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Abstract

A novel algorithm to detect road lanes in videos, called
recursive video lane detector (RVLD), is proposed in this
paper, which propagates the state of a current frame recur-
sively to the next frame. RVLD consists of an intra-frame
lane detector (ILD) and a predictive lane detector (PLD).
First, we design ILD to localize lanes in a still frame. Sec-
ond, we develop PLD to exploit the information of the previ-
ous frame for lane detection in a current frame. To this end,
we estimate a motion field and warp the previous output to
the current frame. Using the warped information, we refine
the feature map of the current frame to detect lanes more
reliably. Experimental results show that RVLD outperforms
existing detectors on video lane datasets. Our codes are
available at https://github.com/dongkwonjin/RVLD.

1. Introduction
Lane detection is a task to localize lanes in a road scene,

which is crucial for either autonomous or human driving.

For lane detection, it is necessary to exploit visual cues of

lanes, as illustrated in Figure 1(a). Early methods extract

low-level features such as image gradients or colors [1–4].

Recently, deep learning techniques have been developed to

cope with challenging scenes. Some of them are based on

semantic segmentation [5–9], in which each pixel is clas-

sified into either lane category or not. To ensure lane con-

tinuity, several techniques have been proposed, including

parametric curve modeling [10–14] and keypoint associa-

tion [15–17]. However, despite yielding promising results,

they may fail to detect less visible lanes, as in Figure 1(b).

To detect such lanes reliably, anchor-based lane detectors

[18–21] have been proposed. They generate a set of lane an-

chors, detect lanes through the binary classification of each

anchor, and then regress the detected ones. However, all

these methods detect lanes from still images without con-

sidering high inter-frame correlation in a video.

In autonomous driving systems, video frames are cap-

tured consecutively. Video lane detection aims to detect

lanes in such a video by exploiting inter-frame correlation,

(a)

(b)

(c)

Figure 1. (a) For lane detection, it is required to identify visible

lane pixels, represented by yellow lines in the insets. (b) Due

to occlusions by nearby vehicles or glistening conditions on wet

roads, lanes may be unobvious, which are depicted by orange dot-

ted lines. Besides, lanes may not be marked at crossroads. (c) In

a current frame It, which is also the rightmost one in (b), some

lane parts are occluded by a vehicle but visible in past frames. By

utilizing visual cues along the temporal axis, depicted by cyan ar-

rows, we can localize the implied lane parts more reliably.

rather than processing each frame independently. It can de-

tect implied lanes in a current frame more reliably using

past information, as shown in Figure 1(c). But, relatively

few techniques have been proposed for video lane detec-

tion. Zou et al. [22] developed a memory network to ag-

gregate the features of past and current frames. Similarly,

in [23–26], they combined the features of a current frame

with those of past frames and then detected lanes from the

mixed features. However, these techniques require several

past frames as input and do not reuse the mixed features in

subsequent frames.

Recently, the first video lane dataset called VIL-100 [24]

was constructed, containing 100 videos. However, the num-

ber of images is only 10K, and most images are collected

from highway scenes. Also, OpenLane [27], a huge dataset

for 3D lane detection, was proposed. It consists of 200K

images from 1,000 videos and annotates lanes with both 2D

and 3D coordinates. But, it is unsuitable for video lane de-

tection because it provides annotations for visible lane parts

only: First, the same lane is sometimes broken into multiple

parts. Second, some annotations are temporally incoherent

because of invisible parts in certain frames. To overcome

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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the final published version of the proceedings is available on IEEE Xplore.
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these issues, we modify OpenLane by filling in missing lane

parts semi-automatically based on matrix completion [28].

The modified dataset is called OpenLane-V.

