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Figure 1: Surface reconstruction for measurement point clouds. In contrast to piecewise approximations (KSR), our method
not only delivers manifold and watertight surfaces but also retains the primitive structures (planes, cylinders, spheres, cones,
and tori) faithfully. Also, our method enables the recovery of the sharp geometry of objects (e.g., feature lines) as a byproduct.

Abstract
We propose a novel and efficient method for reconstruct-

ing manifold surfaces from point clouds. Unlike previ-
ous approaches that use dense implicit reconstructions or
piecewise approximations and overlook inherent structures
like quadrics in CAD models, our method faithfully pre-
serves these quadric structures by assembling primitives.
To achieve high-quality primitive extraction, we use a vari-
ational shape approximation, followed by a mesh arrange-
ment for space partitioning and candidate primitive patches
generation. We then introduce an effective pruning mech-
anism to classify candidate primitive patches as active or
inactive, and further prune inactive patches to reduce the
search space and speed up surface extraction significantly.
Finally, the optimal active patches are computed by a bi-
nary linear programming and assembled as manifold and
watertight surfaces. We perform extensive experiments on a
wide range of CAD objects to validate its effectiveness.

*The authors contribute equally to this work.
†Corresponding author (yandongming@gmail.com).

1. Introduction

The problem of converting unorganized point clouds into
surface meshes, also known as surface reconstruction, has
various applications in 3D vision, computer graphics, and
architecture geometry. In recent decades, although many
powerful algorithms have been devoted to pursuing faith-
ful and accurate reconstructions [19, 21, 34, 28, 27, 49], it
remains a challenging task due to the inherent ill-posed na-
ture [11, 36, 5].

The popular Poisson reconstruction methods [24, 25] im-
plicitly generate dense smooth surfaces for point clouds,
while others mainly focus on giving a compact approxi-
mation to objects by piecewise planar shapes or polygo-
nal meshes [7, 13, 3, 35]. However, man-made objects
in real-world scenarios are typically composed of non-
planar quadratic surfaces or quadric structures, such as the
Computer-Aided Design (CAD) models (see Fig. 1 as an ex-
ample). Therefore, reconstructing manifold surface meshes
from measurement data meanwhile retaining their intrin-
sic primitive structures in principle shall generate higher-
quality approximation results than solely relying on poly-
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gons.
We argue that a method that solves the aforesaid prob-

lem ought to satisfy the following objectives: 1) Structure-
awareness. The reconstruction surfaces should faithfully
keep the structural features of the input point cloud, for
instance, the common primitives in CAD, meanwhile cor-
rectly recovering the detailed geometry, and giving a high-
fidelity approximation (e.g., the minimal Hausdorff dis-
tance) to the target object. 2) Manifold guarantees. The
output surface meshes should be oriented 2-manifold and
watertight [35]. 3) Efficiency. The developed algorithm
should be scalable to large-scale point clouds with an ac-
ceptable computational complexity [3].

In this work, we develop a novel and efficient frame-
work that takes the underlying geometric structures of point
clouds into account when performing shape reconstruc-
tion. Our method ensures high-quality outputs and aims to
achieve the above objectives. The core of our algorithm lies
in a faithful reconstruction of intrinsic primitive structures
presented in CAD models, as opposed to the direct surface
approximation based on piecewise planar primitives. We
consider five representative types of primitives commonly
found in modern CAD systems, including four quadrics
(planes, cylinders, cones, spheres) and tori. We adopt a
variational shape approximation to optimize the extracted
primitives followed by mesh arrangement techniques to at-
tain primitive patches. A patch is a manifold that consists of
a set of connected triangle meshes. As the size of patches is
typically smaller than that of facets, our method enables a
more stable and efficient reconstruction process than plane-
based ones. Moreover, we propose a patch pruning mecha-
nism to further speed up the consecutive surface extraction
process. This mechanism distinguishes patches as either
active or inactive, allowing us to perform fast local colli-
sion detection instead of a time-consuming global process-
ing. Lastly, we select an optimal set of patches from the
active candidate patches to assemble a reconstruction sur-
face that respects the underlying structure of the object. To
this end, we optimize a Binary Linear Programming (BLP)
under hard constraints, as done in [35], to guarantee that the
resulting surface is both manifold and watertight.

