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Figure 1: Visual and quantitative comparisons between our proposed method and other SOTA methods for robust stereo

matching on ETH3D, Middlebury, and KITTI 2015 (from top to bottom). All results from each method are directly predicted

by a single trained model with fixed parameters without any fine-tuning or adaption. Our method outperforms others both in

cross-domain accuracy and details. Obvious errors and bad cases of other methods are highlighted in the box parts.

Abstract

Correlation based stereo matching has achieved out-
standing performance, which pursues cost volume between
two feature maps. Unfortunately, current methods with
a fixed model do not work uniformly well across various
datasets, greatly limiting their real-world applicability.
To tackle this issue, this paper proposes a new perspec-
tive to dynamically calculate correlation for robust stereo
matching. A novel Uncertainty Guided Adaptive Correla-
tion (UGAC) module is introduced to robustly adapt the
same model for different scenarios. Specifically, a variance-
based uncertainty estimation is employed to adaptively ad-
just the sampling area during warping operation. Addition-
ally, we improve the traditional non-parametric warping

*Work was done while interning at Megvii. † Corresponding authors.

with learnable parameters, such that the position-specific
weights can be learned. We show that by empowering the
recurrent network with the UGAC module, stereo matching
can be exploited more robustly and effectively. Extensive
experiments demonstrate that our method achieves state-of-
the-art performance over the ETH3D, KITTI, and Middle-
bury datasets when employing the same fixed model over
these datasets without any retraining procedure. To tar-
get real-time applications, we further design a lightweight
model based on UGAC, which also outperforms other meth-
ods over KITTI benchmarks with only 0.6 M parameters.

1. Introduction

Stereo matching is a fundamental computer vision task

[31] that aims to estimate the disparity between two rec-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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tified stereo images. In the past decade, stereo matching

has become increasingly popular due to the development

of deep learning and the support of large synthetic datasets

[26, 4]. As a result, it has a breadth of applications spanning

autonomous driving [6] to 3D reconstruction [13].

Since there are significant domain differences between

stereo matching datasets, existing state-of-the-art methods

generally fail to achieve robust stereo matching, when ap-

plied to different datasets with a single trained model with

fixed parameters. As shown in Fig. 1(a), the Middlebury

dataset [32] focuses on indoor scenes with high resolution

and large disparity, while ETH3D [33] contains gray-scale

images at low resolution, and KITTI [12] concentrates on

outdoor driving scenarios. Consequently, the leading meth-

ods [45, 24] on one dataset cannot consistently perform well

across different datasets without retraining (Fig. 1(c,d)),

which fails to meet the generalization requirement of real-

world applications.

Large scene differences and unbalanced disparity distri-

bution are the key reasons resulting in noisy and distorted

feature maps [50], thus reducing the robustness. In addi-

tion, the limited receptive field of convolutions makes it

difficult for the network to capture the global features, lead-

ing to domain sensitivity to different datasets [25]. To this

end, CFNet [35] adopted an adaptive disparity range to en-

large the receptive field and alleviate the poor robustness

caused by the fixed disparity range. However, it still in-

curs the issue of robust matching (shown in Fig. 1 (e)) be-

cause blurred textures and unclear edges in features still ex-

ist when constructing cost volume, which is generated by

non-parametric warping and cannot be solved by adjusting

the disparity range. Here, features are warped by the corre-

sponding disparities and fixed sampling points in the neigh-

borhood. Because this process utilizes constant weights, it

is inherently position-agnostic and cannot capture different

feature details, leading to low robustness.