In this paper, we propose a novel video lane detector

called RVLD, which records the state of a current frame

and passes it recursively to the next frame to improve de-

tection results. Figure 2 is an overview of the proposed

RVLD. First, we design the intra-frame lane detector (ILD)

that performs encoding, decoding, and then non-maximum

suppression (NMS) to localize lanes in a still image. Sec-

ond, we develop the predictive — or inter-frame — lane

detector (PLD) to detect lanes in a current frame using the

information in the previous one. Specifically, we estimate

a motion field between adjacent frames and warp the previ-

ous output to the current frame. Using the warped informa-

tion, we refine the feature map of the current frame to de-

tect lanes more reliably. Experimental results show that the

proposed RVLD outperforms existing techniques on both

VIL-100 and OpenLane-V datasets.

This work has the following major contributions:

• The proposed RVLD improves the detection results in

a current frame using a single previous frame only and

yields outstanding performances on video datasets.

• We develop simple yet effective modules for motion

estimation and feature refinement to exploit the previ-

ous information reliably.

• We modify the OpenLane dataset to make it more suit-

able for video lane detection. It is called OpenLane-V.1

• We introduce two metrics, flickering and missing rates,

for video lane detection.

2. Related Work
2.1. Image-Based Lane Detection

Various techniques have been developed to detect lanes

in a still image. Some are based on semantic segmenta-

tion [5–9], in which pixelwise classification is conducted

to decide whether each pixel belongs to a lane or not. Pan

et al. [5] propagated spatial information through message

passing. Zheng et al. [6] adopted recurrent feature aggrega-

tion, while Qiu et al. [7] did multi-scale aggregation. Hou et
al. [8] performed self-attention distillation. Moreover, Hou

et al. [9] employed teacher and student networks. In [29],

Qin et al. determined the location of each lane on selected

rows only. Liu et al. [30] developed a conditional lane de-

tection strategy based on the row-wise formulation.

In semantic segmentation, the continuity of a detected

lane may not be preserved. To maintain the continuity,

parametric curve modeling [10–14] and keypoint associa-

tion [15–17] have been developed. Neven et al. [10] did

1OpenLane-V is available at https://github.com/dongkwonjin/RVLD.

Motion Estimation Feature Refinement

(a) Intra-frame lane detector (ILD)

(b) Predictive lane detector (PLD)

Encoding

Encoding NMSDecoding

Decoding + NMS

Figure 2. (a) In ILD, we encode a frame It at time t into a feature

map Xt and decode Xt into a probability map P t and a coefficient

map Ct. Then, via NMS, we generate a lane mask Lt. (b) In

PLD, we utilize previous output Xt−1 and Lt−1 to detect lanes in

It. First, we estimate a motion field from It to It−1. Then, we

backward warp the previous output and refine the feature map X̃t

of It into Xt using the warped information. Lastly, we obtain a

lane mask Lt through the decoding and NMS processes.

the polynomial fitting of segmented lane pixels. In [11, 12],

neural networks were designed to regress polynomial co-

efficients of lanes. Also, Liu et al. [13] developed a trans-

former network to predict cubic lane curves. Feng et al. [14]

employed Bezier curves. In [15], Qu et al. estimated mul-

tiple keypoints and linked them to reconstruct lanes. Wang

et al. [16] regressed the offsets from a starting point to key-

points and grouped them into a lane instance. Xu et al. [17]

predicted four offsets from each lane point to the two adja-

cent ones and the topmost and bottommost ones.

Meanwhile, the anchor-based detection framework also

has been developed [18–21, 31, 32]. These techniques gen-

erate lane anchors and then classify and regress each an-

chor by estimating the lane probability and the offset vec-

tor. Vertical line anchors were used in [31, 32]. Global fea-

tures of straight line anchors were extracted to detect lanes

in [18, 19]. Zheng et al. [21] extracted multi-scale feature

maps and refined them by aggregating global features of

learnable line anchors. Also, Jin et al. [20] introduced data-

driven descriptors called eigenlanes. They generated lane

anchors via a low-rank approximation of a lane matrix to

represent lanes compactly and precisely.