We perform extensive experiments to validate the effec-
tiveness of our algorithm and compare it with state-of-the-
art approaches using a variety of CAD models. Experimen-
tal results evidence that our method outperforms competi-
tors in terms of both approximation precision and recon-
struction efficiency, while also preserving the intrinsic prim-
itive structures of the input point clouds with much better
fidelity. To summarize, the main technical contributions in-
clude:

• An efficient structure-aware reconstruction method
that produces accurate surface models while preserv-
ing the underlying intrinsic primitive structures of the

input point clouds.

• A patch pruning technique that avoids the time-
consuming global collision detection and accelerates
the surface extraction by a large margin.

• A patch-induced binary linear programming for as-
sembling manifold and watertight surfaces from can-
didate active patches, which significantly reduces the
search space and helps achieve efficient and accurate
surface reconstruction.

2. Related Work
In this section, we briefly review the works that are most

relevant to ours. Please refer to [5, 23] for a more compre-
hensive discussion.

Geometric primitive extraction. Segmenting 3D point
cloud models into a collection of geometric primitives such
as planes and cylinders is helpful in most reconstruction
approaches. Popular extraction frameworks include region
growing [31, 39] and RANSAC [43, 52]. The former strat-
egy takes the neighboring structure of models into consider-
ation and propagates candidate primitives on their k-nearest
neighbor graph until the fitting error exceeds a preset toler-
ance. Instead, RANSAC adopts a hypothesis and verifica-
tion mechanism to recover primitives that embrace the most
inliers. In order to make full use of the a priori structure
of the input model, Li et al. [29] started with primitive ex-
traction by RANSAC, followed by the refinement subject to
spatial relationships such as parallelism and orthogonality.
This idea was further extended to extract planar primitives
simultaneously [32] or sequentially [37]. Recently, Yu et
al. [49] proposed a new algorithm for extracting planar
primitives, which has powerful potential for plane-assembly
reconstruction. In our work, we leverage an efficient region
growing strategy [39] for primitive extraction followed by a
refinement via variational shape optimization.

Assembly-based reconstruction. The core idea of
assembly-based methods is to integrate all extracted primi-
tives into a hybrid mesh. Connectivity analysis and slicing
are two principal assembly manners. Connectivity strate-
gies [8, 42, 46] consider neighboring relationships between
primitives and encode them into an adjacency graph, which
is adapted to regularize output meshes. Slicing strate-
gies [6, 7, 3, 33, 35, 13] extend the extracted primitives
and slice them to construct a spatial partition for candi-
date facets. Connectivity strategies are typically efficient
but suffer from linkage errors of adjacent graphs generated
by incomplete inputs. Arikan et al. [1] remedied the in-
complete part by a user-guided interactive method that is
labor-intensive especially for large-scale measurement data,
whereas Lafarge et al. [26] provided an automatic solution
that first consolidated the point clouds and then executed a
min-cut optimization to extract dense triangle meshes.
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Figure 2: Overview of the proposed method. (a) Point cloud after primitive extraction; (b) Accomplished space partitioning;
(c) Active primitive patches after patch pruning; (d) The reconstructed surface.

Alternatively, slicing strategies deal with incomplete
models by means of extending primitives. Nan et al. [35]
performed an exhaustive partition to compensate for all pos-
sible missing and thus guaranteed a manifold output via
BLP. Nevertheless, this manner typically leads to high com-
putational complexity for the subsequent surface extraction.
To circumvent this shortcoming, Fang et al. [13] proposed
a hybrid method that combines the connectivity analysis
with the slicing process to make a limited partition, while
Bauchet et al. [3] adopted a kinetic data structure [16, 15]
to monitor the growing of convex piecewise planar poly-
gons until they collide, which also results in a limited parti-
tion. Unlike previous approaches, we propose a simper par-
tition by considering five types of primitives simultaneously
rather than merely planar shapes. Moreover, we develop a
propagation strategy inspired by Bauchet et al. [3] to further
simplify and speed up the surface extraction.

