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Abstract

Self-supervised monocular scene flow estimation, aiming
to understand both 3D structures and 3D motions from two
temporally consecutive monocular images, has received in-
creasing attention for its simple and economical sensor
setup. However, the accuracy of current methods suffers
from the bottleneck of less-efficient network architecture
and lack of motion rigidity for regularization. In this pa-
per, we propose a superior model named EMR-MSF by
borrowing the advantages of network architecture design
under the scope of supervised learning. We further im-
pose explicit and robust geometric constraints with an elab-
orately constructed ego-motion aggregation module where
a rigidity soft mask is proposed to filter out dynamic re-
gions for stable ego-motion estimation using static regions.
Moreover, we propose a motion consistency loss along with
a mask regularization loss to fully exploit static regions.
Several efficient training strategies are integrated includ-
ing a gradient detachment technique and an enhanced view
synthesis process for better performance. Our proposed
method outperforms the previous self-supervised works by
a large margin and catches up to the performance of su-
pervised methods. On the KITTI scene flow benchmark,
our approach improves the SF-all metric of the state-of-the-
art self-supervised monocular method by 44% and demon-
strates superior performance across sub-tasks including
depth and visual odometry, amongst other self-supervised
single-task or multi-task methods.

1. Introduction

Scene flow estimation, which involves estimating both
3D structure and 3D motion of a dynamic scene from
its two consecutive observations, has been receiving in-
creasing attention due to its significance in areas such as
robotics [10], augmented reality [22], and autonomous ve-
hicles [35]. Recently, deep learning has demonstrated re-
markable progress in the domain of scene flow estimation
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Figure 1: Comparison between our method and [20]. (a)
input first frame, (b) input second frame, (c) depth of first
frame from [20], (d) synthesized optical flow from [20], (e)
depth of first frame from our method, (f) synthesized optical
flow from our method. Our method generates more regular-
ized and detailed predictions as shown in red boxes.

based on various input modalities, including stereo images
[3, 24, 32, 41, 51, 40], RGB-D pairs [31, 39, 45, 33], or
Lidar points [28, 18, 54, 56, 38, 55, 12, 7, 11, 52]. These
methods, however, either require strict sensor calibrations
(e.g., stereo-based), or expensive devices (e.g., RGB-D or
Lidar-based) for achieving satisfactory performance, which
restricts their widespread applications.

On the other hand, monocular scene flow estimation
methods [5, 57, 58, 62, 30, 26, 20, 21, 2] which only re-
quire a monocular camera for obtaining both 3D structure
and 3D motion, have been presented as an economical yet
effective solution for dynamic 3D perception. The meth-
ods [5, 57] combined with supervised learning have yielded
promising results, yet the primary challenge facing them
has been the limited availability of ground-truth training
data. To address this limitation, several multi-task meth-
ods [58, 62, 30, 53, 26] have been proposed to jointly learn
the depth, 2D optical flow and camera ego-motion networks
from monocular sequences in a self-supervised manner, and
the scene flow can be calculated from the outputs. Recently,
[20, 21, 2] have shown it feasible to train a single network
to directly estimate both depth and 3D scene flow from two
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monocular images and outperform the previous multi-task
methods. These methods typically build upon a standard
optical flow pipeline (e.g., PWC-Net [43] or RAFT [44])
as basis and adapt it for monocular scene flow. Despite
the notable progress achieved by these methods, their ac-
curacy still lags behind the supervised monocular methods
by a large margin.