In this paper, we propose an uncertainty guided adap-

tive correlation module to tackle the above problem, and

further develop an advanced cascaded recurrent framework

based on CREStereo [21], namely CREStereo++, to achieve

robust stereo matching. Specifically, towards the problem

caused by a fixed sampling area and limited receptive field,

we employ a variance-based uncertainty estimation module

to adaptively adjust the sampling range in the warping pro-

cess. Moreover, we improve the traditional non-parametric

warping operation with content-adaptive weights. In this

way, for those areas with high uncertainty, such as texture-

less and occluded parts, the network adopts a wide sampling

range. For parts that have achieved accurate matching, a

small range of sampling area is suitable enough. Experi-

mentally, as shown in Fig. 1 (b), our method achieves SOTA

performances on all three datasets simultaneously without

adaptation. To benefit real-time applications, we further

propose a lightweight version, namely Lite-CREStereo++,

to enable real-time performance. Our Lite-CREStereo++

outperforms all the published real-time methods with less

than 60ms inference time on KITTI2012 benchmarks with

only 0.6 M parameters.

The main contributions of this paper are as follows:

• We introduce a new perspective to calculate correlation

dynamically for robust stereo matching that can adapt

to various datasets.

• We develop an uncertainty guided adaptive warping

module that enhances the robustness of the network for

different scenarios, which is also valuable in general

matching tasks.

• We conduct extensive experiments on commonly used

benchmarks and achieve SOTA results in terms of both

robustness and efficiency, making the proposed ap-

proach universal.

• Our method obtains the championship on the stereo

task of Robust Vision Challenge 2022.

2. Related Works
Deep Stereo Matching. Recently, the success of convo-

lution neural networks has driven the community to develop

learning based solutions for stereo matching [48, 26, 28, 22,

5, 18, 15, 24, 43, 21]. Specifically, Mayer et al. [26] pro-

posed the first end-to-end method DispNetC, which directly

calculated the correlation between left and right features by

multiplying the pixels at the corresponding position. Chang

et al. introduced PSMNet [5], using a spatial pyramid pool-

ing module to leverage the capacity of global context in-

formation in different scales. Based on this, Guo et al.
[15] proposed GwcNet via group-wise correlation, achiev-

ing better performance and reducing parameters simultane-

ously. For most methods, the diversity in disparity distri-

bution is the main challenge for model performance, which

can be improved through an iterative mechanism. Follow-

ing the great success of RAFT [39] in optical flow task,

RaftStereo [24] was proposed for stereo matching with iter-

ative refinement. Li et al. [21] proposed CREStereo, which

illustrates the effectiveness of cascaded recurrent network.

Robust Stereo Matching. Robust stereo matching ori-

ented toward robustness and real-world applications is a

less explored problem. Jia et al. [41] introduced an end-

to-end network with scene geometry priors to improve the

network’s generalization ability to unseen scenes. Song et
al. [36] introduced a domain adaptation method to handle

the gap between synthetic and real-world domains. Zhang

et al. [50] proposed a domain-invariant approach via a do-

main normalization layer and learnable graph-based filter.

MCV-MFC [23] proposed a two-stage training strategy to
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Figure 2: The overall framework of our method. It comprises two shared-weight feature extraction modules (FEM) and

a reusable adaptive recurrent module (ARM). Starting from an initial input (a 0 disparity map), the output of disparity

prediction in the former stage is fed to the next ARM. For each iteration in ARM, we first apply Uncertainty Guided Adaptive

Correlation (UGAC) to compute the correlation between two features. The disparities are then refined with correlation using

Gate Recurrent Unit (GRU). Note that ARM has the same set of parameters and is used repeatedly in each stage.

transfer the model to target datasets gently. Shen et al. [35]

proposed CFNet, a cascaded and fused cost volume based

network to deal with the domain difference, illustrating the

potential of cascaded architecture for robust vision tasks.

However, it still suffers from a lack of flexibility for model-

ing sampling in complicated structures.