Learning-based reconstruction. With the advancements
in deep learning, there have been several notable works that
utilize learning-based techniques to reconstruct meshes.
Voxel-inspired methods, such as those presented in refer-
ences [38] and [10], train a network of models to con-
vert voxels into implicit surface representations. To attain
more accurate representations, SIREN [45] and DIGS [4]
used signed distance functions as implicit surface represen-
tations, and then extracted meshes via marching cubes [30].
Points2Surf [12] employed a patch-based learning frame-
work to directly attain meshes from point clouds without
the need for normals, while DSE [40] adopted 2D Delaunay
triangulations to ensure manifold meshes and BSP-Net [9]
output compact polygonal meshes with arbitrary topology.
However, most of these methods depend on implicit surface
representations, which may not explicitly capture the un-
derlying structures such as quadric primitives of objects. In
addition, it is hard to perform model editing tasks for sur-
faces generated by implicit reconstructions.

3. Methodology
The proposed method consists of three major steps as il-

lustrated in Fig. 2. Given an input point cloud P = {pj ∈

R3}Nj=1 (Fig. 2(a)), we first partition P by a set of proxy
meshes defined by the extracted geometric primitives and
then apply a mesh arrangement operation to get candidate
manifold patches (Fig. 2(b)) in Section 3.1. Later, a fast
propagation mechanism presented in Section 3.2 is used to
prune patches that are inactive (Fig. 2(c)) to accelerate the
subsequent surface extraction procedure. Finally, we de-
liver a manifold and watertight output surface (Fig. 2(d))
by formulating a patch-induced optimization under the BLP
framework in Section 3.3.

3.1. Space Partitioning

The goal of this step is to generate a finite space parti-
tioning by arranging proxy meshes of geometry primitives
extracted from the input point cloud P .

Primitive extraction. We first utilize an efficient region
growing strategy introduced in [39] to attain the rough seg-
mentation components S = {si ⊂ R3}Mi=1 and the corre-
sponding primitivesQ = {qi ⊂ R3}Mi=1 fromP , where qi is
the supporting primitive of si inversely, each point pj ∈ si
is the supporting point of qi. Let L = (S,Q) be the initial
layout of the extracted primitives, we further refine L via
the variational shape approximation based on the ℓ2 and the
ℓ2,1 metrics [11, 47], which aims to optimize the following
expression

min
L
F(L) =

M∑
i=1

∑
pj∈si

dist(pj , qi), (1)

where dist(pj , qi) stands for the hybrid metric that mea-
sures the cost of the point pj ∈ si with respect to the cor-
responding primitive qi ∈ Q in terms of both the spatial ℓ2

distance and the normal ℓ2,1 deviation. Fig. 2(a) presents
the primitive extraction result based on five types of primi-
tives that we are currently considering. Noted that the pro-
posed framework is not constrained by the above detected
primitive types. Instead, it can be integrated with powerful
detection algorithms that support a wider variety of primi-
tive types, enabling more complex reconstructions with bet-
ter accuracy.
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Figure 3: Visual description of patches and (non–) bound-
ary curves. (a) Cij is the non-boundary curve generated by
patches mi and mj , while C̄i and C̄j are the boundary curves
of mi and mj , separately. (b) For each non-boundary curve,
there are four patches around it.

Proxy mesh arrangement. After the optimization of the
extracted primitives, we generate the discrete approxima-
tion to all primitives via proxy meshes. These meshes are
trimmed by the bounding box of P and then all meshes
are processed by a mesh arrangement [50]. The mesh ar-
rangement results are a set of candidate primitive patches
M = {mi ⊂ R3}Ki=1 as illustrated in Fig. 2(b), which
partition the current working space into a series of cells
that form a closed manifold without self-intersections. Here
each patch mi represents a subset of the input meshes and
is the maximal connected set of triangle meshes as illus-
trated in Fig. 3. Due to the connectivity of patches, each
mi may embrace several non-boundary curves Cij (colored
red in Fig. 3(a)) that are shared with other primitive patches,
which are defined as

Cij = mi

⋂
mj (i ̸= j) ,mi,mj ∈M, (2)

whereas at most one boundary curve C̄i (colored green in
Fig. 3(a)). For example, there are in total of four neighbor-
ing patches that share the same Cij in Fig. 3(b). Since we
perform space partitioning based on primitive patches rather
than discretizing each of them as multiple piecewise planes,
the developed algorithm indeed is several orders of mag-
nitude faster than previous plane-induced approaches. The
efficiency superiority of our method is also quantitatively
validated by the following experiments.