In this paper, we propose a novel approach for self-
supervised monocular scene flow estimation, which out-
performs the previous methods significantly as shown in
Fig.1. To introduce explicit 3D geometry-oriented property,
we follow the network architecture proposed in the super-
vised RGB-D method RAFT-3D [45] that iteratively refines
a dense SE3 motion field for scene flow estimation. This
improvement of architecture compared to previous meth-
ods directly improves the performance to a new level, but
we argue that it still lacks the usage of Ego-Motion Rigid-
ity (EMR), an important prior that pixels in static regions
should have the same SE3 motion as the ego-motion. A
novel module named ego-motion aggregation (EMA) is thus
proposed to jointly estimate ego-motion as well as a rigid-
ity soft mask from the dense SE3 motion field. A new mo-
tion consistency loss is elaborately designed for constrain-
ing motion estimations in static areas represented by the
rigidity soft mask. However, we notice that the network is
inclined to select only a small subset of static regions which
leads to a rigidity soft mask of low quality. To mitigate this
problem, we adopt an efficient mask regularization loss to
encourage the network to locate as many static regions as
possible. Further performance improvement is attributed to
our proposed training strategies including a gradient detach-
ment technique and an improved view synthesis process.

Our main contributions are summarized as follows:

• We propose a novel self-supervised monocular scene
flow estimation by incorporating 3D geometry-
oriented network architecture property and exploiting
ego-motion rigidity (EMR-MSF). To the best of our
knowledge, we are the first method capable of jointly
estimating depth, dense SE3 motion field and ego-
motion from monocular images, as well as full scene
flow derived from them.

• We introduce a novel ego-motion aggregation (EMA)
module accompanied by a rigidity soft mask to pre-
cisely locate static regions for robust and accurate ego-
motion estimation.

• We propose two new training losses to constrain the
motion estimations in static regions, along with two
effective training strategies to enhance accuracy as ex-
plained in Sec. 3.3.

• We conduct extensive experiments to verify the effec-
tiveness of our proposed method, resulting in a 44%

accuracy boost in the SF-all metric compared to the
previous state-of-the-art method on the task of monoc-
ular scene flow estimation, as well as superior results
in monocular depth and visual odometry.

2. Related Work

Scene flow. As first introduced in [48], scene flow estima-
tion is defined as the task of jointly estimating 3D struc-
tures and 3D motions for each scene point. The early stud-
ies [1, 19, 50, 49, 51] are based on stereo inputs and ap-
proach the scene flow estimation as an energy minimization
problem. Recently, deep learning has demonstrated pow-
erful capabilities in end-to-end learning of scene flow esti-
mation from stereo inputs [24, 32, 41]. Additionally, ap-
proaches that leverage pre-existing 3D structure through in-
puts of RGB-D sequences [31, 39, 45, 33] or Lidar points
[28, 56, 38, 55, 12, 11, 52] have also been proposed for var-
ious scenarios.
Monocular scene flow. The advancement of deep learn-
ing techniques has facilitated the acquisition of scene flow
solely from monocular images, with early methods relying
on supervised learning [5, 57]. To exploit vast amounts of
unlabeled data, a multitude of self-supervised multi-task ap-
proaches [58, 53, 62, 30, 26, 27] have been introduced that
jointly predict depth, 2D optical flow, and camera motion
from monocular sequences. While the recovery of scene
flow is possible using the aforementioned outputs, the accu-
racy of such estimations is notably inadequate in temporally
occluded areas. Hur et al. [20] first present a novel self-
supervised model capable of inferring depth and 3D mo-
tion field from monocular sequences and surpass the perfor-
mance of previous multi-task methods. Subsequent studies
extend their method into a multi-frame model [21], or em-
ploy a recurrent network architecture [2] for better accuracy.
Rigidity in Scene Flow. Scene flow estimation can bene-
fit from prior knowledge about rigidity, which assumes that
pixels belonging to the same rigid object should undergo the
same rigid transformation. To leverage the rigidity informa-
tion in the scene, object detection or segmentation networks
are commonly used to identify rigid instances and incorpo-
rated in scene flow estimation methods [32, 6, 40, 3] for
better performance. Teed et al. [45] first propose the rigid-
motion embeddings which softly and differentiably group
pixels into rigid objects to exploit object-level rigidity. On
the other hand, ego-motion rigidity, where the motion of
pixels in static regions is constrained by the camera ego-
motion, is widely used in self-supervised multi-task meth-
ods [58, 53, 62, 30, 26, 27] but often in a hard and non-
differentiable way. In contrast, our proposed method jointly
reasons ego-motion and rigidity soft mask in a fully differ-
entiable manner, providing more robust and accurate scene
flow estimation.
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Figure 2: Proposed network architecture. We highlight the different parts from RAFT-3D [45] with the shaded boxes,
including 1) end-to-end trainable monocular depth estimation that substitutes the estimated depths for fixed input depths in
the original structure, 2) an ego-motion aggregation (EMA) module for inferring ego-motion along with a learnable rigidity
soft mask for locating static regions.

