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Abstract

Deep neural networks suffer from catastrophic forgetting
in continual learning, where they tend to lose information
about previously learned tasks when optimizing a new in-
coming task. Recent strategies isolate the important param-
eters for previous tasks to retain old knowledge while learn-
ing the new task. However, using the fixed old knowledge
might act as an obstacle to capturing novel representations.
To overcome this limitation, we propose a framework that
evolves the previously allocated parameters by absorbing
the knowledge of the new task. The approach performs un-
der two different networks. The base network learns knowl-
edge of sequential tasks, and the sparsity-inducing hyper-
network generates parameters for each time step for evolv-
ing old knowledge. The generated parameters transform old
parameters of the base network to reflect the new knowl-
edge. We design the hypernetwork to generate sparse pa-
rameters conditional to the task-specific information and
the structural information of the base network. We evalu-
ate the proposed approach on class-incremental and task-
incremental learning scenarios for image classification and
video action recognition tasks. Experimental results show
that the proposed method consistently outperforms a large
variety of continual learning approaches for those scenar-
ios by evolving old knowledge.

1. Introduction

The ability of deep learning to incrementally accumu-
late knowledge for sequentially incoming tasks is an impor-
tant capability required for modern AI algorithms. How-
ever, deep neural networks tend to lose previously acquired
knowledge while learning new data. This limitation of deep
neural networks, called catastrophic forgetting, has been in-
vestigated by previous studies [29, 17]. Catastrophic for-
getting significantly degrades performance when data from
previous tasks (task-incremental) or already-learned class

*This work was done independently, without any support from SAIT.

data (class-incremental) cannot be accessed. Under those
incremental learning scenarios, continual learning methods
have toiled to preserve the previous knowledge.

Various approaches have been proposed for continual
learning and are categorized into three types: regularization
[2, 4, 20, 17, 48], data rehearsal [5, 26, 32, 35, 38, 47], and
parameter isolation [1, 30, 28]. The conventional continual
learning methods introduced regularization approaches to
suppress changes in important parameters [48, 2] or input-
output mappings from a network trained up to previous
tasks [22, 7]. The network is trained in a way that con-
tributable parameters to the performance of the previously
trained model remain unchanged. On the other hand, data
rehearsal methods [25, 35] address catastrophic forgetting
by accessing old data. The old data can be obtained by stor-
ing some data from old tasks [35, 47] or leveraging a gen-
erative network [38]. However, the privacy of data and the
difficulty of learning generative models limit their versatil-
ity. Recently, parameter isolation approaches [28, 30, 15]
construct a disjoint set of parameters for each task, prevent-
ing it from mixing old and new knowledge. These methods
learn a new set of parameters by associating all [28] or some
helpful old knowledge [15].

Unlike other approaches, the parameter isolation ap-
proach is designed to prevent forgetting without requiring
access to old data by disallowing updates to previous sets of
parameters. Despite this advantage, these methods can limit
the ability to learn new tasks by relying on parameters that
were learned for older tasks and remain unchanged. We ob-
serve that this limitation arises when there is a low correla-
tion between the old and new data. This raises the question:
In parameter isolation-based continual learning, is it pos-
sible to transform the knowledge from old tasks to fit newer
tasks better?

In this paper, we introduce a novel method for transform-
ing prior knowledge into a form that can aid in learning new
tasks. The approach involves reframing the parameter selec-
tion problem, which previous works [15] have addressed, as
a generation problem. The proposed framework emphasizes
a subset of pre-trained knowledge, selecting and highlight-
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ing it for use in learning new tasks. Specifically, the frame-
work consists of two networks: base network and hypernet-
work. The base network constructs disjoint parameter sets
for sequential tasks. The proposed transformer-based [42]
hypernetwork generates a small set of influential parameters
that significantly impact the loss. The impact of each ele-
ment of generated parameters is evaluated by the difference
in loss computed with and without its inclusion in the learn-
ing process. Also, generated parameters are conditioned
on the information of the current task (task token) and the
layer of the base network (layer embedding). The gener-
ated parameters transform the previous set of parameters in
the base network to further accommodate new knowledge.
In addition, compared to existing hypernetworks that gen-
erate a small set of parameters and apply it to all the layers
[13, 44], the proposed hypernetwork adaptively generates
parameters according to the layer configurations defined in
the base network. Through this strategy, the quantity of
layer embeddings for ResNet-50 is reduced by a substantial
factor of 24. Furthermore, by leveraging a matrix decom-
position technique to represent generated parameters com-
pactly, we achieve a noteworthy reduction in the parameters
necessary for the hypernetwork.