3.2. Pruning of Candidate Primitive Patches

It is known that the computational complexity of the
ultimate surface extraction in shape reconstruction regard-
ing the size of patches is exponential [44]. To expedite
the subsequent optimization process, we further propose
a pruning mechanism which effectively circumvents the
time-consuming and memory-intensive global collision de-
tection to classify current primitive patches as active and
inactive, from which we prune inactive ones to reduce the
search space for surface extraction. As illustrated in Fig. 2,
the significant time gap between the two routes(black and
red) demonstrates the effectiveness of our pruning mecha-
nism. The proposed procedure is composed of two steps,
initialization and pruning, as presented subsequently.

Algorithm 1: Pseudo-code of the propagation process

Input: Priority queue Q of representative triangles.
Output: Active primitive patches M̃.

1 Initialize propagation cost of each triangle as c = 0.
2 while Q ̸= ∅ do
3 (t, c)← Q.pop() and t̂← t.
4 for each triangle edge e ∈ t̂ do
5 for triangle te ∩ t = e do
6 if prim(te) == prim(t) & te is

inactive & te is not blocked then
7 Compute the height he of te on e.
8 Q.push((te, c+ he)).

Initialization. To describe the point distribution of the in-
put point cloud as fidelity as possible, we first select a set
of representative triangle meshes denoted as I fromM by
means of the triangle coverage Cover(t)which is defined as

Cover(t) =
V alid(t)

Area(t)
, (3)

where Area(t) stands for the area of a triangle mesh t and
V alid(t) is formulated as

V alid(t) =
∑
p∈Pt

1(∥p− p′∥2 < ϵ)ap, (4)

where Pt ⊂ P encompasses the measurement points that
their projections are attached to t, ∥p − p′∥2 denotes the
ℓ2 Euclidean distance from p to its projective point p′ on t,
1 is the indicator function,
and ap is the correspond-
ing geodesic Voronoi area
of p, which is calculated as
in the inset: p and its k-
nearest neighbors (i.e., hard
red points) are first projected
to the supporting plane Ωt

where its attached triangle mesh t lies on, then ap is equiv-
alent to the area of the 2D Voronoi cell [2]. t is termed rep-
resentative if its Cover(t) surpasses a user-specified value.
We populate all representative meshes of I into a priority
queue Q with an ascending order.

Pruning. Next, representative triangle meshes are propa-
gated to enable a limited partition to speedup the final sur-
face extraction. To this end, all triangles of Q are initially
labeled as inactive prior to entering the loop of the prior-
ity queue. For each round during the loop, we first pop
the top element, for instance, (ti, ci), out of the priority
queue and prompt ti to be an active state t̂i. The propa-
gation cost ci of a triangle mesh ti is defined as the height
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hi from its vertex to the base edge shared with another ad-
jacent triangle. Sequentially, we propagate all the triangles
that share both the same edge and the same supporting prim-
itive with ti and pop the update elements out of Q. For
instance, for edges that are not located on non-boundary
curves, there are at most three update elements (ti1, ci+h1),
(ti2, ci + h2), (ti3, ci + h3), whereas, for edges that coin-
cide non-boundary curves, we perform a fast local collision
detection to check whether there exist active meshes, if yes
then we evoke barricades and stop the propagation process.
The above propagation proceeds until Q becomes empty.
We summarize the proposed propagation process in Algo-
rithm 1 to make it more understandable. Consequently, a
primitive patch is active only if its triangles are all active,
otherwise, it is still inactive. We use M̃ to represent the
set of active patches. The patches in Fig. 2(b) after prun-
ing are shown in Fig. 2(c). As observed, the size of candi-
date patches has been significantly reduced compared with
Fig. 2(b).