3. Proposed Method

Given two temporally consecutive monocular images
{I1, I2} ∈ RH×W×3, our method aims to recover 1) the
corresponding depth maps D1, D2 ∈ RH×W×1, 2) the
dense SE3 motion field T1→2 ∈ SE(3)H×W that assigns
a rigid transformation to each pixel of I1 to I2, and 3) the
ego-motion T ego

1→2 ∈ SE(3) from I1 to I2. The optical flow
F1→2 ∈ RH×W×2 and scene flow S1→2 ∈ RH×W×3 from
I1 to I2 can be further recovered from the estimated D1 and
T1→2. In the following sections, we will begin by provid-
ing an overview of the proposed network architecture which
incorporates effective designs for 3D estimations from a su-
pervised method (Sec. 3.1). Afterwards, we provide a de-
tailed description of the proposed ego-motion aggregation
(EMA) module that we utilize for estimating ego-motion,
as well as a learnable rigidity soft mask for effectively lo-
cate static regions (Sec. 3.2). Finally, we elaborate on our
self-supervised training in Sec. 3.3, which includes novel
loss functions designed to fully exploit ego-motion rigidity,
as well as improved training strategies.

3.1. Network Overview

Fig. 2 demonstrates the overview of our network. We
highlight the different parts of our network compared to
RAFT-3D [45], which is the basis of our network architec-
ture, inside the shaded boxes. Our network consists of five
stages: 1) monocular depth estimation, 2) feature extraction
3) correlation computing, 4) iterative refinement and 5) ego-
motion aggregation. We first employ a monocular depth
network to estimate the depth maps of input images instead
of the fixed depths used in the original RAFT-3D structure.

We adopt SDFA-Net [60] for depth estimation for its supe-
rior performance, which infers disparity from a monocular
image under the assumption of a fixed baseline, and fur-
ther converts the disparity into depth using pre-known fo-
cal length and baseline values. For feature extraction, cor-
relation computing and iterative refinement, we utilize the
designs of RAFT-3D, which include the construction of a
4D all-pairs correlation pyramid from extracted features of
input images and the use of a ConvGRU unit followed by a
Dense-SE3 layer for iterative residual refinement of the SE3
field estimate. The ego-motion aggregation (EMA) module
is employed to further infer ego-motion from the estimated
SE3 motion field, which is elaborated on in the next section.
The 3D scene flow and 2D optical flow can be synthesized
from estimated depth and SE3 motion field for various ap-
plications.

3.2. Ego-Motion Aggregation

As demonstrated in our ablation study 4.3, the joint
learning of the depth and dense SE3 motion field in the
self-supervised scenario can lead to significant ambiguities
between the estimations of structure and motion, where the
estimated SE3 motions of pixels belonging to the same rigid
object, e.g., the static regions, may be inconsistent. To mit-
igate such ambiguities, we incorporate the ego-motion es-
timation into the joint learning to provide additional con-
straints in static regions. We propose to aggregate the ego-
motion from the estimated SE3 motion field in contrast to
previous multi-task methods [53, 58, 62], which utilize a
separate network to regress ego-motion from input images.
Furthermore, to handle the dynamic regions which are non-
relevant to ego-motion, we introduce a learnable rigidity
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soft mask to predict per-pixel rigidity, thus locating static
regions for stable ego-motion estimation.