2.2. Video-Based Lane Detection

There are relatively few video-based lane detectors. Zou

et al. [22] and Zhang et al. [23] employed recurrent neural

networks to exploit temporal correlation by fusing the fea-

tures of a current frame with those of several past frames.

Zhang et al. [24] developed a video lane detector using the

first video lane dataset VIL-100. They aggregated features

of a current frame and multiple past frames based on the

attention mechanism [33, 34] to detect lanes in the current

frame. Tabelini et al. [25] extracted lane features in video
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Figure 3. Encoding and decoding in ILD.
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Figure 4. Illustration of NMS in ILD.

frames, based on the anchor-based detector in [19], and

combined those features. Wang et al. [26] exploited spatial

and temporal information in neighboring video frames by

extending the feature aggregation module in [6]. They also

designed loss functions to maintain the geometric consis-

tency of lanes. These techniques require several past frames

for feature aggregation but do not reuse the aggregated fea-

tures in future frames. On the contrary, the proposed al-

gorithm maintains the memory for a single previous frame

only but propagates the temporal information recursively to

extract lanes in each frame effectively.

3. Proposed Algorithm
Given a video sequence, we conduct lane detection in

the first frame using ILD in Figure 2(a) and then do so in

the remaining frames using PLD in Figure 2(b) recursively.

3.1. ILD

Encoding and decoding: ILD includes a single encoder

and two decoders in series, as shown in Figure 3. Given

an image I , the encoder extracts a feature map X ∈
R

H×W×K by aggregating multi-scale convolutional fea-

tures of ResNet18 [35]. Then, the two decoders sequentially

generate a probability map P ∈ R
H×W×1 and a coefficient

map C ∈ R
H×W×M by

P = σ(f1(X)) and C = f2(P ). (1)

Here, σ(·) is the sigmoid function, and f1 and f2 are 2D

convolutional layers. Let x denote a pixel coordinate, and

Px be the value of P at x. Note that Px is the probability

that pixel x belongs to a lane.

Also, each element in C is a coefficient vector in the M -

dimensional eigenlane space [20], in which lanes are rep-

resented compactly with M basis vectors. Specifically, Cx

is the coefficient vector for a lane containing x, if the lane

exists. To regress such coefficient vectors more accurately,

we use a positional bias map [34] as additional input to de-

coder 2. The architecture of ILD is described in detail in the

supplemental document (Section A).

(a) Image (b) Probability map (c) Lane mask 

Figure 5. Some lanes are partly occluded in (a). While the proba-

bility map P does not represent the invisible parts reliably in (b),

the lane mask L reconstructs continuous lanes clearly in (c).

NMS: Using the probability map P and the coefficient map

C, we determine reliable lanes through NMS, as illustrated

in Figure 4. First, we select the optimal pixel x∗ with the

highest probability in P . Then, we reconstruct the corre-

sponding lane r by linearly combining M eigenlanes with

the coefficient vector Cx∗ , which is given by

r = UCx∗ = [u1, · · · ,uM ]Cx∗ (2)

where u1, · · · ,uM are the M eigenlanes [20]. Note that r
is a column vector composed of the horizontal coordinates

of lane points, which are sampled vertically. By dilating the

lane curve r, we construct a removal mask, as in Figure 4,

and prevent the pixels within the mask from being selected

in the remaining iterations. We iterate this NMS process

until Px∗ is higher than 0.5.

Finally, using the selected lanes, ILD outputs a binary

lane mask L ∈ R
H×W×1: Lx = 1 if x belongs to a lane,

and Lx = 0 otherwise. Figure 5 illustrates that the lane

mask L reduces the ambiguity in the probability map P and

reconstructs continuous lanes effectively.