We evaluate the effectiveness of the proposed method in
both class-incremental and task-incremental learning sce-
narios using classification benchmark datasets. Further-
more, we demonstrate the efficacy of the proposed method
[28, 15] in these scenarios by applying it to video action
recognition datasets [19]. Experimental results show that
the proposed method performs better than its competitors
for most learning scenarios while introducing minor mem-
ory overhead from the hypernetwork. The contributions of
our work are mainly three-fold: (1) We present a novel ap-
proach to evolving previous knowledge in continual learn-
ing, aimed at reflecting the knowledge of new tasks. (2)
We propose a transformer-based hypernetwork that gener-
ates customized parameters for new tasks while suppress-
ing the generation of redundant parameters that have lit-
tle impact on the loss. (3) Experimental results on diverse
benchmarks for video action recognition and image classi-
fication demonstrate that ours outperforms its competitors
with lower network capacity requirements to perform tasks.

2. Related Work
Continual Learning. Generally, continual learning meth-
ods can be classified into three types. Regularization meth-
ods [23, 7, 17, 48, 4, 2, 20] add a penalty term that restrains
the previously learned knowledge from being updated when
learning a new task. In order not to hurt previous knowl-
edge, a new network is introduced to mimic the features
obtained from the old network [22, 7]. While other regu-
larization techniques, such as those based on the Fisher in-
formation matrix [17], change of loss [48], and variation of

Figure 1. An illustration of the proposed method (right) and base-
line methods (middle, left) for the third (new) task. The figure
represents task-specific allocated parameters, represented by task
numbers. Gray numbers represent the sets of discarded parame-
ters from a selection method. The baseline methods do not update
old knowledge (red boxes) while updating a new task (blue boxes).
The proposed method transforms the old sets of parameters, rep-
resented by +, to fit the new task. Best viewed in color.

prediction [2], suppress the update of crucial parameters for
each task, they experience significant performance decline
as the number of tasks grows [12]. Data rehearsal methods
[5, 26, 35, 33, 25, 38] rely on the availability of previous
task data, which is achieved through selective storage of
data [35, 47, 25]. These methods employ a few previous
samples jointly with a new dataset [25, 38] or constraining
the gradient based on the angle between that obtained from
stored samples and the gradient obtained from the new sam-
ples [5, 26]. These methods incur a data imbalance problem
due to a small number of stored previous tasks compared to
a large amount of new task data. Parameter isolation meth-
ods [28, 1, 30, 15, 16] involve constructing disjoint sets of
parameters for old tasks, respectively, and updating another
set of parameters for a newer task by associating it with old
parameters during training. This is usually done by using all
previous sets of parameters [28], using a learnable mask to
select some previous set of parameters [27], jointly select-
ing a location to allocate a new set of parameters [16], or
searching a subnetwork with coarse-to-fine task association
[15].

However, this approach can impede efficient learning be-
cause the parameters optimized for old tasks remain the
same when learning newer tasks, meaning they need to ab-
sorb the information from the newer tasks. In contrast, the
proposed method allows the old knowledge to grow by in-
corporating the knowledge from new tasks. The proposed
method and its baselines are illustrated in Figure 1.
Hypernetworks. Hypernetworks generate parameters for a
target network [13, 44, 39, 21, 34]. A recent work [34] pro-
poses a method for generating parameters for layers with
few parameters, such as activation of ResNet blocks or
batch normalization layers. However, generating parame-
ters for convolutional and linear layers that take most of the
parameters in the base network can be challenging because
it is difficult to represent the entire set of parameters from a
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Figure 2. The proposed method for transforming the parameters of the l-th layer of the base network F (·) when learning the t-th task. The
numbers in the grid indicate the indices of tasks. The hypernetwork H(·) generates parameters using the task-layer attention block (TLA),
which discovers the relationship between the task token and layer embedding. The sparse parameters are generated while suppressing the
generation of the redundant ones by evaluating the impact of parameters on the loss. The previous sets of parameters of the l-th layer are
transformed by element-wise multiplication with Gt

l . The transformed parameters are combined with the current parameter set through the
union operation (∪) and released as a complete set of parameters to learn new knowledge. Best viewed in color.

hypernetwork. To avoid this, existing works generate small
sets of parameters and concatenates them [13, 21]. Conse-
quently, to generate a base network of large scale, allowing
a large number of input embeddings corresponding to the
network is inevitable due to the repetitive generation mech-
anism. In contrast to the approach, the parameters are gen-
erated according to the dimensions defined in the layers of
the base network in our method. Note that as these dimen-
sions expand, the corresponding demands on hypernetwork
parameters also escalate. To address this, we employ a ma-
trix decomposition technique for a compact representation
of the required parameters in the hypernetwork.