Our ego-motion aggregation module proceeds in three
steps, as shown in the upper-right corner of Fig. 2. We first
incorporate the mask embeddings, a 16-channel feature map
initialized to zero values, as new inputs and outputs to the
convGRU unit, which is iteratively updated alongside the
SE3 motion field. Next, we decode the mask embeddings
using a mask decoder consisting of two convolutional lay-
ers and a sigmoid activation layer to obtain the rigidity soft
mask Mr. The rigidity soft mask assigns a probability to
each pixel, indicating the probability of it belonging to the
static region. In the final step, we derive the ego-motion as
an aggregation of estimated SE3 motion field based on the
learned rigidity soft mask, which is formulated as:

T ego
1→2 = Exp(

∑
MrLog(T1→2)∑

Mr
), (1)

where Log(·) maps SE(3) components to the Lie algebra,
and Exp(·) performs the inverse operation.

As the ego-motion is differentiably computed from the
SE3 motion field, the learning of ego-motion will implicitly
impose constraints on the estimation of SE3 motion field.
In the next section, we further combine the self-supervised
losses with two new losses utilizing the ego-motion estima-
tion and learned rigidity soft mask to explicitly regularize
the motion estimations in static regions.

3.3. Self-supervised Training

3.3.1 Self-supervised Loss

To enable self-supervised training, the estimated depth
D1 of the first image and the SE3 motion field T1→2 are
first converted into the scene flow representation (u, v,∆D)
with known camera intrinsics [33], where (u, v) denotes
the standard optical flow F1→2, and ∆D denotes the depth
change registered to the first frame I1. We denote D1 =
D1+∆D, which represents the transformed depth map reg-
istered to the first frame. We obtain the 2D rigid flow F ego

1→2

in the same manner by replacing T1→2 with T ego
1→2. The

losses for our joint self-supervised learning are introduced
as follows:
Temporal Photometric loss. We minimize the photometric
differences between the original image and the synthesized
images from flow field F1→2 and F ego

1→2, formulated by

Lp =
1

HW

∑
Mnoc ⊙ pe(I1, w(I2, F1→2)), (2)

Lego
p =

1

HW

∑
Mol ⊙Mnoc ⊙ pe(I1, w(I2, F

ego
1→2)),

(3)

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α) |Ia − Ib| ,

(4)

where 1
HW

∑
is used for the notation of the mean over all

pixels and ⊙ means element-wise multiplication. w(·, ·) is
the view synthesis function with the flow field and pe(·, ·)
measures the photometric difference between two images.
The occlusion mask Mnoc is derived from the forward-
backward consistency check [34] using F1→2 and F2→1.
We additionally use an outlier mask Mol [23] for calculating
Lego
p , which masks out pixels with either large photometric

errors mainly resulting from possible occluded or moving
regions, or very small photometric errors mainly resulting
from textureless regions. Note that Mr is not leveraged
here for two reasons: 1) Mol performs more stable than the
learned mask Mr in the beginning of training. 2) Mol can
better locate pixels which are informative for learning ego-
motion estimation.
Spatial Photometric Loss. To address scale ambiguity in
monocular scene flow learning, we utilize stereo samples
during training as proposed in previous works [20, 21, 2].
We use the stereoscopic image synthesis loss utilized in [60]
to regularize depth estimation on an absolute scale and de-
note it as Ld in our method.
Geometric loss. To constrain the estimated motion field in
3D space, we exploit the geometric consistency between the
transformed depth map D1 and estimated D2:

Lg =
1

HW

∑
Mnoc ⊙ ge(D1, w(D2, F1→2)), (5)

ge(Da, Db) =
|Da −Db|
Da +Db

, (6)

where ge(·, ·) measures the normalized difference [4] be-
tween two depth maps.
Smoothness loss. The k-th order edge-aware smoothness
loss function is defined as:

Ls(O) =
1

HW

∑∣∣∣∣∂kO

∂xk

∣∣∣∣ e−β| ∂I1
∂x | +

∣∣∣∣∂kO

∂yk

∣∣∣∣ e−β| ∂I1
∂y |,

(7)
where O is a dense prediction, which can be Log(T1→2),
D1 and F1→2 in our case. We apply first-order edge-aware
smoothness loss to Log(T1→2) and D1, denoted as Ls,t

and Ls,d separately, and apply second-order edge-aware
smoothness loss to F1→2 as Ls,f . The total smoothness
loss is calculated as Ls = λstLs,t + λsdLs,d + λsfLs,f .
Motion Consistency Loss. To further regularize the SE3
motion field in static regions, we propose to explicitly con-
strain the motion estimations in these regions to be consis-
tent with the estimated ego-motion, formulated as:

