019.

[18] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas,
and Ben Glocker. Domain generalization via model-agnostic
learning of semantic features. Advances in Neural Informa-
tion Processing Systems, 2019.

[19] Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong
Zhen, Cees GM Snoek, and Ling Shao. Learning to learn
with variational information bottleneck for domain general-
ization. In Proceedings of the IEEE/CVF European Confer-
ence on Computer Vision, pages 200–216. Springer, 2020.

[20] Yingjun Du, Xiantong Zhen, Ling Shao, and Cees GM
Snoek. Metanorm: Learning to normalize few-shot batches
across domains. In International Conference on Learning
Representations, 2020.

[21] Ross Girshick. Fast R-CNN. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1440–1448, 2015.

[22] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang,
Dengke Dong, Matthew R Scott, and Dinglong Huang. Cur-
riculumnet: Weakly supervised learning from large-scale
web images. In Proceedings of the IEEE/CVF European
Conference on Computer Vision, pages 135–150, 2018.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[24] Jean Heutte, Fabien Fenouillet, Charles Martin-Krumm,
Ilona Boniwell, and Mihaly Csikszentmihalyi. Proposal for
a conceptual evolution of the flow in education (eduflow)
model. In European Conference on Positive Psychology,
2016.

[25] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter
Abbeel. Population based augmentation: Efficient learning
of augmentation policy schedules. In International Confer-
ence on Machine Learning, pages 2731–2741. PMLR, 2019.

[26] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu.
Fsdr: Frequency space domain randomization for domain
generalization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6891–
6902, 2021.

[27] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. It-
erative normalization: Beyond standardization towards ef-
ficient whitening. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4874–4883, 2019.

[28] Yunpei Jia, Jie Zhang, Shiguang Shan, and Xilin Chen.
Single-side domain generalization for face anti-spoofing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8484–8493, 2020.

19001



[29] Kristian Kiili, Sara De Freitas, Sylvester Arnab, and Timo
Lainema. The design principles for flow experience in edu-
cational games. Procedia Computer Science, pages 78–91,
2012.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, (6):84–90, 2017.

[31] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai
Kim. WildNet: Learning domain generalized semantic seg-
mentation from the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9936–9946, 2022.

[32] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe
Song, and Timothy M Hospedales. Episodic training for do-
main generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1446–1455,
2019.

[33] Chuang Lin, Zehuan Yuan, Sicheng Zhao, Peize Sun,
Changhu Wang, and Jianfei Cai. Domain-invariant disentan-
gled network for generalizable object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 8771–8780, 2021.

[34] Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman. Teacher-student curriculum learning. IEEE
Transactions on Neural Networks and Learning Systems,
(9):3732–3740, 2019.

[35] Toshihiko Matsuura and Tatsuya Harada. Domain general-
ization using a mixture of multiple latent domains. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
number 07, pages 11749–11756, 2020.

[36] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5715–
5725, 2017.

[37] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter
Stone. Source task creation for curriculum learning. In Inter-
national Conference on Autonomous Agents and Multiagent
Systems, pages 566–574, 2016.

[38] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for seman-
tic understanding of street scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4990–4999, 2017.

[39] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the IEEE/CVF European Con-
ference on Computer Vision, pages 464–479, 2018.

[40] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang,
and Ping Luo. Switchable whitening for deep representa-
tion learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1863–1871, 2019.

[41] Duo Peng, Yinjie Lei, Lingqiao Liu, Pingping Zhang,
and Jun Liu. Global and local texture randomization for
synthetic-to-real semantic segmentation. IEEE Transactions
on Image Processing, pages 6594–6608, 2021.

[42] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H
Lampert. Curriculum learning of multiple tasks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5492–5500, 2015.

[43] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020.

[44] Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Bak-
tashmotlagh, and Sridha Sridharan. Multi-component image
translation for deep domain generalization. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 579–588. IEEE, 2019.

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in Neural Information Pro-
cessing Systems, 2015.

[46] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In Proceedings of the IEEE/CVF European Confer-
ence on Computer Vision, pages 102–118. Springer, 2016.

[47] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3234–
3243, 2016.

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. Interna-
tional Conference on Learning Representations, 2015.

[49] Zhiqiang Tang, Yunhe Gao, Leonid Karlinsky, Prasanna Sat-
tigeri, Rogerio Feris, and Dimitris Metaxas. Onlineaug-
ment: Online data augmentation with less domain knowl-
edge. In Proceedings of the IEEE/CVF European Conference
on Computer Vision, pages 313–329. Springer, 2020.

[50] Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen,
Ming-Ming Cheng, Jiashi Feng, Yao Zhao, and Shuicheng
Yan. Stc: A simple to complex framework for weakly-
supervised semantic segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (11):2314–2320,
2016.

[51] Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Lili Ju, and Song
Wang. SiamDoGe: Domain generalizable semantic seg-
mentation using siamese network. In Proceedings of the
IEEE/CVF European Conference on Computer Vision, pages
603–620. Springer, 2022.

[52] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. SegFormer: Simple and ef-
ficient design for semantic segmentation with transformers.
Advances in Neural Information Processing Systems, pages
12077–12090, 2021.

[53] Xiaogang Xu and Hengshuang Zhao. Universal adaptive data
augmentation. International Joint Conference on Artificial
Intelligence, 2023.

[54] Ma Yi-de, Liu Qing, and Qian Zhi-Bai. Automated image
segmentation using improved pcnn model based on cross-
entropy. In Proceedings of International Symposium on In-

19002



telligent Multimedia, Video and Speech Processing, pages
743–746. IEEE, 2004.

[55] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2636–2645, 2020.

[56] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target
domain data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2100–2110, 2019.

[57] Yang Zhang, Philip David, Hassan Foroosh, and Boqing
Gong. A curriculum domain adaptation approach to the se-
mantic segmentation of urban scenes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (8):1823–1841,
2019.

[58] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2881–2890, 2017.

[59] Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas.
Maximum-entropy adversarial data augmentation for im-
proved generalization and robustness. Advances in Neural
Information Processing Systems, pages 14435–14447, 2020.

[60] Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu,
and Dacheng Tao. Domain generalization via entropy regu-
larization. Advances in Neural Information Processing Sys-
tems, pages 16096–16107, 2020.

[61] Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe, and
Gim Hee Lee. Style-hallucinated dual consistency learning
for domain generalized semantic segmentation. In Proceed-
ings of the IEEE/CVF European Conference on Computer
Vision, pages 535–552. Springer, 2022.

[62] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao
Xiang. Learning to generate novel domains for domain gen-
eralization. In Proceedings of the IEEE/CVF European Con-
ference on Computer Vision, pages 561–578. Springer, 2020.

19003