Recently, in the continual learning literature, [44] and
[10] learn a hypernetwork to generate parameters with task-
specific embeddings for new tasks while preventing changes
to previously generated parameters for previous tasks. The
approaches produce dense parameters for the base network
through a task-conditional hypernetwork. In contrast, the
proposed transformer-based hypernetwork generates sparse
parameters by measuring the effect of individual parame-
ters on the loss. Furthermore, our method generates param-
eters to evolve previous knowledge to reflect new knowl-
edge, whereas the aforementioned approaches generate pa-
rameters directly for the base network.

3. GrowBrain
3.1. Motivation

The base network F (·) constructs a disjoint set of
parameters for each task under an iterative train-prune-

retrain framework [28]. At a time step t, the base net-
work is learned for the t-th task with the dataset T t =
{(xt

n, y
t
n)}N

t

n=1, where xt
i is the i-th sample and yti is cor-

responding target, respectively. Before training the task, we
allocate parameters for the new task to the pruned positions
in the base network trained for t−1 tasks. As a typical strat-
egy, the allocated parameters W t are learned from the help
of all previous parameter sets [28]. After training, redun-
dant parameters in W t are pruned, and the unpruned param-
eters, W̄ t, are retrained. Finally, after learning for t tasks,
F (·;Wt) is parameterized with Wt = {W̄ 1, · · · , W̄ t}.

Although using previous knowledge can be beneficial in
learning new tasks, there is also the possibility of negative
knowledge transfer. If earlier tasks are irrelevant to a new
task, leveraging their knowledge leads to suboptimal per-
formance of the new task. A recent approach involving the
selective use of helpful parameters [15] has been proposed.
However, it is based on fixed old knowledge, which limits
the model’s ability to evolve in response to new information.
Consequently, the expressiveness of the model remains con-
strained by its dependence on immutable prior knowledge.
To resolve the issue, we propose a novel framework that
transforms old parameters into those absorbing the knowl-
edge of newer tasks. To selectively transform the parameter
sets of old tasks {W̄ 1, . . . , W̄ t−1} for the time t, we gener-
ate parameters by presenting a sparsity-inducing hypernet-
work. The generated ones enhance the previous parameters
to fit the new task better. The entire procedure of the pro-
posed method is illustrated in Figure 2.
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3.2. Evolving Old Knowledge

Our approach involves transforming previously learned
parameters into more adaptable ones to incorporate knowl-
edge from a new task while retaining the old knowledge.
This allows for the evolution of existing knowledge to ac-
commodate new information better. Let us denote the hy-
pernetwork as H(·;Ht) parameterized by Ht based on the
transformer architecture [42]. Note that Ht is initialized
with the parameters of the hypernetwork after training the
previous task, t−1. Specifically, the hypernetwork receives
the task token et ∈ RD and the set of layer embeddings
Cl = {cn ∈ RD|1 ≤ n ≤ Nl} and generates the parame-
ter set Gt

l , where Nl and l ∈ {1 . . . L} denote the number
of embeddings for layer l and the layer index of the base
network, respectively.

To generate Gt
l the task token et and layer embedding

cn from the set Cl are concatenated to construct the input
of the hypernetwork, i.e., ztn,0 = Concat(et, cn) ∈ R2×D.
The input ztn,m−1 is fed into the m-th task-layer attention
block (TLA) as

z̄tn,m−1 = ztn,m−1 + MSA(LN(ztn,m−1)),

ztn,m = z̄tn,m−1 + MLP(LN(z̄tn,m−1)),
(1)

where m ∈ {1, ..., Nb}. Nb, LN, MSA, and MLP denote
the number of TLA blocks, layer normalization, multi-head
self-attention, and multi-layer perceptron, respectively. The
structure of TLA is illustrated in Figure 3. MSA is defined
for the input ẑtn,m−1 ≜ LN(ztn,m−1) as