Lc =
1

HW

∑
Mr ⊙ |Log(T1→2)− Log(T ego

1→2)|, (8)

Mask Regularization loss. We observe that the estimated
rigidity soft mask tends to degenerate during training. This
is intuitively reasonable since theoretically the ego-motion
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Figure 3: Visualization of estimated rigidity soft masks.
The middle column shows the degeneration cases of esti-
mated rigidity soft mask, which is solved by introducing
Lm during training.

can be represented as the SE3 motion of any single pixel
in static regions, thus the rigidity soft mask is inclined to
select only a small subset of static regions due to Lc. To
address this problem, we propose a mask regularization loss
to encourage the rigidity soft mask to locate static regions
as many as possible for fully exploiting ego-motion rigidity
in static regions, which is formulated as:

Lm =
1

HW

∑ 1−Mr

γ +Mr
, (9)

where γ is a hyper-parameter. We provide a visual compari-
son of the estimated rigidity soft mask without and with Lm

in Fig. 3.
Total Loss. We calculate losses for both the final and inter-
mediate estimations from our recurrent structure. We use an
upper-right index (·)i to denote the losses related to the i-th
iteration. The total loss of our method can be summarized
as:

Ltotal = Ld +

N∑
i=1

ζN−i
(
Li
p + Lego,i

p

λgL
i
g + λsL

i
s + λcL

i
c + λmLi

m

)
, (10)

where N is the iteration number, ζ is the weight decay fac-
tor, and λ = [λg, λs, λc, λm] is the set of hyper-parameters
balancing different losses.

3.3.2 Improved Training Strategies

Gradient Detachment. Our loss functions except Ld are
calculated for both the final and intermediate estimations of
motion field and ego-motion for preventing divergence of
training. However, joint learning of depth and coarse mo-
tion estimations from early iterations can hinder the learn-
ing of the depth network. To address this issue, we propose
to detach the gradients of depth estimations when calculat-
ing losses using intermediate motion estimations, which en-
sures that joint learning only occurs when the finest motion
estimations are utilized.
Improved view synthesis process. We leverage the full-
image warping technique proposed in [42] to provide bet-

ter supervisory signals at image boundaries during the cal-
culation of photometric loss, which uses cropped images
as inputs to the network, but refers to the uncropped im-
ages when performing view synthesis. We further leverage
this idea during the calculation of geometric loss in Eqn. 5,
where we refer to the estimated depths of uncropped images
for depth synthesis.

4. Experimental Results

Our proposed method is evaluated on various tasks in-
cluding scene flow, monocular depth, and visual odometry.

4.1. Implementation Details

We implement our network with Pytorch [37]. All com-
ponents of our network are trained from scratch, except
the encoder in the depth network and the context extrac-
tor, which use ImageNet [9] pretrained weights. We use the
Adam optimizer [29] with β1 = 0.5 and β2 = 0.999 to
train our network. During training, the images are first re-
sized into the resolution of 800 × 240, and cropped off the
top, bottom, left and right 10% pixels to obtain the input im-
ages of 640 × 192 to leverage the improved view synthesis
process. During test, the images are resized into 640× 192
for processing and the results are bilinearly rescaled back
to the original size for evaluation. We use a two-staged
training process for better stability of our method. Dur-
ing the first stage, we separately train the depth network
using spatial photometric loss Ld and depth smoothness
loss Ls,d. Then, we train our full network using the to-
tal loss Ltotal for the rest epochs. The training is car-
ried on for 50 epochs total, 20 epochs for the first stage,
and 30 epochs for the second stage. The initial learning
rate is set to 1e-4, and downgraded by half at epoch 20,
25, 30, and 40. The hyper-parameters of our method are
set as: [α, β, γ, ζ] = [0.15, 10, 1, 0.9], [λs,t, λs,d, λs,f ] =
[0.001, 1, 1], [λg, λs, λc, λm] = [0.1, 0.1, 0.1, 0.1], N =
12. For data augmentation, we employ random color aug-
mentation, random horizontal flipping and random time or-
der switching. We use the LieTorch [46] library to perform
backpropagation of the SE3 motion field.