Like [3], we also allow for the propagation crossing
primitive patches G times (with G = 2 in default) at most.
This can deal with small parts that may have been missed
during the primitive detection. However, in contrast to pre-
vious global collision detection manners [3], our local strat-
egy preserves much better the propagation efficiency.

3.3. Surface Extraction

Finally, we adopt a Binary Linear Programming (BLP)
analogous to [35] to extract the surface model from M̃.
Specifically, the state of patches in M̃ is encoded as XM̃ =

{xm̃|m̃ ∈ M̃, xm̃ ∈ {0, 1}}, where the binary discrete
variable xm̃ indicates whether the patch m̃ is selected
(xm̃ = 1) or not (xm̃ = 0). To ensure the resulting sur-
face manifold and watertight, we constrain the curves of the
selected patches to be all non-boundary, and thus the two
patches sharing the same non-boundary curve are either se-
lected at the same time or both not selected. Consequently,
our objective function is defined as

min
XM̃

U(XM̃) + λB(XM̃),

s.t.


∑

m̃i∩m̃j ̸=∅,i̸=j

(xm̃i
+ xm̃j

) = 0 or 2, m̃i, m̃j ∈ M̃

xm̃i
∈ {0, 1}, i = 1, 2, 3 . . . |M̃|.

(5)
where U(XM̃) and B(XM̃) are penalty terms regarding the
patches and the neighboring patch pairs, respectively, and
λ is a balance coefficient.MoreoverU(XM̃) encourages the
selection of active patches that are with high fidelity in the
form of

U(XM̃ ) =
∑

m̃∈M̃

xm̃ ·
(
Am̃ − Ām̃

A
− |Pm̃|
|P|

)
. (6)

Here Am̃ and Ām̃ denote the area and the coverage area
of the patch m̃, respectively. The coverage area of m̃ is
the summation of the coverage area of all its triangles. A
is a normalization factor equivalent to the sum of the area
of all patches. Pm̃ is the set of points whose projections
are locating in m̃. On the other hand, B(X̃ ) is designed to
control the model complexity. Specifically, it put penalties
to the non-boundary curve length of two patches:

B(XM̃) =
1

L

∑
i,j

|Cij | · xm̃i
· xm̃j

, (7)

where |Cij | denotes the length of the curve shared by two
active patches m̃i and m̃j with different supporting primi-
tives and L is the sum of the length of all curves.Fig. 2(d)
presents the final reconstruction surface by BLP, which not
only generates a manifold and watertight shape but also suc-
cessfully preserves the intrinsic primitive structures.

4. Experimental Evaluations and Discussions
Implementation details and metrics. In this section, we
execute extensive experiments to validate the advantages of
the developed method in terms of both reconstruction pre-
cision and efficiency and make various comparisons with
state-of-the-art approaches. Like [3], the precision is quan-
titatively evaluated by the symmetric mean Hausdorff dis-
tance (SMH) between the measurement point clouds and
the reconstruction meshes (values are normalized by the
diagonal length of the models’ bounding box and multi-
plied by a factor of 102), while the efficiency is assessed
by the running time. Our algorithm is implemented in
C++ using the geometry processing library libigl [22]. We
adopt the mathematical programming solver Gurobi [18]
to optimize Eq. 5. All reconstruction results are rendered
by Blender [14] for better visualization. Our experiments
are conducted on a desktop with Intel(R) Core i7-7700K
CPU@4.2GHz and 48GB RAM.

Reconstruction effect. Our algorithm has demonstrated
good reconstruction results from point clouds to manifold
meshes on various CAD objects as illustrated in Fig. 4. The
input point clouds presented in Fig. 4(a)–(h) are either sam-
pled from real-world CAD models or courtesy by publicly
available benchmark datasets [41, 51]. As observed, there
are multiple explicit intrinsic primitive structures in each
model. Instead of approximating them directly by piecewise
planar primitives, our algorithm is capable of reconstructing
the intrinsic primitives faithfully even for quite challeng-
ing or complicated models. For instance, the rich spheral
and conic structures existing in the Minarets model of
Fig. 4(b) require careful treatments, yet our method is still
able to achieve highly accurate reconstructions while pre-
serving all structural details successfully. At the same time,
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Figure 4: Reconstruction results by the proposed method. From left to right: Input measurement point clouds, extracted
geometric primitives (different colors stand for different primitives), output reconstruction models, recovered sharp geometry
along with the original point clouds, and colored models showing the error distribution regarding the Hausdorff distance. Our
method produces high-quality reconstructions and preserves the intrinsic primitive structures as well as the sharp features
well.