MSA(ẑtn,m−1) = WOConcat(head1, . . . , headNh
). (2)

WO ∈ R2×D is a projection matrix and Nh denotes
the number of heads in the MSA layer, where headi ≜
softmax(QiK

T
i /
√
D/Nh)Vi and

Qi = WQi ẑ
t
n,m−1, Ki = WKi ẑ

t
n,m−1, Vi = WVi ẑ

t
n,m−1,

where WQi
,WKi

, and WVi
are projection matrices in the

i-th head. The parameters for the l-th layer are generated as

Gt
l = Concat

(
g(θt1), ..., g(θ

t
Nl
)
)

= Concat
(
H(zt1,0;Ht), ...,H(ztNl,0

;Ht)
)
,

(3)

where g(·) denotes the fully connected layer followed by a
sigmoid function. θtn ∈ RD is the first row of ztn,Nb

, which
acts as the final embedding in a transformer architecture [8].

To refine old knowledge to align with the knowledge of
the t-th task, let us denote the set of old parameters in the
l-th layer as W̄ 1:t−1

l . We obtain the evolved parameters
Ŵ 1:t−1

l by fusing W̄ 1:t−1
l and Gt

l as

Ŵ 1:t−1
l = W̄ 1:t−1

l ·Gt
l , (4)

Figure 3. The task-layer attention block (TLA) consists of a layer
normalization, multi-head self-attention (MSA), and MLP with a
single hidden layer. ztn,Nb

is generated by Nb stacked TLAs.

where we define · as the element-wise multiplication. The
base network accommodates the evolved sets of parameters
for t− 1 tasks together with the t-th parameter set as Ŵt =
{Ŵ 1, . . . , Ŵ t−1,W t}. Finally, the loss function to learn
the t-th task using the evolved parameter sets becomes

Ltask = −
Nt∑
n=1

ytn log(F (xt
n; Ŵt))). (5)

Another loss function to generate parameters from H(·;Ht)
similar to those learned in the previous task is defined as

Lreg =

t−1∑
k=1

L∑
l=1

∥ Ḡk
l −Gk

l ∥22, (6)

where Ḡk
l represents the set parameters generated from the

hypernetwork after training the task t− 1.

3.3. Sparsity-Inducing Generation

To renew the network without redundant parameters, we
propose to generate sparse parameters in the hypernetwork.
As Gt

l is generated through the sigmoid function, they can
be interpreted as the likelihood that each element of the old
set of parameters is selected. Following the practice in [41],
we minimize

∑L
l=1 −log(1−Gt

l) to achieve sparsity in Gt
l .

However, to prevent Gt
l from becoming overly sparse, we

ensure that parameters significantly impacting the loss re-
main survived. Inspired by the work in [24], we evaluate
the impact of individual elements in Gt

l
1 to the loss. We

compute the set of all entries of the score St
l by comparing

the network losses computed with and without the inclusion
of parameters in the learning process. To estimate the effect
of removing a parameter on the loss function, we apply a
Taylor expansion approximation of the network loss L for
N samples. We obtain the k-th element of the score, sk, as

sk = L(G⃗t
l −M\(k) · G⃗t

l)− L(G⃗t
l)

≃ −M\(k) · G⃗t
l · ∇G⃗t

l
L+

1

N

N∑
n=1

(
∂Ln

∂M\(k) · G⃗t
l

)2

,

(7)

1We denote the vectorized form of Gt
l as G⃗t

l to represent individual
entries.
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where M\(k) is an all-zero vector except that the k-th ele-
ment is 1, and Ln is the loss of the n-th example. We in-
troduce an additional term minimizing the discrepancy be-
tween the scores of the complete set of parameters (i.e., the
original scores) and the scores of the sparse set of parame-
ters produced as follows:

Lsp =

L∑
l=1

−log(1−Gt
l)+
∥∥∥St

l ·
(
1− 1(G⃗t

l ̸= 0)
)∥∥∥

1
, (8)

where ∥ · ∥1 and 1(·) denote the l1-norm and the indicator
function, respectively.
Total Loss. The proposed framework learns the t-th task
with the three loss functions. To learn the t-th task, we min-
imize the cross-entropy loss Ltask by updating W t in the
base network. Also, Ht, et, and {Cl}Ll=1 are updated from
two losses, Ltask and Lsp. Last, we update Ht and {Cl}Ll=1

by minimizing Lreg to preserve the previously generated
parameters. The total loss is

min
W t,Ht,et,{Cl}L

l=1

Ltask + λspLsp + λregLreg, (9)

where λsp and λreg are parameters to balance the losses.
Scalability. A hypernetwork is designed to generate param-
eters for every layer of the base network, and the parameters
were composed of compact segments of a consistent size
[13, 21]. While it can generate parameters for all layers,
this approach requires a substantial quantity of layer em-
beddings, particularly for deeper layers. To mitigate this,
we adjust the scale of the segments for each layer depend-
ing on the number of channels. However, it incurs a mem-
ory overhead stemming from the substantial dimensions of
the heads. To address this, we apply a matrix decomposi-
tion technique [39] to generate two reduced sets of low-rank
r. By doing so, we achieve a reduction in memory require-
ments for layer embeddings, accompanied by a marginal
increase in hypernetwork parameters. For detailed results,
please refer to Section 4.5.1.

4. Experiments
4.1. Scenarios

We applied the proposed method, GrowBrain, to im-
age classification and video action recognition problems un-
der class-incremental and task-incremental learning scenar-
ios. Image classification. We conducted experiments us-
ing ImageNet [6] and five fine-grained datasets including
CUBS [45], Stanford Cars [18], Flowers [31], Wikiart [36],
and Sketch [11], where each dataset is considered a task.
We call the datasets ImageNet+FG for short. In addition,
we demonstrated the proposed method with the CIFAR-
100. We divided the dataset into subsets of classes based
on the random order provided by [35, 9] and considered

Table 1. Datasets used in this work.
Image Dataset # Train Images # Test Images # Classes
ImageNet [6] 1,287,167 50,000 1,000
CUBS [45] 5,994 5,794 200

Stanford Cars [18] 8,144 8,041 196
Flowers [31] 2,040 6,149 102
Wikiart [36] 42,129 10,628 195
Sketch [11] 16,000 4,000 250

CIFAR-100 [19] 50,000 10,000 100
Video Dataset # Train Videos # Test Videos # Classes
ActivityNet [3] 10,024 4,926 200
UCF-101 [40] 9,280 2,720 101

Table 2. The specification of the hypernetwork.

Base network
Hypernetwork

Embed dim
(D)

Hidden dim
in MLP

# Heads
(Nh)

# Blocks
(Nb)

ResNet-50 64 128 8 7ResNet-34
ResNet-18 32 64 8 5

each subset a task. Video action recognition. We used a
trimmed version of ActivityNet [3] and UCF-101 [40] video
datasets. To conduct experiments, we divided each dataset
into subsets containing randomly selected classes provided
by [43] and treated each subset as a task. We summarize the
datasets as mentioned above in Table 1.

4.2. Implementation details

Image classification. ImageNet+FG and CIFAR-100 were
resized to 224 × 224 and 32 × 32 pixels, respectively. We
applied random cropping and horizontal flip as augmenta-
tion. For those datasets, we used the ResNet-50 [14] and
ResNet-18 as the base networks, respectively.
Video action recognition. We used TSN [46] with the
ResNet-34 backbone network for video action recognition.
Each video was split into three segments of equal duration,
and a frame was randomly selected from each segment. The
action class prediction was performed by aggregating the
predictions of the selected frames with a consensus func-
tion. We used an average of predictions as a consensus func-
tion [46]. The video datasets were augmented with random
cropping and horizontal flipping following [46]. We resized
each frame of ActivityNet and UCF-101 to 224×224 pixels.

Table 2 reports the base networks and corresponding hy-
pernetworks, which include the embedding dimension, the
hidden dimension of the MLP, the number of heads, and the
number of TLA blocks. We set the rank r for matrix decom-
position as 7. We trained the base and hypernetwork using
stochastic gradient descent. In all our experiments, we set
λreg to 1 and λsp to 0.1, except ImageNet+FG where we set
λsp to 1. We report the average results over five independent
runs for all the experiments. To enable class-incremental
learning in scenarios where the task identity is unknown,
the proposed method first predicts the task index and then
conducts classification. Following [44], we predict the task
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Table 3. Performance of the class-incremental learning scenario using ImageNet and five fine-grained datasets (ImageNet+FG), where the
average accuracy was measured after training each task. # P represents the average number of parameters (×106) to perform the tasks.