4.2. Datasets and Evaluation Metrics

Datasets. For the scene flow task, we use the same data
setting as previous self-supervised monocular scene flow
methods [20, 21, 2], which use KITTI Scene Flow Train-
ing and Testing as two test sets, and spilt the remaining data
into 25801 samples for training and 1684 samples for vali-
dation. For comparison in the task of monocular depth es-
timation, we follow the data split used in [60], but remove
the samples which are the last images of sequences, which
gives us 22568 samples for training and 1774 for valida-
tion. The depth evaluation is conducted on the Eigen Test
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Figure 4: Qualitative ablation study of proposed components. The erroneous predictions are gradually reduced by incor-
porating proposed components as shown in the red boxes.

EMR MRL GD IVS D1-all ↓ D2-all ↓ F1-all ↓ SF-all ↓ EPE-noc ↓ EPE-occ ↓ EPE-all ↓
- - - - 13.20 21.90 14.16 28.15 2.78 12.57 4.83√

- - - 9.99 18.25 13.55 24.21 2.68 10.85 4.44√ √
- - 9.83 17.25 13.65 23.07 2.69 10.17 4.23√ √ √

- 9.39 16.90 13.51 22.86 2.65 10.04 4.21
- -

√ √
11.73 18.76 12.54 24.80 2.74 7.63 3.81√ √ √ √
9.03 15.42 11.93 21.17 2.53 7.07 3.56

Table 1: Quantitative ablation study of key components. EMR: Ego-Motion Rigidity, MRL: Mask Regularization Loss,
GD: Gradient Detachment, IVS: Improved View Synthesis. All components effectively improve the performance, especially
the EMR component.

Iter. Num. D1-all ↓ D2-all ↓ F1-all ↓ SF-all ↓ Runtime
2 9.03 15.42 11.93 21.17 127 ms
4 8.65 13.93 11.36 19.05 151 ms
8 8.38 13.14 11.76 18.31 204 ms
12 8.37 12.86 11.58 18.11 250 ms

Table 2: Ablation study of the iteration number. More
iterations give better performance up to about 12, but with
a slower speed.

split [13], which contains 697 images with ground-truth la-
bels. For the task of visual odometry, we use the official
odometry data split, which uses Seq. 00-08 for training and
Seq. 09-10 for testing, as done in [53, 61, 25].
Metrics. We follow the evaluation metric of KITTI Scene
Flow benchmark [35] for scene flow estimation, which eval-
uates the outlier rate of the disparity for the reference frame
(D1-all) and for the target image mapped into the reference
frame (D2-all), as well as of the optical flow (F1-all). The
outlier rate of the scene flow (SF-all) is obtained by check-
ing if a pixel is an outlier on either of them. For monocu-
lar depth evaluation, we use the publicly used metrics, in-
cluding: Abs Rel, Sq Rel, RMSE, logRMSE, A1= δ<1.25,
A2= δ<1.252 and A3= δ<1.253. For visual odometry
evaluation, we adopt the KITTI odometry criterion, which
reports the average translational error Trel and rotational er-
ror Rrel of possible sub-sequences of length (100, 200, 800)
meters as the main criteria.

