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Abstract

A key challenge in neural 3D scene reconstruction from
monocular images is to fuse features back projected from
various views without any depth or occlusion informa-
tion. We address this by leveraging monocular depth pri-
ors, which effectively guide the fusion to improve sur-
face prediction and skip over irrelevant, ambiguous, or
occluded features. Furthermore, we revisit the average-
based fusion used by most neural 3D reconstruction meth-
ods and propose two alternatives, a variance-based and a
cross-attention-based fusion module, that are more efficient
and effective than the average-based and self-attention-
based counterparts. Compared to the NeuralRecon base-
line, the proposed DG-Recon models significantly improve
the reconstruction quality and completeness while remain-
ing in real-time. Our method achieves state-of-the-art on-
line reconstruction results on the ScanNet dataset and is
on par with the current best offline method, which repeat-
edly accesses keyframes from the entire video sequence.
Our ScanNet-trained model also generalizes robustly to the
challenging 7-Scenes dataset and a subset of SUN3D con-
taining scenes as big as an entire floor.

1. Introduction
Reconstruction of 3D scenes is a fundamental problem

in 3D perception of environments, constituting a crucial
component of various application domains ranging from
robotics and autonomous vehicles to augmented and vir-
tual reality. For instance, in the augmented/virtual reality
use case, not only the accuracy of the reconstructed meshes
but also the runtime efficiency is important in enabling real-
time safe user navigation, successful occlusion rendering,
and plausible physical simulations on edge devices.

Most traditional 3D scene reconstruction pipelines con-
sist of dense depth prediction and a multi-view depth in-
tegration process [31, 6] to create truncated signed dis-
tance function (TSDF) as a geometrical representation that
enables mesh extraction using the marching cubes algo-
rithm [26]. While such processes are simple and intuitive,
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Figure 1. Depth-guided back projection and fusion. Each grid
on the left figure represents a digitized 2D world. The orange
rounded rectangle represents a table. The blue circle sketches a
chair and the grey rectangle indicates the wall. Non-white cells
picture back-projected features from K different camera views
O(1), . . . ,O(K). A cell with a red cross in it indicates an erro-
neous back projection. The depth priors, denoted as the white sur-
face curve in the middle row, introduce geometry awareness to the
back projection and cross-view fusion. Objects, e.g. chairs and the
monitor, become sharper, more complete, and better separated.

the non-learnable fusion part is unable to effectively in-
corporate higher-level inductive biases to handle inconsis-
tent and/or noisy depth estimations from different views.
On the other hand, a newly emerging category of meth-
ods [30, 42, 1, 41] aims at learning to directly predict the
TSDF by back projecting representations from posed im-
ages and then fusing them into volumetric representations
of the underlying scenes. These neural methods are in prac-
tice either found to be suffering from lower accuracy and
incomplete geometries [42], or too costly for real-world and
real-time use cases on edge-devices [30, 1, 41].

Such undesirable properties can be attributed to bottle-
necks in important components, i.e. feature back projection,
feature fusion, and occupancy prediction. More specifi-
cally, existing neural reconstruction methods back project
image features all along the rays into the volumetric repre-
sentations resulting in 1) non-sparse representations and 2)
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potential erroneous feature association on the occluded ob-
jects. Besides, the feature fusion is either based on simple
averaging [42, 30] that is ineffective in properly modeling
the multi-view consensus or is based on the self-attention
mechanism [1] that is inefficient as it scales quadratically
with the number of views.

In this work, we build our method upon the most scal-
able algorithm of the 3D volumetric reconstruction cate-
gory, NeuralRecon [42], and revisit feature back projection
and fusion with the help of depth priors. The depth-guided
back projection reduces erroneous feature associations with
occluded objects and introduces sparse representations even
before fusion, as illustrated in Figure 1. Early availability of
sparsity enables the choice of more expressive representa-
tion aggregation schemes without significant computational
costs. The proposed variance- and cross-attention-based fu-
sions are both more effective than the average-based fusion
and more efficient than the self-attention-based fusion. Fi-
nally, the depth prior also helps improve the reconstruction
completeness over the baseline [42] by replacing the overfit-
ted occupancy prediction with the depth-derived occupancy
mapping. To summarize, our major contributions are:

• We propose to integrate depth priors to the feature
back projection and occupancy prediction component
in 3D volumetric scene reconstruction methods, which
improves cross-view feature association and creates
sparse volumetric representation before fusion.

• We formulate and propose two simple and scalable sur-
rogate feature fusion schemes, the variance and cross-
attention, that are shown to be effective and efficient as
compared to the formulations commonly used.