Method ImageNet CUBS Stanford Cars Flowers Wikiart Sketch
Acc # P Acc # P Acc # P Acc # P Acc # P Acc # P

EWC-On 76.1 23.4 31.6 23.4 28.6 23.4 29.2 23.4 23.1 23.4 11.3 23.4
LwF 76.1 23.4 68.4 23.4 58.2 23.4 55.8 23.4 49.2 23.4 28.4 23.4

iCaRL 76.1 23.4 70.2 23.4 61.5 23.4 52.7 23.4 48.3 23.4 42.3 23.4
PackNet 75.7 12.5 62.8 13.3 65.2 14.0 66.5 14.6 54.3 15.2 45.3 15.7

Piggyback 76.1 23.4 60.1 22.7 54.8 22.2 56.4 22.0 49.7 21.7 47.4 21.4
WSN 74.7 12.5 59.6 12.5 42.2 12.5 29.2 12.5 31.0 12.5 25.0 12.5

H2 75.7 12.5 69.5 13.0 67.3 12.9 68.4 13.0 61.8 12.9 48.7 12.6
GrowBrain 75.7 12.5 69.2 11.0 69.3 10.3 71.3 9.8 64.3 9.6 60.1 9.4

Figure 4. Accuracy of class-incremental learning for image classification on ImageNet+FG (left), video action recognition on UCF-101
(middle) and ActivityNet (right).

index using the network with the least entropy that has been
learned thus far.

4.3. Class-incremental learning

4.3.1 Image classification

We evaluated the proposed method of evolving the previous
knowledge to the class-incremental learning scenario us-
ing ImageNet+FG. We compared with regularization meth-
ods, EWC-On [37] and LwF [22], and data rehearsal meth-
ods, iCaRL [35], and parameter isolation methods, PackNet
[28], Piggyback [27], WSN [16], and H2 [15]. The data
rehearsal methods stored 1,000 raw instances (taking 150
MB2). We applied the same task prediction mechanism as
ours to the comparing methods, excluding iCaRL.

Table 3 shows the class-incremental learning results for
ImageNet and five fine-grained datasets. Overall, the pro-
posed method outperforms competitors (more detailed re-
sults are shown on the left of Figure 4). The regularization
approaches, EwC-On and LwF, give unsatisfactory results
with performance gaps of 48.8% and 31.7% compared to
ours, respectively. LwF shows a 20.8% accuracy drop be-
fore and after learning Sketch, which is the most significant

2 We calculated the rehearsal memory assuming that each image (or
frame of video) has 224 × 224 × 3 pixels.

among the comparing methods. The data rehearsal method,
iCaRL, shows a 17.1% performance drop from GrowBrain
despite storing 1,000 old samples. PackNet shows large
performance drops of 12.2% and 9.0% after training on
WikiArt and Sketch, respectively. This is because nega-
tive interference occurs when using all previous sets of pa-
rameters optimized for different task domains. The meth-
ods of associating prior knowledge, Piggyback, WSN, and
H2, show notable performance drop (12.7%, 35.1%, and
11.4%, respectively) compared to the proposed method that
improves the previous knowledge from the new task. The
results demonstrate that the proposed approach surpasses a
wide range of continual learning methods, confirming its
superiority.

4.3.2 Video action recognition

We applied our method and the competitors to the video ac-
tion recognition tasks using the benchmark sets proposed
for continual learning [43]. For this experiment, iCaRL was
excluded from the comparison since it demands approxi-
mately 2TB and 52GB of memory for replay [43] on Activi-
tyNet and UCF-101, respectively. Since Piggyback requires
a pre-trained backbone, we pre-trained the backbone model
[14] using the validation set of UCF-101 for video action
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Table 4. Results of the class-incremental learning scenario using the trimmed version of UCF-101 and AvtivityNet, where the Avg and Last
accuracies for the time steps 5 and 10.