3.2. PLD

Problem formulation: We aim to detect lanes in a current

frame It using the information in the past frame It−1, as in

Figure 2(b). Note that Xt−1 and Lt−1 are the feature map

and the lane mask of It−1, respectively. Let X̃t be the fea-

ture map of It obtained by the encoder. Both ILD and PLD

use the same encoder, but in PLD we refine X̃t to Xt by

exploiting Xt−1 and Lt−1. Then, from the refined feature

Xt, we obtain a more reliable lane mask Lt. The results Xt

and Lt are, in turn, used to detect lanes in the future frame

It+1. Notice that PLD is a first-order Markov chain [36],

in which the future outcome at time t + 1 is influenced by

the current state at time t only and independent of the past

states at times less than or equal to t − 1. To perform this

recursive detection reliably, we develop simple yet effective

modules for motion estimation and feature refinement. The

detailed structure of PLD is in the supplement (Section A).

Motion estimation: We estimate a motion field from

the current frame It to the past frame It−1 by design-

ing a lightweight motion estimator in Figure 6. The mo-

tion estimator takes feature maps X̃t and Xt−1 as input.

Then, it estimates a down-sampled motion field Fdown ∈
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Figure 6. The structure of the proposed motion estimator: Given

feature maps X̃t and Xt−1 of adjacent frames It and It−1, we

estimate a down-sampled motion field Fdown from It to It−1.
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Figure 7. A diagram of the feature refinement module.

R
H/4×W/4×2, where each element indicates a 2D motion

vector from It to It−1. To this end, as in [37], we construct

a cost volume V ∈ R
H×W×D2

by first computing the local

correlation

V̄x(d) = (Xt−1
x+d)

�X̃t
x (3)

where d is a displacement vector within the search window

D = [−s, s]× [−s, s]. Thus, we compute |D| = D2 corre-

lations for each x, where D = 2s+ 1. Then, we obtain the

cost volume V through Vx = softmax(V̄x). Each element

in Vx informs of the similarity between x and a matching

candidate. We concatenate the cost volume V with X̃t and

then apply convolutions and down-sampling operations to

obtain the motion field Fdown.

Feature refinement: Some lanes may be implied or even

invisible in It due to occlusions, lack of light, or weather

conditions. It is difficult to detect such lanes using the

contextual information in the current frame only. In other

words, X̃t of It is not sufficiently informative. Thus, we re-

fine X̃t into Xt by exploiting the past information in It−1.

In Figure 7, we first warp the previous output Xt−1 and

Lt−1 to the current frame by

Xt−1
warp = φB(X

t−1, F ), Lt−1
warp = φB(L

t−1, F ), (4)

where F ∈ R
H×W×2 is the up-sampled motion field of

Fdown via bilinear interpolation, and φB is the backward

warping operator [38]. Then, from the warped lane mask

Lt−1
warp, we obtain a guidance feature map by

Gt−1 = g(Lt−1
warp) (5)

where g is composed of 2D convolutional layers to increase

the channel dimension to K. Notice that Lt−1
warp preserves

the structural continuity of lanes similarly to Figure 5(c).

Gt−1 also contains such information. Thus, we may deliver

the continuous lane information even for partially occluded

lanes to It. Consequently, we produce the refined feature
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Figure 8. In OpenLane [27], only visible lane parts are annotated,

so the same lane may be split into multiple parts. In contrast,

in OpenLane-V, each lane is seamlessly annotated, and invisible

parts are inpainted. It is recommended to watch the accompanying

video to see the improved annotations.

map Xt by aggregating Gt−1, Xt−1
warp, and X̃t,

Xt = h([Gt−1, Xt−1
warp, X̃

t]) (6)

where [·] denotes the channel-wise concatenation, and h
consists of 2D convolutional layers to reduce the channel

dimension back to K.

Then, using the refined feature Xt, we detect a more re-

liable lane mask Lt by performing the decoding and NMS

processes in the same way as ILD, as shown in Figure 2.