• Our comprehensive empirical evaluations on Scan-
Net [5], 7-Scenes [17] and SUN3D [50] show that
our proposed method is the new state-of-the-art in
3D scene reconstruction considering the accuracy-
efficiency tradeoff.

2. Related Work
Monocular depth estimation. The pioneering work of

Saxena et al. [35] estimates dense depth from a single in-
put image using local feature extractors and Markov ran-
dom fields. Subsequent works [12, 11, 25, 24, 14, 19] lever-
age convolutional neural networks (CNN) to substantially
increase the accuracy. More recently, [32] adapts the vision
transformer (ViT) architecture [8] to generic dense predic-
tion tasks and [55] extends it to unsupervised depth estima-
tion. However, despite the superior prediction quality, [49]
suggests that heavy ViT backbones are not practical for
real-time applications and instead opt for a convolutional
encoder-decoder network. Since real-time performance is
essential to our work, we adopt the convolutional backbone.

Multi-View Stereo networks. Multi-View Stereo
(MVS) methods estimate depth for the reference frame us-
ing one or more source viewpoints. Recent works [44, 22,
9, 23] extend the classical MVS methods [39, 15, 38] with
the learning-based techniques to construct 3D cost volumes
from multi-view representations and to regress the dense
depth map. [36] proposes to reduce the depth dimension
of the 3D cost volumes with parallel multi-layer percep-
tron (MLP) which allows integrating multi-view informa-
tion without 3D convolution. Overall, deep MVS methods
produce more accurate and consistent depth than monocular
depth models. However, depth observations are sensitive to
occlusion and non-learnable TSDF fusion methods [31, 56]
lack the reasoning capability in 3D which is crucial to com-
plete the occluded missing geometry.

VolumeFusion [4] combines the deep MVS method with
volumetric TSDF prediction via pose-invariant 3D Conv.
[33] iteratively refines 2D depth and 3D feature clouds
which improves the reconstruction quality but takes tremen-
dous time due to its cyclic refinement nature. Both methods
require the entire sequence to be available before processing
and are not feasible for online reconstruction in real-time.

Neural 3D Reconstruction. Atlas [30] proposes direct
TSDF volume prediction from back-projected image fea-
tures with a 3D CNN. But its volumetric prediction on the
entire scene limits update frequency and scalability to large
scenes. NeuralRecon [42] addresses the efficiency and scal-
ability issue by adopting a sparse 3D CNN for TSDF pre-
diction only in local fragments spanning the view frustum
of a few neighboring frames. The local TSDF prediction
is integrated into the global volume by direct replacement.
Our method is built on top of the NeuralRecon [42] and
addresses its issue of incomplete reconstruction and over-
smoothed object shapes with the help of depth guidance and
improved fusion mechanisms.

TransformerFusion [1] and VoRTX [41] propose to uti-
lize the attention mechanism for multi-view feature fusion.
But their self-attention-based fusion modules scale quadrat-
ically with the number of views. The inefficiency of self-
attention causes their methods to either not meet the real-
time requirement [1] or even execute offline only [41]. Our
DG-Recon, on the other hand, runs in real-time and makes
updates every 9 frames thanks to the linear scalability of the
variance- and cross-attention-based fusion modules.

Online depth fusion methods [46, 47] deliver frequent
3D reconstruction in real-time but require dedicated depth
sensors for accurate depth information. Our method how-
ever relies only on a rough estimation of the depth from
monocular depth models.

Neural implicit representation. NeRF [28] is another
approach toward high-fidelity 3D scene representation. It
overfits an MLP to predict the density and radiance given
a 3D position and the viewing angle. High-fidelity novel
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Figure 2. DG-Recon overview. Given K consecutive keyframes, DG-Recon first estimates depth and extracts representations from RGB
images. The extracted features are then back projected to a sparse volume using the estimated depth prior and camera pose. Given previous
3D features, the cross-attention-based fusion module recursively attends to the newly extracted features and updates the fused features.
This depth-guided feature fusion operates at three different scales and provides the inputs to the multi-scale local TSDF prediction based
on sparse 3D Conv and GRU fusion similar to NeuralRecon [42] for global TSDF update. iX and iq denote features on the i-th scale.

views can be generated from this neural implicit represen-
tation based on volume rendering. Recent works introduced
similar depth priors as ours to NeRF for better view syn-
thesis [7, 34] and for better depth estimation [48] purposes
but not for better 3D reconstruction. [45, 52] replaced the
density prediction in NeRF with signed distance function
(SDF) which improves the NeRF-based surface reconstruc-
tion. ManhattanSDF [20] further enables scene reconstruc-
tion of an entire room by jointly optimizing the rendered
geometry and semantics. However, these methods require
overfitting to the target scene and do not generalize to novel
scenes. [2, 54] improve generalization by conditioning the
MLP additionally on the learnable warped representations
but their methods focus on view synthesis rather than recon-
struction. Our method, on the other hand, can reconstruct
unseen environments without any fine-tuning.