Method
UCF-101 ActivityNet

T 5 T 10 T 5 T 10

Avg Last # P Avg Last # P Avg Last # P Avg Last # P
EWC-On 48.7 25.8 21.2 32.7 13.9 21.2 38.4 20.7 21.2 26.6 12.4 21.2

LwF 47.0 27.7 21.2 33.4 15.4 21.2 44.1 29.1 21.2 32.7 18.4 21.2
PackNet 59.3 54.2 11.5 52.5 40.4 15.2 42.4 30.2 11.5 32.4 19.0 15.2

Piggyback 65.4 51.7 20.4 53.5 36.5 20.4 22.2 12.7 20.5 15.6 7.5 20.4
WSN 69.1 58.8 10.1 61.1 49.7 10.5 - - - - - -

H2 63.6 54.8 8.3 56.9 47.0 11.4 37.4 22.5 3.4 26.8 13.3 2.1
GrowBrain 79.3 72.2 7.2 73.5 64.7 8.9 42.8 29.9 11.5 33.2 20.6 15.2

recognition experiments. We report the Avg and Last accu-
racies [9] for the time steps 5 and 10. Figure 4 shows the
Last accuracy measured on the UCF-101 and ActivityNet
datasets.

UCF-101. The results of the class-incremental learning sce-
nario using the UCF-101 dataset are reported in Table 4
(left). The aspects of the experimental results on UCF-101
of the compared approaches are similar to those of image
classification. Despite utilizing a large number of param-
eters, regularization approaches, EWC-On and LwF, give
unsatisfactory performance compared to parameter isola-
tion approaches. PackNet, which uses all parameters from
previous tasks, performs less than other parameter isolation
approaches, WSN and H2, using selectively chosen param-
eters associated with previous knowledge. The proposed
method shows the highest performance compared to other
comparison methods. Ours outperforms WSN, H2, Pack-
Net, and Piggyback with the significant accuracy gap on the
Last measure from 15.0% to 28.2%.

ActivityNet. Table 4 (right) reports the results on Activ-
ityNet. WSN was excluded from the experiment because
it did not give promising results due to the lack of data.
Overall, the results of ActivityNet show a different pattern
compared to those of UCF-101. The regularization method,
LwF, outperforms the parameter isolation method, Pack-
Net, with 1.7% and 0.3% Avg accuracy gap measured after
training the 5-th and 10-th tasks. The proposed approach
performs better than Piggyback, PackNet, and H2 by large
margins of 13.1%, 1.6%, and 7.3%, respectively, in terms
of the Last accuracy measured after training 10-th task. The
proposed method outperforms other competitors for image
classification and video action recognition problems. In
contrast to the UCF-101 dataset, where the proposal can
acquire new knowledge by using a small number of param-
eters from previous tasks and achieve excellent results, the
ActivityNet dataset requires previous knowledge to effec-
tively train the current task due to its inadequate data (the
number of videos per class is only half compared to UCF-
101).

Table 5. Task-incremental learning scenarios using video action
recognition and image classification datasets, where average accu-
racy and parameter consumption are reported.

Method
Image classification Video action recognition

ImageNet+FG CIFAR-100 UCF-101 ActivityNet
Acc # P Acc # P Acc # P Acc # P

EWC-On 55.3 23.4 44.5 11.1 65.8 21.2 61.5 21.2
LwF 53.6 23.4 39.7 11.1 71.2 21.2 65.8 21.2

PackNet 80.2 15.7 82.1 10.4 92.2 15.2 65.3 15.2
Piggyback 82.2 21.4 75.6 10.5 86.6 20.4 42.1 20.4

WSN 61.7 12.5 84.6 5.6 92.7 10.5 - -
H2 82.8 12.6 85.9 1.1 94.5 11.4 44.0 2.1

GrowBrain 83.0 9.4 86.8 2.5 96.7 8.9 66.9 15.2

4.4. Task-incremental learning

Additionally, we conducted experiments on the task-
incremental learning scenario where task-id is given during
the inference step. In this scenario, we used ImageNet+FG
and CIFAR-100 as the image classification datasets. Also,
we used ActivityNet and UCF-101 for video action recog-
nition. We divided CIFAR-100 into 10 tasks based on [35].
We followed the same experimental setting as in Tables 3
and 4. For the experiments of Piggyback on CIFAR-100,
the backbone network was pre-trained on a randomly se-
lected subset (40%) of the CIFAR-100 training set.
Image classification. Table 5 reports the results of
task-incremental learning conducted on ImageNet+FG and
CIFAR-100. Even if the regularization methods, EwC-On
and LwF, try to maintain previous knowledge, they per-
form significantly less than the parameter isolation meth-
ods. GrowBrain consistently achieves high performance
compared to other parameter isolation methods, PackNet,
Piggyback, WSN, and H2, in both image classification ex-
periments (e.g., 0.2% and 0.9% performance gap on Im-
ageNet+FG and CIFAR-100 with the most competitive
method, H2).
Video action recognition. Table 5 reports the results of
task-incremental learning conducted on UCF-101 and Ac-
tivityNet. Overall, the results are similar to those of class-
incremental learning scenarios. The regularization method,
LwF, achieves higher performance than PackNet on Activ-
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Table 6. Ablation study of the proposed method for image classifi-
cation and video action recognition tasks, where average accuracy,
the number of parameters for the base network and hypernetwork
(in millions), and the number of layer embeddings are reported.