3.3. Training

We define the loss for training ILD as

�ILD = �cls(Px, P̄x) + �reg(Cx, C̄x) (7)

where Px and Cx are the output of ILD in (1), and P̄x and

C̄x are their ground-truth (GT), respectively. Also, �cls is

the focal loss [39] over binary classes, and �reg is the LIoU

loss [21] between a predicted lane contour r in (2) and its

ground-truth r̄.

For PLD, in addition to the loss in (7), we employ a loss

function

�flow = ‖P̄ t−1
warp − P̄ t‖2 = ‖φB(P̄

t−1, F )− P̄ t‖2 (8)

to train the motion estimation module. In other words, it is

trained to yield a motion field F such that the warped result

of the ground-truth probability map P̄ t−1 is close to P̄ t.

We first train ILD and then, after fixing it, train the

motion estimation and feature refinement modules in PLD

from scratch. The results of PLD in a current frame are,

in turn, used in the next frame. Hence, for stable training

of PLD, we compose three consecutive frames as a training

unit. The training process and hyper-parameters are detailed

in the supplement (Section A).

4. Datasets
4.1. OpenLane-V

OpenLane [27] is one of the largest lane datasets with

about 200K images from 1,000 videos and about 880K lane
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Figure 9. In OpenLane, only visible lane parts, such as the one in

cyan, are annotated. Thus, the lane matrix is incomplete. Through

ALS [41], we complete the matrix, so the missing parts are recon-

structed and the whole lane in green is properly annotated.

annotations. Whereas both visible and invisible lanes are

annotated in other datasets [5, 24, 40], OpenLane annotates

only visible lane parts as in Figure 8, which makes it un-

suitable for video lane detection. Note that some parts are

separated, but they actually belong to the same lane. Also,

in challenging videos, lane parts are missing unpredictably,

so they are not temporally consistent. We improve the anno-

tations in OpenLane and construct a modified dataset, called

OpenLane-V, by filling in missing parts semi-automatically

based on matrix completion [28].

Figure 9 illustrates the completion process. Let A =
[x1,x2, . . . ,xL] ∈ R

N×L be a lane matrix [20] con-

taining L lanes in a dataset, where each lane xi =
[x1, x2, . . . , xN ]� is represented by the x-coordinates of N
points sampled uniformly in the vertical direction. In Open-

Lane, however, some entries in A are not measured, since

only visible lane parts are annotated. In other words, A is

an incomplete matrix.

To complete A, we perform factorization A ≈ U�V,

where U ∈ R
R×N , V ∈ R

R×L, and R is the rank of the

factored A. In [20], it was shown that a lane matrix has

low-rank characteristics, so we set R = 3. Then, we find

optimal U and V to minimize an objective function:

min
U,V

∑

(i,j)∈O
(Ai,j − u�

i vj)
2 + λ(

∑

i

‖ui‖2 +
∑

j

‖vi‖2),

(9)

where O is the coordinate set of observed entries, and λ is a

regularization parameter. Since finding the optimal factors

is NP-hard [41], we adopt the alternating least square (ALS)

algorithm [41, 42], in which we optimize V after fixing U,

and vice versa. This is repeated until convergence. The ob-

jective function becomes convex when one of the factors is

fixed, so ALS is guaranteed to converge to a local minimum.

Entirely invisible lanes with no annotations, however,

cannot be restored automatically. They disappear suddenly

in videos, causing flickering artifacts. We manually anno-

tate such lanes using the information in neighboring frames.

Moreover, in some videos, too large a portion of lane parts

is invisible, making the completed results unreliable. We re-

move such videos from OpenLane-V. This semi-automatic

process is described in detail in the supplement (Section B).

As a result, OpenLane-V consists of about 90K images

from 590 videos. It is split into a training set of 70K im-

ages from 450 videos and a test set of 20K images from 140

(a) Stable (c) Missing(b) Flickering

Figure 10. Three cases of lane detection results at consecutive

frames: Correctly detected lanes are in yellow, while falsely dis-

missed ones are in red. In (a), each lane is detected correctly and

stably in both frames. In (b), a detected lane at one frame is not

detected at the other, leading to a flicker. In (c), the right lane is

missed at both frames because it is not marked on the crossroad.

videos. As in the CULane dataset [5], we annotate up to

4 road lanes in each image, which are ego and alternative

lanes, to focus on important lanes for driving.