Concurrent works. Recent works also identify the
feature back projection issue in parallel and they address
it in various ways. Inspired by MVS methods, CVRe-
con [13] proposes to integrate view-dependent information
from cost volumes. FineRecon [40] instead employs MVS
depth [36] directly. Both works build upon the offline
method VoRTX [41] which is not suitable for real-time in-
cremental reconstruction. Online method, VisFusion [16],
tackles the unprojection ambiguity with pair-wise feature
similarity which scales quadratically with the number of
views while ours remains linear. Zuo et al. [58] rely on
compute-heavy MVS networks for depth priors while DG-
Recon utilizes a lightweight monocular depth network.

3. Method

Given a stream of keyframes {I(k) ∈ RH×W×3}Nk=1,
selected from a monocular video sequence, and the corre-

sponding camera poses {T(k) ∈ SE(3)}Nk=1 obtained from
an online 6DoF localization system [6, 37], our DG-Recon
incrementally updates the sparse 3D features and sparse
TSDF representing surfaces in a scene. Following [42], the
incremental updates are kept local to the frustum of 9 con-
secutive keyframes to deal with large scenes. An overview
of DG-Recon is demonstrated in Figure 2.

3.1. Depth-guided back projection and fusion

DG-Recon incorporates the depth priors estimated from
monocular images 1) to guide the feature back projection
from perspective view to 3D space, 2) to serve the near-
surface occupancy probability modeling for 3D volumes
sparsification, and 3) to feed the cross-view fusion module
with auxiliary features. This section describes these three
components in separate paragraphs.

Feature back projection. Given a predicted depth map
for the k-th keyframe D(k) ∈ RH×W , DG-Recon back-
projects 2D features F(k) ∈ RH×W×C along the rays only
to those voxels within a fixed distance ∆ from the corre-
sponding estimated depth surface, as shown in Figure 1,

f(k)ijk =

{
F(k)
uv ,

∣∣∣z(k)ijk − D(k)
uv

∣∣∣ < ∆

0, otherwise
(1)

where ijk denotes a voxel in 3D space, uv the correspond-
ing 2D pixel and z the depth projected from voxel ijk.

The depth-guided back projection not only prevents pop-
ulating voxels with irrelevant 2D features, e.g. when an ob-
ject is occluding another object but also introduces the spar-
sity earlier on in the pipeline. The availability of sparsity
information before fusion enables more compute-heavy fu-
sion modules without sacrificing much overall efficiency.
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Occupancy mapping. The depth prior is also utilized in
the 3D occupancy mapping as a replacement of the occu-
pancy prediction heads in NeuralRecon [42]. More specifi-
cally, voxel’s activation for TSDF prediction is derived from
the depth priors using occupancy grid mapping [29]. As-
suming a static world and independent voxels, the probabil-
ity of a voxel being occupied, i.e. close to a surface, given
depth observation from k different views p(mijk|z(1:k)ijk ) ∈
[0, 1] is updated recursively by

l(mijk|z(1:k)ijk ) = l(mijk|z(1:k−1)
ijk ) + l(mijk|z(k)ijk), (2)

where the log-odds notation l(·) = log p(·)
1−p(·) is introduced

for better efficiency and computation stability. The first
term in Eq. 2 is the recursive term and the second term
is derived from the occupancy probability given one depth
estimation modeled by

p(mijk|z(k)ijk) =
N (z

(k)
ijk|µ, σ2)

N (µ|µ, σ2)
, (3)

where the Gaussian distribution N centers at the corre-
sponding monocular depth estimation µ = D(k)

uv with a fixed
standard deviation σ = ∆, the back projection margin.

Auxiliary geometry feature. In addition to the learned
back-projected features, DG-Recon introduces geometrical
representation as auxiliary inputs to the multi-view fusion
module. Experiments in Section 5.4 show that the most ef-
fective view-dependent geometry features are the depth off-
set d ∈ R and ray direction r ∈ R3:

d
(k)
ijk = z

(k)
ijk −D

(k)
uv ,

r
(k)
ijk =

pijk−o(k)

∥pijk−o(k)∥ ,
(4)

where pijk is the world coordinate of the voxel ijk and
o(k) is the camera center of the k-th keyframe. Concate-
nating these view-dependent geometrical representations to
the back-projected 2D features x(k)

ijk =
[
f
(k)
ijk d

(k)
ijk r

(k)
ijk

]
,

enables the fusion model to better weigh the importance of
features from different views. For simplicity, we omit the
ijk subscription for the rest of the paper.