our method produces high-quality sharp feature lines at-
tained by patch intersections, as shown in the forth column
of Fig. 4. This is an important advantage for many practi-

cal applications such as sketch-style rendering, as it ensures
that the reconstructed object retains its original shape and
does not appear distorted or blurry. The fifth column of

14176



Table 1: Statistical results of the quantity and the runtime (in second) during reconstruction of the CAD models in Fig. 4.

Metrics
Models

(a) (b) (c) (d) (e) (f) (g) (h)

# Points of the input point cloud 10k 593k 10k 10k 74k 7k 16k 14k
# Extracted primitives 28 53 21 20 34 32 29 27
# Generated candidate patches 3646 6024 1030 723 4970 417 750 1092
# Active patches after pruning 2245 3369 741 417 2586 342 472 667
Patch decrease (%) 38.426 44.073 28.058 42.324 47.968 17.986 37.067 38.919
# Determined active patches of the output model 605 915 191 93 533 99 86 114
Mesh arrangement (s) 7.853 21.752 2.463 1.727 5.236 2.935 5.431 1.421
Patch pruning (s) 0.927 15.421 0.792 0.476 3.043 0.488 1.131 0.726
Surface extraction (s) 1.288 2.086 0.659 0.091 1.112 0.157 0.314 0.137

Figure 5: Robustness test against noise disturbance. Top:
Input point clouds with increasing noise. Bottom: Our re-
construction results along with the noise level σ and the re-
construction error SMH.

Fig. 4 visualizes the reconstruction error of our algorithm
with respect to the Hausdorff distance, where our method
consistently produces accurate approximations for all ob-
jects, demonstrating its stability and effectiveness.

Statistical results. Table 1 summarizes the quantitative
results of our proposed method for the models in Fig. 4.
Our algorithm significantly reduces candidate patches, es-
pecially for complex models like Fig. 4(b),(d),(e), where
the patch decrease ratio exceed 40%. In terms of efficiency,
patch pruning and surface extraction outperform mesh ar-
rangement, and further improvements can be made by ex-
ploring a more efficient intersection mechanism.

Robustness assessment. We also assess the ability of the
proposed algorithm against noise disturbance and occlu-
sion data. As depicted in Fig. 5, we increase the stan-
dard deviation σ of Gaussian noise from 0.01(0.82m) to
0.04(3.28m), where values in parentheses are real intensity
relative to the bounding sphere’s radius of the model. Our
method consistently generates accurate reconstructions in
terms of both topological structures and approximation dis-
tance (SMH), suggesting its high resilience to noise. Even
when σ = 0.08(6.56m), which has caused significant topo-
logical alteration of the original point cloud, our method
still maintains the overall structures of the object. Addi-
tionally, we verify the robustness of our method to occlu-

Figure 6: Robustness test against occlusion data. Top: In-
put point clouds with increasing occlusions. Bottom: Our
reconstruction results along with the reconstruction error.

Table 2: Comparisons with state-of-the-art approaches,
where “w” and “w/o” indicate with and without the patch
pruning, separately.

Metrics iPSR[20] SIREN[45] DSE[40] KSR[3]
Ours

w w/o
SMH (%) 4.23 41.79 3.15 169.44 2.45 2.45
Time (s) 201.589 1208.124 303.865 570.468 45.5 56.777

sion data. Fig. 6 reports our reconstruction results after pro-
gressively erasing point clouds. As observed, our method
shows remarkable resistance to occlusions and has success-
fully compensated the missing structures. Conversely, this
is also quite helpful to complete the imperfect point clouds
by sampling points in the reconstruction models.