Real-time Stereo Matching. Several recent works

[19, 11, 3, 42, 44] focus on real-time performance while

maintaining satisfactory accuracy. StereoNet [19] intro-

duced an edge-preserving refinement network to leverage

left images to recover high frequency details towards in-

formation loss at low resolution. DeepPruner [11] built

a sparse cost volume by PatchMatch [3], and pruned the

search space based on the predicted disparities, which were

further refined under the guidance of image features. Xu

et al. [45] proposed AANet, designed a sparse points based

cost aggregation method and replaced the commonly used

3D convolutions to achieve fast inference speed. Xu et al.
[44] introduced Fast-ACVNet, which adopted an attention

mechanism to suppress redundant information and enhance

matching-related information in the concatenation volume,

which is quite efficient. In this paper, we also introduce a

real-time stereo matching network based on the proposed

network architecture while maintaining accuracy.

3. Methods
3.1. Overall Framework

Inspired by [35], a cascaded network is developed in our

method to predict disparity from a low resolution to a high

resolution. This way, a larger receptive field can be obtained

to better learn the global structural representations. Pre-

cisely, as shown in Fig. 2, we follow the framework in [21]

and design a much simplified cascaded backbone, which is

composed of only two basic components without any ag-

gregation or attention mechanism.

Given an input image pair of IL and IR where IL, IR ∈
R

H×W×3, two share-weighted feature extraction modules

(FEM) are employed to pyramidally extract multi-scale

features {Fs
L} , {Fs

R} ∈ R
sH×sW×C . Note that s ∈

{1/4, 1/8, 1/16} represents the set of down-sampled scales

and C is the channel number. Then, the multi-scale fea-

tures pass through 3 cascaded stages of the proposed adap-

tive recurrent module (ARM), which is composed of an un-

certainty guided adaptive correlation (UGAC) module and a

gate recurrent unit (GRU) [8]. In the ARM, the cost volume

is calculated via UGAC and then input into GRU, for itera-

tively refining the disparity prediction results. To simultane-

ously enhance the robustness and preserve the details of the

input, the final disparity prediction of ARM in each stage is

adopted as the initial disparity of the GRU in the next stage.

Note that the ARMs used in 3 cascaded stages share the

same parameters, which shows a high potential to imple-

ment a lightweight model. Finally, the predicted disparity

at the last stage is up-sampled to the original resolution by

convex up-sampling [39].

3.2. Uncertainty Guided Adaptive Correlation

As shown in Fig. 3, the UGAC module consists of a

content-aware warping layer, a correlation layer, and uncer-

tainty estimation. For the n-th iteration of ARM, the right

features {Fs
R} are first warped via the content-aware warp-

ing layer, considering the prediction disparity dn−1 and the

uncertainty map Un−1 at the (n− 1)-th iteration. Then, the

cost volume Vn between the left features and the warped

right features is calculated by the correlation layer. Given

the cost volume Vn, the uncertainty map Un is estimated

and fed to the UGAC of the next iteration. Note that Vn is

used as the input of GRU.

Correlation Layer. In the correlation layer, the cost vol-

ume is calculated on the top of local correlation mechanism.

Specifically, the cost volume Vn at position p can be formu-
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Figure 3: Left: The architecture of our uncertainty guided adaptive correlation (UGAC), is composed of a content-aware

warping layer, correlation layer, and uncertainty estimation. Right: The workflow of the content-aware warping layer, where

DCN represents deformable convolution network, CNN is three 3×3 convolutions with leakyReLU following each layer. For

simplicity, we take the UGAC of the n-th iteration as the example.

lated as follows,

Vn(p) =
∑

r∈R

〈FL(p) · FR(p+ r)〉 , (1)

where R denotes the search range of the current pixel

in specific directions, and 〈·〉 represents the channel-wise

product operation.

Content-aware Warping Layer. In existing methods

based on PWCNet [37], the warping layer warps right fea-

tures FR towards the left features FL via current disparity

dn−1 to obtain the warped right features F̂R, formulated as

follows:

F̂R(p) =
∑

k∈K

ck · FR (p+ dn−1(p+ k)) , (2)

where K denotes the sampling point area centered on pixel

p, and dn−1(p+ k) represents the corresponding disparity

at the position of p + k. Besides, ck is the weight for the

k-th point, usually set as a constant.