3.2. Revisiting multi-view feature fusion

Averaging [42, 30] back-projected features cross-views
is efficient but sometimes leads to over-smoothed geometry.
Self-attention-based [1, 41] fusion is more expressive but
introduces significant computational overhead. DG-Recon
provides two alternative fusion options that are both effi-
cient and effective.

Variance-based fusion. Given features extracted from
K different views, X =

[
x(1) . . . x(K)

]
, the variance

module computes the estimated variance of the multi-view

Cross-attention
        O(K)
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Figure 3. Comparison between self-attention-based and cross-
attention-based fusion of multi-view features. x(1), . . . , x(K)

are the back-projected features from K views. v is the input/output
token for the self-attention module and q denotes the recursively
updated 3D feature for the cross-attention-based fusion.

features as the fused 3D feature.

v = var(x(1), . . . , x(K)) (5)

The variance propagates information about view differences
which better represents the geometry than average.

Cross-attention-based fusion. For even more expres-
siveness and less computational cost than [1, 41], DG-
Recon offers the cross-attention-based fusion. It exploits
not only features extracted from K recent views but also
the previous fusion outputs. The multi-head attention mod-
ule [43] is fed with the query Q, key K and value V tokens
defined by:

Qt = qt−1 ∈ Rd×1,
Kt,Vt = X ∈ Rd×K ,

(6)

where qt−1 is the previously fused features for a 3D voxel,
X is the stack of newly extracted features from K recent
views at timestamp t, and d is the feature dimension. As
shown in Figure 3, the recursively updated 3D feature for a
voxel is computed by 4 multi-head cross-attention layers:

qt = MultiHeadAttention×4(qt−1,X,X), (7)

which again becomes the query token for the next feature
update step at t + 1. If a voxel has never been observed
before, a learnable initial query vector q0 is used instead.

Because the time and space complexity of the cross-
attention-based fusion module grows linearly with the num-
ber of views O(K), it is more efficient than O(K2) self-
attention-based fusion [1], as shown in the supplemen-
tary Section 4.2, while being more effective than the non-
learnable average or variance-based fusion as backed by the
experiments in Section 5.4.

3.3. Depth prior from monocular depth estimation

The depth prior D for each keyframe may come from
various sources, e.g. monocular or multi-view depth esti-
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mation or even dedicated depth sensors. For a better trade-
off between accuracy, feasibility, and computational cost,
we adopt the monocular depth estimation approach with a
network consisting of a ResNet34 [21] encoder and the con-
volutional decoder from [32] as proposed in [49]. Due to its
monocular nature, this model is unable to predict the abso-
lute metric depth and thus suffers from inconsistent predic-
tions. To resolve this, inspired by [3, 51, 27], we provide
additionally sparse metric depth for keypoints, which are
extracted from a 6DOF visual odometry algorithm. The
depth prior network can be trained separately in a fully-
supervised [12, 11] or self-supervised manner [18, 57, 19].

3.4. Implementation details

DG-Recon follows the general implementation of Neu-
ralRecon [42]. The occupancy prediction head is removed
because the occupancy in DG-Recon is directly estimated
from the depth priors. The back projection margin ∆ is set
empirically to 8 voxels distance and the number of views K
in a local fragment is set to 9 following [42]. The training
target for the TSDF head is derived from the entire ground
truth depth sequence instead of the accumulated frames so
far. This modification encourages the network to complete
the not yet observed geometry. To prevent punishing the
network from completing the occluded geometry, a global
visibility mask, derived from depth sensor readings, was
applied when calculating the TSDF loss. During training,
lower-level voxels were upsampled to higher levels only if
the TSDF prediction is between [-0.9, 0.9]. This configu-
ration helps the training focus on difficult samples. Unlike
NeuralRecon [42]’s two-stage training strategy, DG-Recon
was trained in one stage with GRU fusion activated.

The sparse depth inputs to the standalone DPT [32]
depth model were obtained by following the tutorial of
COLMAP [37] for sparse reconstruction from known cam-
era poses. The depth network was trained fully-supervised
with the depth sensor readings as the training target. An
element-wise BerHu loss [24] was adopted and the pixels
missing ground truth depth were masked out in the loss.

More implementation details including the network ar-
chitectures and hyperparameters for training are attached in
Section 2 of the supplementary materials.

4. Experimental Setup
Datasets. ScanNet [5] consists of 1613 RGB-D scans of

indoor scenes, of which 1201 scans were used for training,
312 for validation, and 100 for testing. The official cleaned
meshes were used as ground truth in the evaluation. To
avoid exhausting the test with different method variations,
We used the validation set for ablation studies while keeping
the test set for comparison to the state-of-the-art methods
only. For generalization evaluation, 13 RGB-D scans from
7-Scenes [17] selected by [9] covering all 7 scenes were

used for testing. 23 RGB-D sequences from SUN3D [50]
preprocessed by [53], containing different indoor environ-
ments ranging from one room to an entire floor, were also
selected for testing. The ground truth meshes for 7-Scenes
and SUN3D were created from the depth sensor readings
using the TSDF fusion script provided by [30].