4.2. VIL-100

VIL-100 [24] is the first dataset for video lane detection

containing 100 videos. It is split into 80 training and 20 test

videos. Each video has 100 frames. VIL-100 is less chal-

lenging than OpenLane-V and contains only 10K images.

5. Experimental Results
In addition to the results in this section, it is recom-

mended to watch the accompanying video clips to compare

video lane detection results more clearly.

5.1. Evaluation Metrics

Conventional metrics: For lane detection, image-based

metrics are generally employed. Each lane is regarded as

a thin stripe with 30 pixel width [5]. Then, a predicted lane

is declared correct if its IoU ratio with GT is greater than τ .

The precision and the recall are computed by

Precision = TP
TP+FP , Recall = TP

TP+FN (10)

where TP is the number of correctly detected lanes, FP
is that of false positives, and FN is that of false negatives.

Then, the F-measure at threshold τ is defined as

F1τ = 2×Precision×Recall
Precision+Recall . (11)

Also, mIoU is computed by averaging the IoU scores of

correctly detected lanes.

Video metrics: We propose two video metrics to assess the

temporal stability of detected lanes. When a lane suddenly

disappears or a new lane is suddenly detected at a frame,

vehicle maneuvers are hard to control, possibly leading to

dangerous situations. It is important to achieve temporally
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Figure 11. Comparison of lane detection results on the VIL-100 dataset.

Table 1. Comparison of mIoU and F1 scores on VIL-100: image

lane detectors and video ones are listed separately.

mIoU F10.5 F10.8

LaneNet [10] 0.633 0.721 0.222
ENet-SAD [8] 0.616 0.755 0.205
LSTR [43] 0.573 0.703 0.131
RESA [6] 0.702 0.874 0.345
LaneATT [19] 0.664 0.823 -
MFIALane [7] - 0.905 0.565

MMA-Net [24] 0.705 0.839 0.458
LaneATT-T [25] 0.692 0.846 -
TGC-Net [26] 0.738 0.892 0.469

RVLD (Proposed) 0.787 0.924 0.582

Table 2. Flickering and missing rates on VIL-100.

R0.5
F R0.5

M R0.8
F R0.8

M

MMA-Net [24] 0.047 0.128 0.200 0.428
MFIALane [7] 0.042 0.127 0.206 0.323
RVLD (Proposed) 0.038 0.050 0.203 0.306

stable lane detection. There are three cases for a match-

ing pair of lanes at adjacent frames: Stable, Flickering, and

Missing. A stable case is one where a lane is successfully

detected at both frames, as shown in Figure 10(a). In a flick-

ering case, a lane is detected at one frame but missed at the

other, as in Figure 10(b). A missing case is the worst one in

which a lane is missed consecutively at both frames, as in

Figure 10(c).

Let N be the number of GT lanes that have matching

instances at previous frames, and let NS, NF, NM be the

numbers of stable, flickering, and missing cases, respec-

tively. Note that N = NS + NF + NM. Then, we define

the flickering and missing rates as

Rτ
F = NF

N , Rτ
M = NM

N , (12)

where τ is the IoU threshold for correct detection.

5.2. Comparative Assessment

VIL-100: We compare the proposed RVLD with conven-

tional image lane detectors [6–8, 10, 19, 43] and video ones

[24–26] on VIL-100. Table 1 lists the mIoU and F1 scores.