However, the above equation neglects the diversity in the

warping process and adopts a content-agnostic treatment for

all cases. It is thereby tough to implement “perfect” warp-

ing, leading to distorted and noisy features due to the mis-

matching caused by occlusions, non-texture and repetitive-

texture areas. We thus calculate ck in a content-specific

manner, denoted as wk (p). Moreover, considering the dif-

ferent disparity ranges and distributions in different cases, it

is reasonable to adopt different sampling ranges to alleviate

the domain-sensitive problem. To this end, we introduce

an extra offset o(p, k) to expand the sampling range and

achieve learnable warping formulated as follows:

F̂R(p) =
∑

k∈K

wk (p) ·FR (p+ dn−1(p+ k) + o(p, k)) ,

(3)

which is achieved with group-wise deformable convolutions

[9] in practice.

Uncertainty Estimation. The ambiguity caused by

traditional non-parametric warping usually accounts for a

small proportion of each sample. Therefore, we expand

the sampling range of ill-posed pixels and conduct adap-

tive pixel-level adjustments. Previous works [35, 18] have

observed that ill-posed areas, texture-less regions, and oc-

clusions tend to be multi-modal distributions with a high

estimation error rate. Motivated by this, we introduce a

variance-based uncertainty estimation to guide the offset

o(p, k), and further balance the disparity distributions of

different datasets, which is formulated as follows,

Un = 1− σ(
∑(

V̄n − Vn

)2
), (4)

o = Un · CNN[FL,S(FR,dn−1)], (5)

where Vn is cost volume and S represents bilinear sampler,

V̄n represents the average value of Vn, σ(·) is the sigmoid

function. Through this, the network can leverage the prior

knowledge of disparity prediction at the current iteration to

adaptively capture more possible sampling objects.

Comparison with Existing Adaptive Mechanisms. It

is worth noting that other works [45, 21] also leverage the

idea of adaptive mechanisms. Here, we emphasize the crit-

ical difference in our method. In previous typical methods,

some works [17, 16] calculate adaptive weights for corre-

lation or adaptively control the window size in correlation.

In AANet [45], the adaptive aggregation is conducted after

warping, where a set of deformable convolutions are de-

veloped to replace the original convolutions. However, the

cost volume is still built via traditional warping operation in

Eq. 2, which still embeds the error during the alignment of

two features. Therefore, it is necessary to refine the features

in the warping process. In CREStereo [21], the cost volume
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Table 1: Ablation study of the proposed method (Lite-CREStereo++) on Middlebury, KITTI2015, and ETH3D dataset.

The network component is evaluated individually in each section of the table and the approach used in our final model is

underlined. UE: uncertainty estimation. Inference time is measured on KITTI by V100 GPU.

Experiment Method
Middlebury ETH3D KITTI15

Params.(M) Runtime(ms)
Bad 2.0 AvgErr Bad 1.0 AvgErr D1-all

GRU Kernel Size

3× 3 14.21 2.78 2.30 0.27 2.43 0.514 47.9
1× 5 12.95 2.61 2.34 0.27 2.42 0.523 53.1

1× 15 12.02 2.46 2.10 0.25 2.38 0.584 54.9

1× 5 + 1× 15 11.86 2.46 1.98 0.26 2.36 0.595 56.2

1× 5 + 1× 15 + 1× 31 11.98 2.55 2.00 0.26 2.39 0.745 63.3

Warping

Bilinear 14.79 2.80 2.31 0.27 2.55 0.527 41.0
Content-aware 12.96 2.46 2.02 0.26 2.47 0.595 55.8

UE + Content-aware 11.86 2.46 1.98 0.26 2.36 0.595 56.2

Uncertainty Estimation

Variance + Tanh 11.98 2.46 2.01 0.25 2.42 0.595 56.2
Variance + Sigmoid 11.86 2.46 1.98 0.26 2.36 0.595 56.2

Error-aware + Sigmoid 12.40 2.49 2.05 0.25 2.40 0.595 57.1

is calculated with an adaptive position based on the local

correlation. The adaptive mechanism is applied to change

the matching window shape. It is ineffective to adapt the

position only on the warped features. Compared with these

approaches, our method conducts effective adaptation dur-

ing warping before building the cost volume, alleviating

the blur and inaccurate problems caused by occlusions and

texture-less areas from the source. We visualize the differ-

ence between the traditional warping and ours, as shown in

Fig. 4. In addition, we make full use of the prior information

to produce an uncertainty map, that the adaptive mechanism

is guided by a variance-based uncertainty estimation instead

of directly learned by convolutions, which makes the adap-

tive process more reasonable and stable.