Baselines. NeuralRecon [42], a real-time online volu-
metric 3D reconstruction method, is the direct baseline to
compare DG-Recon against. Atlas [30] and TransformerFu-
sion [1] support online updating of the fused features but are
not optimized for real-time reconstruction for large scenes.
3DVNet [33] and VoRTX [41] further require the entire
video sequence to be available. While SimpleRecon [36],
a deep MVS method, doesn’t belong to the category of vol-
umetric reconstruction methods, we find it useful as another
SOTA model to compare our model against.

Reconstruction metrics. We adopted the evaluation
protocol established by [1] to compare the reconstructed 3D
mesh against the ground-truth mesh. Please refer to Section
3 of the supplementary material for detailed metric defini-
tions. To obtain meshes from the TSDF prediction, we run
marching cubes [26] at zero level set. A visibility mask was
applied to the predicted mesh following [1] to reduce the
impact of ground-truth mesh incompleteness due to miss-
ing and noisy depth sensor readings. Points were sampled
uniformly from the meshes to account for the resolution dif-
ference between the ground truth and predicted meshes.

Efficiency metrics. Online/offline categorizes if the
method requires access to all frames in a video sequence
during reconstruction. Online methods can process frame-
by-frame sequentially and update the scene representation
incrementally whilst offline methods cannot. Frame Per
Second (FPS) measures the frames processed per second,
assuming the reconstruction is updated every 9 keyframes.
All FPS, except for [1], was measured on a single 11GB
NVIDIA 2080Ti using scene0707 00 from ScanNet [5].

Depth rendering metrics. We adopted the evaluation
pipeline from NeuralRecon [42] to evaluate the accuracy
of the rendered depth images. The unknown depths from
the ground-truth depth image are excluded from depth eval-
uation. The missing depths from the rendered image are
measured and compared by Comp2D. Detailed metrics def-
initions can be found in Section 3 of the supplementary.

5. Experimental Results

5.1. Evaluation of 3D reconstruction on ScanNet

3D reconstruction performance of DG-Recon was eval-
uated and compared to SOTA methods for both efficiency
and accuracy on the ScanNet test set. Figure 4 illustrates
the trade-off between reconstruction F-score and computa-
tion efficiency (FPS). DG-Recon, with the cross-attention-
based fusion (c-att), outperforms the other online methods
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Method Online FPS↑ Acc. ↓ Comp.↓ Chamfer↓ Precision↑ Recall↑ F-score↑
3DVNet[33] x 0.4 6.73 7.73 7.22 0.655 0.596 0.621
VoRTX[41] x 2 4.31 7.23 5.77 0.767 0.651 0.703
Atlas [30] ✓ 10 7.16 7.61 7.38 0.675 0.605 0.636
TransformerFusion[1] ✓ 7∗ 5.52 8.27 6.89 0.728 0.600 0.655
SimpleRecon[36] ✓ 16 5.53 6.09 5.81 0.686 0.658 0.671
NeuralRecon[42] ✓ 46 5.09 9.13 7.11 0.630 0.612 0.619
DG-Recon (c-att) ✓ 20 3.94 6.82 5.38 0.769 0.636 0.694
DG-Recon (var) ✓ 34 4.40 6.49 5.44 0.732 0.628 0.674
Depth priors-only ✓ 133 8.49 7.15 7.82 0.607 0.561 0.580

Table 1. Evaluation of the 3D mesh on the ScanNet test set. Reconstruction results for previous works were taken from [36] following
the evaluation pipeline of [1]. Frames per second (FPS) was measured based on the per-frame time and per-update time amortized over
9 keyframes. This is different from the FPS reported by offline methods, which runs TSDF prediction only once for the entire video
sequence. ∗FPS was measured at chunk size (1.5m)3 for [1] and was measured at (5.12m)3 for DG-Recon. Red cells mark the best
number, orange the second best, and yellow the third best. The depth priors-only model was listed for ablation study and not ranked.
Further comparisons to the concurrent works can be found in the supplementary materials Section 4.
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the open circles and stars (ours) represent online methods. (c-att)
represents cross-attention-based fusion and (var) corresponds to
variance-based fusion. ∗ FPS was measured by the authors [1]
with a chunk size 43x smaller than ours.

in F-score. It reaches 20 keyframes per second assuming
an update frequency of every 9 keyframes. The F-score
is even on par with the best offline method, VoRTX [41],
which requires access to the entire video sequence and runs
significantly slower. The variance-based DG-Recon (var)
achieves a comparable F-score as SimpleRecon [36] while
being 2x faster.