RVLD outperforms all conventional algorithms in all image

metrics. Especially, RVLD is better than the state-of-the-

art video lane detector TGC-Net by significant margins of

0.049, 0.032, and 0.113 in mIoU, F10.5, and F10.8, respec-

tively. Note that RVLD uses a single previous frame only,

whereas the existing video lane detectors [24–26] use two

or more past frames as input. MFIALane, an image lane de-

tector, yields high F1 scores, but it underperforms as com-

pared with RVLD. This is because it processes each image

independently and may fail to detect implied lanes. In con-

trast, RVLD detects lanes in a current frame more reliably

by exploiting past information.

Table 2 compares the RF and RM rates. LaneATT-T and

TGC-Net are not compared because their source codes are

unavailable. MMA-Net achieves the lowest flickering rate

R0.8
F , but it does so because its missing rate R0.8

M is too high.

Except for R0.8
F , the proposed RVLD yields the lowest flick-

ering and missing rates, indicating that RVLD provides tem-

porally more stable detection results.

Figure 11 presents some detection results. MMA-Net

does not detect unobvious lanes precisely, even though it

uses several past frames as input. MFIALane also fails to

process those lanes reliably, for it is image-based. In con-

trast, the proposed RVLD provides better results using past

information effectively.

OpenLane-V: Table 3 compares RVLD with the state-of-

the-art image lane detectors [7,16,21,30] and the video lane

detectors [22–24] on OpenLane-V. Notice that MFIALane

[7] ranks 2nd on VIL-100 in Table 1. Also, CondLaneNet

[30], GANet [16], and CLRNet [21] are recent detectors

achieving outstanding performances on image datasets. We
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Table 3. Comparison on OpenLane-V.

mIoU F10.5 F10.8 R0.5
F R0.5

M R0.8
F R0.8

M

ConvLSTM [22] 0.529 0.641 0.353 0.058 0.282 0.091 0.574
ConvGRUs [23] 0.540 0.641 0.355 0.064 0.288 0.094 0.576
MMA-Net [24] 0.574 0.573 0.328 0.044 0.461 0.071 0.671
MFIALane [7] 0.697 0.723 0.475 0.061 0.300 0.080 0.519
CondLaneNet [30] 0.698 0.780 0.450 0.047 0.239 0.084 0.531
GANet [16] 0.716 0.801 0.530 0.048 0.198 0.082 0.443
CLRNet [21] 0.735 0.789 0.554 0.054 0.224 0.086 0.430

RVLD (Proposed) 0.727 0.825 0.566 0.014 0.167 0.051 0.406
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Figure 12. Comparison of lane detection results on the OpenLane-V dataset.

Proposed RVLDCLRNetGANet
Scene #1

Scene #2

Scene #3

Figure 13. Comparison of F10.5 scores per frame in three chal-

lenging videos in OpenLane-V. Compared to RVLD, GANet and

CLRNet suffer from more fluctuating results. The frame-by-frame

comparisons of lane detection results of CLRNet and RVLD on

these three scenes are available in a supplemental video clip.

train all these detectors on OpenLane-V using publicly

available source codes.

In Table 3, we see that RVLD outperforms the existing

techniques in every metric, except that it yields a slightly

lower mIoU score than CLRNet. GANet and CLRNet yield

decent results in terms of image-based mIoU and F1 scores,

but they perform poorly in terms of video-based flickering

and missing rates. Especially, their R0.5
F scores are over

0.044, which are at least three times higher than that of

RVLD. In other words, they provide temporally less sta-

ble lane detection results than RVLD, as also supported by

Figure 13. Moreover, RVLD provides better results than the

existing video lane detectors, which are ConvLSTM, Con-

vGRUs, and MMA-Net. Note that RVLD uses a single pre-

vious frame only to improve detection results, whereas the

existing methods do several past frames. This confirms that

the proposed RVLD exploits temporal correlation more ef-

fectively. The efficacy of using a single previous frame is

demonstrated in the supplement (Section C).

Figure 12 shows detection results. The state-of-the-art

image-based techniques inaccurately detect implied lanes or

simply miss them in challenging scenes. In contrast, RVLD

detects the lanes reliably. More detection results are pre-

sented in the supplemental document (Section D).