3.3. Lite-CREStereo++

We also design a lightweight version of the proposed

model, namely Lite-CREStereo++, which adopts the same

backbone but with fewer channels and iteration numbers.

Specifically, the channel number C is reduced to 64 from

256 in the feature extraction module, which is also reduced

correspondingly in the following ARM. To achieve real-

time disparity prediction without sacrificing too much accu-

racy, we introduce an extra convolution layer with a super

kernel size 1 × 15 in GRU, which improves the accuracy

with little extra cost. The effectiveness of the lightweight

model is verified in Sec. 4.3. Besides, different from the

slow-fast setting in RaftStereo [24], we increase the itera-

tion numbers of ARM from small resolution to large res-

olution instead. In detail, the iteration numbers are set as

2, 4, and 6, respectively. In this way, we achieve a compe-

tent balance between accuracy and speed.

3.4. Loss Function

We supervise the optimization with l1 distance between

the ground truth disparities and the predictions to train the

model in an end-to-end manner. All disparity predictions in

all GRU cells are supervised with ground truth in training,

while only the last disparity prediction is obtained as the

final output. The total loss is formulated as follows:

L =
∑

s

n∑

i=1

γn−i||dgt − S(ds
i )||1, (6)

where the exponentially weight γ is set to 0.8, and S(ds
i )

represents the predictions after sampler S .

4. Experiments
More details about datasets, implementation, and evalu-

ation can be seen in the supplementary materials.

4.1. Datasets

For training, several public datasets are used, includ-

ing Middlebury [30], ETH3D [33], KITTI [27], SceneFlow

[26], Sintel [4], Falling Things [40], InStereo2K [2], Carla

[10], and the dataset proposed in [21]. For evaluation, fol-

lowing the previous methods, we adopt the commonly used

benchmarks, including Middlebury 2014 [30] (full resolu-

tion), ETH3D [33], and KITTI 2012/2015 [27].

4.2. Implementation Details

We conduct a two-stage training strategy to train the

proposed method. First, during the pre-training process,

all the datasets above are used except KITTI. Since the

ground truth of KITTI is sparse, with more than 1/4 pix-

els masked, adding KITTI at an early stage will reduce the
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Table 2: Robustness comparison among ETH3D, Middlebury, and KITTI2015 testsets with existing SOTA methods in RVC.

All methods are tested on three datasets with a single fixed model. The overall rank is obtained by Schulze Proportional

Ranking [34] to combine multiple rankings into one. Our approach achieves the best overall performance.

Method
Middlebury KITTI2015 ETH3D Overall

bad 1.0 bad 2.0 AvgErr Rank D1-bg D1-fg D1-all Rank bad 1.0 bad 2.0 AvgErr Rank Rank