Table 1 lists the detailed reconstruction results for SOTA
scene reconstruction methods. Both DG-Recon variants ap-
pear in the top three for most metrics. Compared to the
NeuralRecon [42] baseline, DG-Recon improves its F-score
from 0.619 to 0.674 with the variance-based fusion and to

0.694 with cross-attention-based fusion. The corresponding
FPS drops by 12 for DG-Recon (var) and 26 for DG-Recon
(c-att) due to the standalone depth model and additionally
the learnable cross-attention-based fusion. Both models still
run at higher FPS and score higher for reconstruction than
Atlas [30] and especially TransformerFusion [1] which re-
lies on the less efficient self-attention-based fusion. We also
present the reconstruction results of a non-learnable TSDF
fusion [56] using the depth priors predicted by the monoc-
ular depth network. It proves that the learnable feature ex-
traction, fusion, and TSDF prediction are crucial to the per-
formance of DG-Recon.

Figure 5 compares the reconstruction of DG-Recon
against SOTA volumetric reconstruction methods. Over-
all, DG-Recon delivers objects with sharper shapes, e.g. the
sink, toilet (row 1), kitchen worktops (row 2), and night-
stands (row 3), than the other methods. The chairs in row
5 are well separable whilst they almost look like a single
bench with Atlas [30] and VoRTX [41]. Compared to its
baseline [42], DG-Recon produces more complete meshes
(row 4, 6, and 7). It completes the invisible corners which is
an ability lacking in [42] because the occupancy prediction
overfits the incomplete ground truth.

We further compare qualitatively the reconstruction re-
sults of DG-Recon against SimpleRecon [36], the SOTA
MVS method, in Figure 6. Due to the 3D volume reso-
lution limitation, DG-Recon’s reconstruction is of slightly
lower fidelity than SimpleRecon. But DG-Recon learns to
de-noise floaters and fill in occluded corners, a missing ca-
pability by SimpleRecon due to the lack of 3D reasoning.

5.2. Generalization to other datasets

The off-the-shelf transferability of DG-Recon to other
reconstruction datasets without fine-tuning is evaluated on
7-Scenes [17] and SUN3D [50]. Both datasets were cap-
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Atlas [30] VoRTX [41] NeuralRecon [42] DG-Recon Ground truth

Figure 5. Qualitative analysis of the volumetric 3D reconstruction methods on ScanNet. Reconstructions for NeuralRecon [42] and
Atlas [30] were reproduced with the official codebase and published weights. Meshes for VoRTX [41] were provided by the original
authors. To produce these meshes, Atlas and VoRTX run inference for the entire scene once at the end whilst the rest make continuous
updates and dump the final state. Reconstruction errors are highlighted by red boxes and quality shapes are marked by green boxes. More
qualitative comparison is available in the supplementary material Section 5.

tured with Kinect V1, a different camera setup from Scan-
Net [5]. Table 2 shows that DG-Recon consistently im-
proves the reconstruction F-score of the NeuralRecon [42]
baseline by 18% and 11% on 7-Scenes and SUN3D respec-
tively. Moreover, it achieves a better balance between pre-
cision and recall and outputs much more complete recon-
structions for both datasets. Atlas [30] on SUN3D suffers

from its limitation of processing the entire scene in one go.
The SUN3D testing scenes can span over 25 meters, which
doesn’t fit into the GPU memory for Atlas [30]. Its recall is
therefore lower and the completeness error is one order of
magnitude higher than the other two methods. Qualitative
analysis for both datasets can be found in Section 5 of the
supplementary materials.
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SimpleRecon [36] DG-Recon Ground truth

Figure 6. Qualitative comparison with SimpleRecon on Scan-
Net. The red circles highlight missing geometries for SimpleRe-
con [36] and for ground truth. The green circles showcase DG-
Recon’s capability of completing occluded geometry. The red and
green boxes mark noisy floaters and clean geometry respectively.

Dataset Method Acc ↓ Compl ↓ Prec ↑ Rec ↑ F-score ↑

7-Scenes
Atlas[30] 8.6 10.8 0.496 0.460 0.477
NeuralRecon[42] 5.7 16.9 0.582 0.383 0.459
DG-Recon (c-att) 6.2 8.5 0.566 0.522 0.542

SUN3D
Atlas[30] 8.3 83.9* 0.443 0.329 0.366
NeuralRecon[42] 6.8 16.2 0.520 0.338 0.408
DG-Recon (c-att) 7.7 9.6 0.473 0.434 0.451

Table 2. Reconstruction generalization to the 7-Scenes [17]
and SUN3D [50] datasets. Bold denotes the best number and
underline the second best. [30] and [42] were evaluated using the
official implementation and pre-trained weights. * High complete-
ness error caused by the fact that some testing scenes do not fit into
the GPU memory for [30].