5.3. Ablation Studies

We conduct ablation studies to analyze the efficacy of

the proposed RVLD and its components. Table 4 compares

several ablated methods on OpenLane-V. Method I detects

road lanes in each frame using ILD only, without exploiting

temporal correlation in a video. In Methods II∼V, both ILD

and PLD are employed: Method II does not warp the previ-

ous output and uses it directly to refine the feature map of

a current frame. Method III does not use the guidance fea-

ture map Gt−1 in (6). Method IV does not reuse the refined

feature in the future frame. Specifically, in Figure 2(b), it

passes the ILD feature X̃t, instead of the refined feature

Xt, to the future frame.

Efficacy of PLD: Method I underperforms badly. As com-

pared with the proposed RVLD (Method V), its F1 score is

reduced from 0.822 to 0.784, and its flickering rate R0.5
F is
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Figure 14. Comparison of the lane probability maps generated by ILD and RVLD for consecutive video frames in the OpenLane-V dataset.

It is recommended to see the accompanying video clip for more comparisons of lane probability maps.

Table 4. Ablation studies of the proposed RVLD on OpenLane-V.

F10.5 R0.5
F R0.5

M

I. ILD 0.787 0.053 0.197
II. ILD + PLD (w/o warping) 0.816 0.017 0.191
III. ILD + PLD (w/o guidance) 0.821 0.027 0.187
IV. ILD + PLD (w/o reuse) 0.822 0.017 0.172
V. RVLD 0.825 0.014 0.167

about 4 times higher. Using ILD only, it fails to detect un-

obvious lanes reliably and suffers from temporal instability.

Figure 14 compares the lane probability maps of ILD

and RVLD on challenging videos in OpenLane-V. As lanes

vanish or gradually disappear in videos, ILD yields highly

unstable results. On the contrary, RVLD estimates the prob-

ability maps clearly and stably, for it refines the feature map

of each frame using the past output and propagates the re-

fined map to the future frame.

Efficacy of motion estimation: Compared to RVLD,

Method II yields inferior results, indicating that RVLD

can exploit temporal correlation more effectively via the

motion-based alignment of past information.

Efficacy of guidance information: Without guidance fea-

tures in Method III, the flickering rate R0.5
F nearly doubles.

Guidance features are essential for stable lane detection, es-

pecially when lanes are partially occluded, since they help

to maintain lane continuity.

Efficacy of feature reuse: Compared to Method V, Method

IV yields poorer results, indicating that it is more effective

to pass the PLD feature Xt, rather than the ILD feature X̃t,

to the future frame. In other words, it is better to reuse the

refinement feature in the future frame.

Runtime: Table 5 lists the runtime for each stage of RVLD.

We use a PC with AMD Ryzen 9 5900X CPU and NVIDIA

Table 5. Runtime analysis of the proposed RVLD. MEFR means

the motion estimation and feature refinement processes in PLD.

The processing times are reported in seconds per frame.

Encoding MEFR Decoding NMS Total

0.0060s 0.0034s 0.0011s 0.0020s 0.0125s

RTX 3090 GPU. The processing speed of RVLD is about

80 frames per second, which is sufficiently fast for appli-

cations. ILD, excluding the motion estimation and feature

refinement, is faster, but it is less accurate and suffers from

temporal incoherence of detected lanes.

6. Conclusions
We proposed a novel video lane detector, called RVLD,

which extracts informative features for a current frame and

passes them recursively to the next frame. First, we de-

signed ILD to localize lanes in a still image. Second, we

developed PLD to exploit past information to detect lanes in

a current frame more reliably. Experimental results demon-

strated that RVLD outperforms existing techniques mean-

ingfully. Moreover, we modified OpenLane to construct

OpenLane-V, which is about 10 times larger than VIL-100,

and proposed two new video-based metrics, the flickering

rate RF and the missing rate RM.
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