AANet RVC [45] 42.9 31.8 12.8 10 2.23 4.89 2.67 10 5.41 1.95 0.33 10 12

CVANet RVC 58.5 38.5 8.64 11 1.74 4.98 2.28 9 4.68 1.37 0.34 9 11

GANet RVC [49] 43.1 24.9 15.8 11 1.88 4.58 2.33 7 6.97 1.25 0.45 10 10

HSMNet RVC [46] 31.2 16.5 3.44 6 2.74 8.73 3.74 12 4.40 1.51 0.28 8 9

MaskLacGwcNet RVC [15] 31.3 15.8 13.5 8 1.65 3.68 1.99 5 6.42 1.88 0.38 12 8

GEStereo RVC 22.8 14.1 3.78 3 2.29 4.79 2.71 11 3.95 1.25 0.29 6 7

CroCo RVC 32.9 19.7 5.14 9 2.04 3.75 2.33 7 1.54 0.50 0.21 2 6

NLCANet V2 RVC [29] 29.4 16.4 5.60 7 1.51 3.97 1.92 3 4.11 1.20 0.29 6 5

CFNet RVC [35] 26.2 16.1 5.07 5 1.65 3.53 1.96 3 3.70 0.97 0.26 5 4

iRaftStereo RVC [24] 24.0 13.3 2.90 2 1.88 3.03 2.07 6 1.88 0.55 0.17 3 3

raft+ RVC [39] 22.6 14.4 3.86 4 1.60 2.98 1.83 1 2.18 0.71 0.21 4 2

CREStereo++ RVC (ours) 16.5 9.46 2.20 1 1.55 3.53 1.88 2 1.70 0.37 0.16 1 1

(a) left image (b) disparity image 

(c) traditional warping (d) our warping

Figure 4: Visual comparison between traditional warping

and ours. The feature warped by traditional method has ob-

viously blurry edges and distortions, while warped by our

method has sharper details, as indicated by the red arrows.

overall strength of supervised training, thereby weakening

the network’s ability of precise matching. Thus, we remove

KITTI from the trainset at the pre-training stage. Due to

the different quantities of each dataset, we have balanced

their proportions in advance. The number of iterations is

set to 150k with a learning rate of 4 × 10−4 using Adam

[20] optimizer with β1 = 0.9 and β2 = 0.999. To balance

input data from various aspect ratios, the group of stereo

images and disparity are first resized to a similar size and

then cropped to 384×512. Second, in the fine-tuning stage,

KITTI 2012/2015 is reintroduced for another 50k iterations

with a much lower learning rate 1× 10−4 after model con-

vergence, and its proportion is adjusted to half of the whole

training set. Considering the aspect ratio in KITTI is much

larger than other datasets (> 3), during the fine-tuning stage,

the input size is set to 256×512 for CREStereo++ RVC and

384× 1248 for Lite-CREStereo++.

4.3. Ablation Study

As shown in Table 1, we study a specific component of

our approach in isolation and underline the settings used in

final model. Experiments are conducted on the lite model.

GRU Kernel Size. We explore the effect of different ker-

nel sizes in GRU. Specifically, the kernel size is increased

from 1× 5 to 1× 31, growing 2× each time with different

combination ways. The commonly used 3×3 kernel is also

tested. From the table “GRU Kernel Size”, we can see the

combination of 1×5 and 1×15 achieves the best overall per-

formance. Although it takes 8ms longer time consumption

than 3×3 kernel, it achieves 2.35 and 0.32 improvement on

Middlebury and ETH3D, respectively.

Warping Types. In order to compare the performance

of different types of warping, we replace our warping lay-

ers with other forms. Specifically, “UE” represents uncer-

tainty estimation and “Content-aware” denotes the warping

operation in Eq. 3. As shown in the table, the proposed

uncertainty guided adaptive warping achieves the best per-

formance with an acceptable computation complexity. Be-

sides, compared with the traditional bilinear warping opera-

tion, learnable warping without uncertainty still has signif-

icant advantages, which illustrates the effectiveness of the

proposed uncertainty estimation and deformable warping.

Visualization of the difference between traditional warping

and ours can be seen in Fig. 4. Compared to traditional

warping, our method has obviously sharper feature details.

The original method causes the warping of hair and leg ar-

eas to be misled by the background.

Uncertainty Estimation. We also explore the effect of

different uncertainty estimation approaches, as shown in

the table “Uncertainty Estimation”. Error map means the

guided map for deformable warping is calculated directly
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Table 3: Cross-domain robustness evaluation on ETH3D,

Middlebury, and KITTI2012/2015 trainsets. All methods

are only trained on the Scene Flow dataset and evaluated on

each dataset with fixed parameters.