5.3. Evaluation of depth rendering

Method Abs Rel ↓ Abs Diff ↓ Sq Rel ↓ δ < 1.25δ < 1.25δ < 1.25 ↑ Comp2D ↑
Atlas[30] 0.064 0.118 0.042 92.3 0.963
NeuralRecon[42] 0.065 0.098 0.038 93.3 0.891
SimpleRecon[36] 0.061 0.103 0.041 94.1 0.969
DG-Recon (c-att) 0.062 0.099 0.040 93.7 0.966

Table 3. Evaluation of rendered depth on the ScanNet test set.
Bold denotes the best number and underline the second best. Both
accuracy (columns 2-5) and completeness (column 6) matter for
the rendering applications. Note that [36] reported lower errors
because the rendered depth, different from the direct prediction, is
subject to the 3D reconstruction quality and camera pose errors.

We evaluate depths rendered from the reconstructed
scenes on the ScanNet test set following the same setup
as [42]. The errors and completeness of the rendered depth
are listed in Table 3 for [30, 42, 36] and DG-Recon. DG-
Recon achieves comparable accuracy as NeuralRecon [42]
while improves the depth completeness from 89.1% to
96.9%. The overall quality of the rendered depth is better

than Atlas [30] and on par with SimpleRecon [36]. Qual-
itative analysis of the rendered depth can be found in the
supplementary material Section 5.

5.4. Ablation studies of individual components

In this section, we report the results of the ablation stud-
ies for three main contributions: 1) depth guidance in fea-
ture fusion, 2) different fusion mechanisms, and 3) auxiliary
geometry features.

Given that the validation set comprises only 142 unique
scenes, a subset of the ScanNet validation containing 142
scans was used for ablation studies. We found empirically
that this one-scan-per-scene subset is equally representative
as the full set. To prevent punishing geometry complete-
ness, visibility masks were created for the validation set fol-
lowing [1] and applied in the ablation studies.

Depth guid. Feat. Fuse Acc ↓ Compl ↓ Prec ↑ Rec ↑ F-score ↑
avg(f) 4.7 10.7 0.716 0.507 0.590

✓ avg(f) 7.8 6.4 0.596 0.625 0.608
✓ avg(f,d) 7.6 6.6 0.603 0.618 0.608
✓ avg(f,d,r) 8.2 6.3 0.582 0.618 0.597

c-att(f) 7.0 8.9 0.581 0.497 0.533
✓ c-att(f) 8.3 6.2 0.586 0.625 0.602
✓ c-att(f,d) 7.3 6.4 0.631 0.643 0.634
✓ c-att(f,d,r) 7.2 6.2 0.633 0.653 0.640
✓ c-att(d,r) 7.4 6.9 0.597 0.598 0.595

Table 4. Ablation study of depth guidance and auxiliary ge-
ometry features. avg(·) represents feature average and c-att(·)
corresponds to the cross-attention-based fusion module. f denotes
the back-projected 2D features. d is the offset between the depth
prior and the projected depth. r ∈ R3 is the unit vector pointing
from the 3D point of interest to the camera center of each view.

Depth guidance. The influence of depth guidance in
DG-Recon for feature back projection and fusion is ablated
and reported in Table 4. Starting from the NeuralRecon [42]
baseline (first row in Table 4), adding the depth-guided back
projection and occupancy mapping improves the F-score
from 0.590 to 0.608. The difference is even bigger, 0.533 vs.
0.608, when the average is replaced by cross-attention in the
fusion module. Moreover, depth guidance helps DG-Recon
simplify NeuralRecon [42]’s two-stage training strategy to a
one-stage strategy. Switching from non-learnable average-
based fusion to learnable cross-attention-based fusion be-
comes possible without hyperparameter tuning. Overall,
the depth guidance allows DG-Recon to balance precision
and recall. The reconstructed mesh becomes more complete
while still being accurate.

Auxiliary geometry features. Table 4 compares differ-
ent input feature combinations for the cross-attention fusion
module. Specifically, providing the distance offset to the
depth priors d in addition to the back-projected features f ,
F-score increases 5% to 0.634. Adding the viewing angle
r further improves the F-score to 0.640. The auxiliary ge-
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ometry features are not as beneficial when the baseline fu-
sion method average is in use. The additional viewing an-
gle even slightly diminishes the F-score. With a learnable
cross-attention-based fusion mechanism, DG-Recon shows
the capability of better utilizing auxiliary information.