Comparisons. Subsequently, we conduct a comparative
analysis of our method with representative state-of-the-art
approaches, including densely implicit reconstruction meth-
ods iPSR [20], DSE [40], and SIREN [45], as well as the
plane-assembly approach KSR [3]. The quantitative com-
parison results in terms of reconstruction accuracy and ef-
ficiency on the Cheese model is presented in Table 2.
The results demonstrate that our method achieves competi-
tive reconstruction accuracy with implicit approaches iPSR
and DSE, and outperforms SIREN and KSR by a large
margin. Additionally, our algorithm performs significantly
faster than competitors, even without patch pruning. The
qualitative reconstruction results presented in Fig. 7 show
that benefiting from the introduced primitive assembly, our
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Figure 7: Qualitative comparisons with state-of-the-art approaches. Our method enables the shape reconstruction faithfully
and successfully recovers the sharp geometry (e.g., feature lines and corners) from unorganized point clouds.

Table 3: Quantitative comparisons on the ABC300 dataset.

Metrics
Methods

iPSR[20] SIREN[45] DSE[40] KSR[3] ComplexGen[17] CAPRI-Net[48] Ours

SMH (%) 2.71 24.89 4.06 26.43 24.24 15.87 4.81
Time (s) 24.064 1565.217 32.800 4.208 553.089 183.844 3.728

method successfully recovers sharp features from unorga-
nized point clouds, which is a salient advantage compared
to implicit methods.

We also conduct quantitative comparisons with several
predecessors (additionally including CAPRI-Net [48] and
ComplexGen [17]) on 300 CAD models from the ABC
dataset (abbreviated as ABC300). Table 3 demonstrates that
our method achieves consistently competitive reconstruc-
tion accuracy with implicit approaches such as iPSR and
DSE (while also providing advantages for sharp feature re-
covery and model editing), and significantly surpasses KSR,
CAPRI-Net, and CompleGen. Furthermore, our method is
considerably faster than its competitors.

Figure 8: Model editing based on our structure-aware re-
construction algorithm. (a) The original reconstruction ob-
ject. (b)–(d) The newly edited results.

Balance parameter. We investigate the impact of λ on
surface extraction by varying its values to different settings
(see Fig. 9(a)). It can be seen that increasing λ brings the
reduction of the complexity of the output model. However,
this also degrades the reconstruction accuracy. For exam-
ple,when λ is set to 0.7, the inner hollows of the input point
clouds disappear.

Application to model editing. Our reconstruction
method can be employed for flexible model editing by
taking advantage of the structure-aware merits. As shown
in Fig. 8, since each quadratic structure of the object is pre-
served along with their detailed geometric parameters, one

Figure 9: (a) Impact of parameter λ. As λ is increased,
the complexity of the output model decreases. (b) In sparse
input scenarios, small primitives can be easily lost, leading
to failures.

can modify the reconstruction shape by simply specifying
various parameters. For instance, by re-defining the radius
or height of the cylindrical primitives in Fig. 8(a), we can
resize them to our desirable shapes (Fig. 8(b)–(d)).

Limitations. Our approach primarily focuses on the rapid
and accurate reconstruction of representative primitive
structures in CAD models. However, as shown in Fig 9(b),
our reconstruction quality may deteriorate for inputs lack-
ing explicit primitives. Additionally, inadequate primitive
extraction due to severe occlusion or noise can degrade the
quality of the reconstruction results.

5. Conclusion and Future Work

We propose an accurate and fast shape reconstruction
pipeline for converting disordered 3D point clouds into
manifold, watertight surfaces. Our method preserves rep-
resentative intrinsic primitive structures in CAD systems
through primitive assembly, avoiding dense implicit recon-
structions and extending piecewise planar approximations.
We also develop an effective patch pruning mechanism,
greatly expediting surface extraction by reducing patch in-
tersections. Additionally, our method is highly resilient to
noise and can reliably recover sharp object geometry. Ex-
tensive experiments show our algorithm’s superiority over
competing methods.

In our future work, we plan to expand the current primi-
tive types to general primitives, and even spline surfaces, in
order to efficiently process more complex CAD models.
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