4.3. Ablation Studies

We first conduct ablation studies to verify the effective-
ness of each proposed component of our method on the task
of scene flow estimation, including 1) ego-motion rigidity

(EMR), which includes the ego-motion aggregation mod-
ule and losses for Lego

p and Lc, 2) mask regularization loss
Lr (MRL), 3) gradient detachment technique (GD), and 4)
improved view synthesis (IVS). For efficiency, the ablation
studies are conducted using iteration number equal to 2.
We report both the scene flow metrics and end-point-error
(EPE) of synthesized optical flow in Tab. 1. Each proposed
component proves to be effective in improving the overall
scene flow accuracy. The largest performance gain is ob-
tained by exploiting the ego-motion rigidity, which is in line
with our expectation that ego-motion rigidity is an impor-
tant prior in the task of scene flow estimation. Fig. 4 gives a
visualization of the achieved error reduction on SF-all error
plots from each component. The erroneous estimations in
static regions and image boundaries are largely reduced by
incorporating our contributions. The ablation study on the
iteration number is reported in Tab. 2. The performance is
about to reach convergence when the iteration number is 12.
We also report the runtime for efficiency comparison, which
is tested on a single GTX 3090 device for each model. For
the following experiments, we always set the iteration num-
ber to 12.

4.4. Comparison with State of the Art Methods

Scene Flow. We compare our method with other state-of-
the-art monocular scene flow methods on both KTTII Scene
Flow Training set and Testing Set as shown in Tab. 3. Our
method achieves the best performance among all methods
based on self-supervised learning, and even outperforms
Mono-SF [5], which is a hybrid method based on the com-
bination of supervised monocular depth estimation and en-
ergy minimization. In Fig. 5, we visualize the estimations
and error maps of our method and other methods on sam-
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Figure 5: Qualitative evaluation on KITTI Scene Flow Testing set. We compare our method with Self-Mono-SF [20],
Multi-Mono-SF [21] and RAFT-MSF [2] for two scenes using the visualizations provided by the KITTI benchmark [35].
From left to right: disparity visualization of It, D2 error plot, optical flow visualization, corresponding F1 error plot and
combined SF error plot.

Method
KITTI Scene Flow Training Set KITTI Scene Flow Testing Set

D1-all ↓ D2-all ↓ F1-all ↓ SF-all ↓ D1-all ↓ D2-all ↓ F1-all ↓ SF-all ↓
Mono-SF [5] 16.72 18.97 11.85 21.60 16.32 19.59 12.77 23.08
GeoNet [58] 49.54 58.17 37.83 71.32 - - - -
DF-Net [62] 46.50 61.54 27.47 73.30 - - - -
EPC++ [30] 23.84 60.32 19.64 - - - - -
Self-Mono-SF [20] 31.25 34.86 23.49 47.05 34.02 36.34 23.54 49.54
Multi-Mono-SF [21] 27.33 30.44 18.92 39.82 30.78 34.41 19.54 44.04
RAFT-MSF [2] 18.34 23.65 17.51 30.97 21.21 27.51 18.37 34.98
EMR-MSF (Ours) 8.37 12.86 11.58 18.11 9.70 14.51 11.93 19.74

Table 3: Quantitative evaluation of the scene flow on the KITTI Scene Flow Training set and Testing set. The best
results are in bold.

ples from KITTI Scene Flow Testing set. In the highlighted
regions, our method shows better regularized and detailed
estimations compare to other methods which give no con-
sideration to exploit ego-motion rigidity. The error maps of
various metrics are provided for better visualization.

Monocular Depth. We compare our method trained on
the KITTI Eigen split with other state-of-the-art monocular
depth methods as shown in Tab. 4. Our method achieves the
best performance in 4 metrics among all compared methods
and second best in the left 3 metrics. A visual comparison
between our results and [60] is given in Fig. 6. Our method
produces smoother depth estimations than [60], which we

attributes to the jointly learning of depth and motion.