Furthermore, relying on the geometry features without
image features results in an F-score of 0.595 only, 7% be-
low the full set of features. It indicates that both the image-
extracted features and the geometry features are key con-
tributors to the reconstruction improvement.

Fusion FPS ↑ Acc ↓ Compl ↓ Prec ↑ Recall ↑ F-score ↑
average 34 8.2 6.3 0.582 0.618 0.597
variance 34 7.7 6.4 0.628 0.636 0.629
cross-attention 20 7.8 5.9 0.610 0.658 0.631
+learnable query 20 7.2 6.2 0.633 0.653 0.640

Table 5. Ablation study of different fusion mechanisms. Fea-
tures from multiple views, including back-projected image repre-
sentations and the auxiliary geometry features, were fused with the
different fusion operations.

Fusion mechanisms. We also experiment with various
fusion mechanisms, average, variance, and cross-attention
with a fixed initial query or with a learnable initial query.
Table 5 shows that the F-score is boosted significantly with-
out FPS dropping by simply replacing the average of multi-
view features with variance. The introduction of the cross-
attention-based fusion module further raises the validation
F-score to 0.631 with a fixed initial query vector and to
0.640 with a learnable initial query. While being more accu-
rate, the cross-attention module introduces a computational
overhead of 14 FPS less than the non-learnable variants.

5.5. Effect of depth prior quality

Depth Prior Acc↓ Compl↓ Prec↑ Rec↑ F-score↑ vs.Open3D*↑
Monodepth2 [19] 10.8 21.3 0.334 0.204 0.252 +0.018
DPT-ScanNet 9.4 13.3 0.412 0.361 0.384 +0.048

w sparse inputs 6.2 8.5 0.566 0.522 0.542 +0.065
Omnidata [10] 5.8 7.7 0.574 0.549 0.560 +0.069
Depth sensor 4.3 5.0 0.740 0.746 0.742 /

Table 6. 7Scenes reconstruction with varying depth priors. The
same DG-Recon model was compared utilizing different depths
ranked by quality from low to high. None of the models was
trained on 7Scenes or other Kinect data. Note that Omnidata out-
puts relative depth. Depth scale and offset was fit per frame with
the DPT-ScanNet prediction to output metric depth. ∗F-score gain
of DG-Recon comparing to Open3D TSDF integration.

While DG-Recon benefits from depth guidance, it might
also be affected by the depth quality. Table 6 compares DG-
Recon performance adopting different depth priors, varying
from degraded depth models, off-the-shelf SOTA monocu-
lar depth to depth sensor readings. Even though lower accu-
racy depth models (Monodepth2 and vanila DPT-ScanNet)

can negatively impact the performance, a SOTA depth
model (Omnidata) is shown to improve DG-Recon’s gen-
eralization capability to 7Scenes (F-score 0.560 vs. 0.542).

5.6. Limitations

Compared to the NeuralRecon baseline, DG-Recon in-
troduces computational overhead because of the standalone
depth network and the cross-attention-based fusion. The
former might be optimized, as future improvements, by
sharing the backbone between the depth estimation net-
work and the image feature extractor of DG-Recon. The
latter might be remedied by compromising slightly the re-
construction quality with the variance-based fusion.

Like other learning-based reconstruction methods, DG-
Recon was trained using the ScanNet data captured with a
single camera setup only. The reconstruction performance
might drop as the target camera setup drifts significantly,
e.g. with a larger field of view or heavier distortion. The
sparse depth inputs already help mitigate the negative im-
pact of camera differences and one could further fine-tune
the depth model for the target camera setup without requir-
ing any ground truth thanks to the recent progress of self-
supervised depth estimation.

Another limitation of DG-Recon is the generalization ca-
pability to outdoor scenes. The distribution drift from in-
door training data to outdoor test data might lead to accu-
racy degradation like other data-driven methods. An off-
the-shelf monocular depth model could partially mitigate
this shift thanks to DG-Recon’s modular design, i.e., sep-
arated depth prior and TSDF prediction as shown by the
example in supplementary material Section 5.

6. Conclusion
We present a real-time neural reconstruction method,

DG-Recon, which improves image feature back projection
and cross-view association with the guidance of depth pri-
ors. Together with the efficient variance- or cross-attention-
based fusion modules, DG-Recon models can better express
the geometric information and produce reconstructions with
more details than the NeuralRecon baseline. Our method
performs online reconstruction in real-time and achieves
state-of-the-art reconstruction performance on the ScanNet
dataset. With robust depth priors, DG-Recon generalizes
better to the 7-Scenes and SUN3D datasets than the other
state-of-the-art neural 3D reconstruction methods.
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