Method ImageNet+FG UCF-101
Acc # (F +H) # cn Acc # (F +H) # cn

Ours 60.1 9.4 + 2.8 133 64.7 8.9 + 2.8 58
w/o transform [28] 45.3 15.7 + 0 0 40.4 15.2 + 0 0

w/o sparsity 58.1 15.7 + 2.8 133 64.0 14.1 + 2.8 58
w/o scalability 59.8 15.7 + 2.9 3262 64.7 11.0 + 2.9 614

ityNet. The proposed method outperforms both parameter
isolation and regularization methods. Notably, our method
outperforms WSN, PackNet, and H2 with a performance
gap of 4%, 4.5%, and 2.2%, respectively, on UCF-101.

4.5. Analysis

4.5.1 Ablation study

To demonstrate the effectiveness of our method, we con-
ducted an ablation study. We compared ours by remov-
ing transformation of previous knowledge [28], sparsity-
inducing generation (λsp = 0), and scalability of hypernet-
work, i.e., channel adaptive segments and matrix decom-
position. We applied these methods to class-incremental
learning scenarios using the ImageNet+FG and the UCF-
101 datasets. We report the Last accuracy measured after
training all tasks, the average parameter consumption of the
base network (F ) and hypernetwork (H) to perform each
task, and the number of layer embeddings cn.

Table 6 reports the results of the ablation study. Our
method outperforms that without transformation by perfor-
mance gaps of 14.8% and 24.3% for those datasets, empha-
sizing that the evolution of prior knowledge is critical in
enhancing performance. For video action recognition us-
ing UCF-101, the method without sparsity requires more
parameters and performs less than the proposed method.
The proposed method for ImageNet+FG achieves higher
performance while taking fewer parameters than the non-
sparse alternative. The reason is that sparsity-inducing hy-
pernetwork prevents the generation of redundant parameters
and regularizes the generated parameters to achieve gener-
alization performance. The method without scalability re-
quires 24 and 10.5 times larger layer embeddings on Ima-
geNet+FG and UCF-101 than the proposed method, respec-
tively, without accompanying performance improvement.

4.5.2 Impact of λsp

We further conducted a study investigating the impact of
λsp, which regulates the sparsity of generated parameters.
We experimented with varying values of λsp in the Im-
ageNet+FG experiment under the class-incremental sce-
nario using the same setup presented in Table 3. Figure
5 shows the parameter consumption (left) and average ac-

Figure 5. Parameter consumption and average accuracy of the
proposed method based on varying λsp in class-incremental learn-
ing for ImageNet+FG.

curacy (right) with respect to different λsp after training all
tasks. Ours with λsp = 0.1 uses a similar amount of param-
eters as the baseline [28] but outperforms the competing ap-
proach by leveraging enhanced prior knowledge. Notably,
after training all tasks, λsp = 1.0 takes 9.4M parameters
while showing 0.7% performance improvement compared
to λsp = 0.1 consuming 15.7M parameters.

5. Conclusion

We have proposed a novel approach, GrowBrain, to
transform learned old knowledge to absorb the information
of newer tasks in parameter isolation-based continual learn-
ing. GrowBrain reinforces the previous knowledge with a
transformer-based hypernetwork that generates optimized
parameters for new tasks while eliminating redundant
parameters that show negligible impact on the loss. The
proposed method overcomes the limitation of using fixed
old knowledge that can constrain the ability to capture
novel representations while taking fewer parameters. In
the experiments, we have evaluated the proposal compared
to a variety of continual learning methods in class- and
task-incremental learning scenarios for image classification
and video action recognition. Experimental results show
that the proposed approach of leveraging transformed prior
knowledge generates parameters adapted to the new task
without losing the prior knowledge, resulting in significant
performance improvements over its strong competitors.
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