Method
Middlebury KITTI2012 KITTI2015 ETH3D

bad 2.0 D1-all D1-all bad 1.0

PSMNet [5] 39.5 15.1 16.3 23.8

GWCNet [15] 37.4 12.0 12.2 11.0

CasStereo [14] 40.6 11.8 11.9 7.8

GANet [49] 32.2 10.1 11.7 14.1

DSMNet [50] 21.8 6.2 6.5 6.2

LEAStereo [7] 31.3 9.0 9.4 9.0

CFNet [35] 28.2 4.7 5.8 5.8

RAFT-Stereo [24] 21.6 4.7 5.5 7.8

CREStereo [21] 15.3 6.7 6.7 5.5

CREStereo++(ours) 14.8 4.7 5.2 4.4

by the difference between left image and warped right im-

age, which has limited improvements. Variance-based ap-

proach has better performance. It can also be observed that

variance with sigmoid is slightly better than with tanh.

4.4. Robustness Evaluation

Robustness measures the generalization ability of a

model using a specific set of parameters, which is of great

significance in practical applications. Many existing meth-

ods are limited to a specific area and only make steady

progress on each individual dataset, but cannot obtain com-

parable results on multiple datasets. To this end, we conduct

robustness experiments. More experimental results can be

seen in supplementary materials.

Domain Transfer Evaluation. Table. 2 displays the re-

sults of our method and existing SOTA methods in stereo

matching of robust vision challenge (RVC). We conduct

comparison experiments following previous RVC settings

in CFNet[35]. In RVC, all methods are evaluated on three

real-world public benchmarks with a single fixed model,

that has the same model parameters without fine-tuning.

As can be seen, raft+ RVC achieves 1st on KITTI2015

among all the methods. However, it fails to obtain com-

parable results on the other two datasets (4th on ETH3D

and Middlebury, respectively), which are far worse than

the other top three methods. Similar situations occur in

iRaftStereo RVC, which ranks 2nd on Middlebury and 3rd

ETH3D, but ranks 6th on KITTI2015. In contrast, our

method shows strong robustness ability and performs well

on all three datasets. We get 1st place on ETH3D and Mid-

dlebury, outperforming other methods with a large margin,

and 2nd on KITTI2015, achieving the best overall perfor-

mance. Visual comparisons are shown in Fig. 1. In the

ETH3D samples, it can be seen that other methods have

noticeable disparity distortion at the location of the water

(a) Left image (b) Ours

(c) CREStereo (d) RaftStereo

(e) LEAStereo (f) CFNet

Figure 5: Visual comparisons on ETH3D train sets with ex-

isting SOTA methods. All models are trained only on Scene

Flow. Zoom in for a best view.

(a) Left image (b) Ours

(c) CREStereo (d) RaftStereo

(e) LEAStereo (f) CFNet

Figure 6: Visual comparisons on KITTI2015 train sets with

existing SOTA methods. All models are trained only on

Scene Flow. Zoom in for a best view.

pipe (yellow box in the figure). In comparison, our method

produces sharper object boundaries and better preserves the

overall structures. Similar phenomena exist in Middlebury

and KITTI2015.

Cross Domain Evaluation. Following the experiments

in [35], we conduct cross-domain generalization evaluation

to further emphasize the effectiveness of our method. As

shown in Table. 3, all methods are only trained on synthetic

dataset Scene Flow and evaluated on four real datasets,

ETH3D, Middlebury, and KITTI2012/2015 trainsets, with

fixed parameters. Our method still achieves the best perfor-

mance on all four datasets, also surpassing the robust meth-

ods DSMNet [50] and CFNet [35]. Visual comparisons on

ETH3D and KITTI2015 trainsets are shown in Fig. 5 and

Fig. 6 respectively.
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Table 4: Quantitative evaluation of real-time stereo matching on the online test sets of KITTI 2012 and KITTI 2015. We

adopt other SOTA real-time approaches to illustrate the efficiency of the proposed Lite-CREStereo++.