Visual Odometry. Finally, we compare the performance
of our method trained on the KITTI Odometry split with
other monocular methods in the task of visual odometry,
including ORB-SLAM2 [36], a traditional method, as well
as other self-supervised learning-based methods. We pro-
vide both results of ORB-SLAM2 with and without loop
closure. For evaluating monocular methods, we perform
the scale alignment to align the predicted up-to-scale tra-
jectories to the ground-truth associated poses using [47].
Since our method leverages stereo samples during train-
ing, it is possible for our method to predict trajectories on a
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Method Sup. Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ A1 ↑ A2 ↑ A3 ↑
Monodepth2 [15] S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
FAL-Net [17] S 0.097 0.590 3.991 0.177 0.893 0.966 0.984
PLADE-Net [16] S 0.092 0.626 4.046 0.175 0.896 0.965 0.984
SDFA-Net [60] S 0.090 0.538 3.896 0.169 0.906 0.969 0.985
EPC++ [30] MS 0.127 0.936 5.008 0.209 0.841 0.946 0.979
Self-Mono-SF [20] MS 0.125 0.978 4.877 0.208 0.851 0.950 0.978
Monodepth2 [15] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
DIFFNet [59] MS 0.101 0.749 4.445 0.179 0.898 0.965 0.983
RAFT-MSF [2] MS 0.093 0.781 4.321 0.186 0.901 0.960 0.981
EMR-MSF (Ours) MS 0.088 0.552 3.946 0.169 0.905 0.970 0.986

Table 4: Quantitative evaluation of the monocular depth on the KITTI Eigen split. S: trained on stereo pairs. MS:
trained on stereo videos. The best results are in bold.

RGB SDFA-Net [60] EMR-MSF (Ours)

Figure 6: Visualization of estimated depth. We compare
our results with SDFA-Net [60].

Method
Seq.09 Seq.10

terr rerr terr rerr
(%) ↓ (◦/100) ↓ (%) ↓ (◦/100) ↓

ORB-SLAM2 (w/o LC) [36] 10.03 0.29 3.64 0.32
ORB-SLAM2 (w LC) [36] 3.48 0.39 3.46 0.38
GeoNet [58] 39.43 14.30 28.99 8.85
Monodepth2 [15] 17.22 3.86 11.72 5.35
EPC++ [30] 8.84 3.34 8.86 3.18
LTMVO [61] 3.49 1.00 5.81 1.80
MLF-VO [25] 3.90 1.41 4.88 1.38
EMR-MSF (Ours) 3.49 0.78 3.11 1.04
EMR-MSF (Ours, aligned) 3.30 0.78 2.35 1.04

Table 5: Quantitative evaluation of the visual odometry.
The best results are highlighted by bold style.

real scale. For a fair comparison, we provide both aligned
and not aligned trajectories of our method in the table. As
shown in Table 5, our method outperforms the previous self-
supervised learning-based methods in all metrics, and even
achieves better accuracy than traditional methods with loop
closure in terms of the terr metric. This demonstrates the
effectiveness of our ego-motion aggregation module in im-
proving the accuracy of visual odometry. We also provide
a qualitative comparison of the estimated trajectories from

(a) Top view (b) Front view

Figure 7: Trajectories on Sequence 09 of KITTI Odome-
try benchmark. Both the top view and front view are pro-
vided for better visualization.

Figure 8: Generalization test on Cityscapes [8]. From top
to bottom: input first frame, estimated depth of first frame,
synthesized optical flow, estimated rigidity soft mask.

our method, LTMVO [61], and MLF-VO [25] in Fig. 7.
Our method yields trajectories with overall smaller drifts
than the other methods.

4.5. Generalization Ability

We use the Cityscapes dataset [8] to test the generaliza-
tion ability of our model trained on the KITTI dataset [14].
Several visual samples are provided in Fig. 8. Our method
remarkably generalizes to unseen data, including some sig-
nificantly dynamic scenes which are rarely present in the
training data, such as the presence of numerous pedestrians
crossing before the vehicle. More generalization examples

76



can be found in our supplementary material.

5. Conclusions
In this paper, we have proposed a novel self-supervised

monocular method named EMR-MSF for scene flow esti-
mation. Our methods incorporates a 3D geometry-oriented
network architecture with novel designs to exploit ego-
motion rigidity, which results in well-regularized scene flow
estimations from solely monocular images. Our proposed
approach demonstrates promising potential for monocular
dynamic 3D perception and is capable of various computer
tasks including scene flow, optical flow, depth, and ego-
motion estimation.
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