Method
KITTI 2012 KITTI 2015

Params.(M) Runtime(ms)
3-noc 3-all 4-noc 4-all EPE-noc EPE-all D1-bg D1-fg D1-all

DispNetC [26] 4.11 4.65 2.77 3.20 0.9 1.0 4.32 4.41 4.34 42.32 60

DeepPrunerFast [11] – – – – – – 2.32 3.91 2.59 7.39 50

AANet [45] 1.91 2.42 1.46 1.87 0.5 0.6 1.99 5.39 2.55 3.93 60

DecNet [47] – – – – – – 2.07 3.87 2.37 – 50

BGNet [42] 1.77 2.15 – – 0.6 0.6 2.07 4.74 2.51 2.97 44

BGNet+ [42] 1.62 2.03 1.16 1.48 0.5 0.6 1.81 4.09 2.19 5.31 48

CoEx [1] 1.55 1.93 1.15 1.42 0.5 0.5 1.79 3.82 2.13 2.70 33

HITNet [38] 1.41 1.89 1.14 1.53 0.4 0.5 1.74 3.20 1.98 0.63 31
Fast-ACVNet [44] 1.68 2.13 1.23 1.56 0.5 0.6 1.82 3.93 2.17 3.08 45

Lite-CREStereo++ (ours) 1.43 1.82 1.12 1.44 0.5 0.5 1.79 3.53 2.08 0.60 56
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Figure 7: (a) Iterations vs. Bad 2.0 on the Middlebury dataset. (b) 3-all errors vs. Parameters on the KITTI 2012 leaderboard.

(c) D1-all error vs. Parameters on the KITTI 2015 leaderboard. Our method outperforms other SOTA methods.

Table 5: Cross-domain generalization evaluation for real-

time methods. All methods are only trained on SceneFlow.

Method
Middlebury KITTI2012 KITTI2015 ETH3D

bad 2.0 D1-all D1-all bad 1.0

AANet [45] 43.8 11.3 12.6 11.4

AANet+ [45] 39.4 8.8 9.0 13.1

BGNet [42] 30.4 6.2 6.6 10.1

HITNet [38] 28.9 5.9 6.5 10.6

Lite-CREStereo++ 27.5 6.0 7.0 9.9

4.5. Efficiency Evaluation

Since more iteration numbers lead to increased time

costs, we analyze the relationship between iteration num-

bers and performance. Fig. 7 (a) shows the experiment con-

ducted with different recurrent methods [21, 24] under sim-

ilar time costs at a certain iteration. The performance of our

method with 6 iterations can outperform other 15 iterations

methods, which do not require a large iteration time.

As shown in Table. 4, we conduct experiments for

the proposed lite version method (Lite-CREStereo++) on

KITTI2012 and KITTI 2015 online benchmarks. Un-

der similar inference speed to real-time methods, Lite-

CREStereo++ achieves SOTA results among all published

real-time methods on KITTI2012 benchmark. Meanwhile,

it outperforms most published methods on KITTI2015

benchmark at the time of writing. We also note that most ex-

isting methods have 4× more parameters than ours, and our

method performs much better than these methods, as shown

in Fig. 7 (b) and (c). We also conduct cross-domain gen-

eralization evaluation for existing real-time methods. From

Table. 5 we can see our method still keeps a high robustness

ability, outperforming other methods.

5. Conclusion

In this paper, we show that a content-aware warping

module based on uncertainty estimation improves the per-

formance of stereo matching, especially on the aspect of

robustness. Combined with cascaded architecture and re-

current mechanism, we propose CREStereo++ to recover

disparity for robust stereo matching. Moreover, we design a

lightweight model with real-time performance. Experimen-

tal results show that our approach performs well on various

datasets, and has generic applicability. The future direction

would be extending our method to other warping-based cost

volume tasks, such as multi-view stereo and optical flow.
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