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Abstract

We introduce Domain-Adaptive Prompt (DAP), a novel
method for continual learning using Vision Transformers
(ViT). Prompt-based continual learning has recently gained
attention due to its rehearsal-free nature. Currently, the
prompt pool, which is suggested by prompt-based contin-
ual learning, is key to effectively exploiting the frozen pre-
trained ViT backbone in a sequence of tasks. However, we
observe that the use of a prompt pool creates a domain scal-
ability problem between pre-training and continual learn-
ing. This problem arises due to the inherent encoding of
group-level instructions within the prompt pool. To address
this problem, we propose DAP, a pool-free approach that
generates a suitable prompt in an instance-level manner
at inference time. We optimize an adaptive prompt gener-
ator that creates instance-specific fine-grained instructions
required for each input, enabling enhanced model plas-
ticity and reduced forgetting. Our experiments on seven
datasets with varying degrees of domain similarity to Im-
ageNet demonstrate the superiority of DAP over state-of-
the-art prompt-based methods. Code is publicly available
at https://github.com/naver-ai/dap-cl.

1. Introduction

Humans can learn and solve continuously emerging
tasks by leveraging knowledge from past experiences. In-
spired by it, continual learning (CL) methods aim at tack-
ling a sequence of tasks using a single model without ex-
periencing performance deterioration in previously learned
tasks [1, 56, 59]. Typically, rehearsal-based methods [5, 7,
22, 42], motivated by the complementary learning systems
of humans [35], store a data subset of past tasks to al-
leviate forgetting while acquiring new information. By
maintaining a replay buffer of reasonable size, this ap-
proach has shown superiority over regularization [8, 25]
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Figure 1. Average accuracy changes of prompt-based CL methods
including DAP across five datasets with varying levels of domain
similarity to ImageNet. The datasets are sorted with domain simi-
larity in descending order from left to right.

and architecture-based methods [2, 33] in various settings.
However, the rehearsal-based approach is reluctant to use
when data privacy is concerned, or the memory budget is
tight. In this regard, lately, prompt-based rehearsal-free
CL methods, such as L2P [58] and DualPrompt [57], have
been presented and proved to outperform existing rehearsal-
based methods without relying on a replay buffer.

Prompt-based learning was initially introduced in the
field of natural language processing for effective transfer
learning [31]. Instead of fine-tuning entire weights, it is
able to condition an untouched (frozen) pre-trained back-
bone such that it performs well to a specific downstream
task. That is, only small additional weights (prompts) are
trained to adjust learned representations from a source task
to a new target task. Recently, with the recent advent of
Vision Transformers (ViT) [15], the notion of prompt-based
learning has been adapted in CL [14, 47, 51, 55, 57, 58].
L2P and DualPrompt maintain a prompt pool, which is a
constant number of prompts to learn shared prompts across
tasks to mitigate forgetting as well as to benefit from pre-
viously learned task knowledge. Hence, the prompt pool is
considered a set of instructions to tune the frozen backbone
to adapt to a sequence of new tasks.

Currently, most pre-trained backbones frozen in prompt-
based learning are assumed to be trained on a large-scale
natural image collection like ImageNet; L2P and Dual-
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(a) Domain-Adaptive Prompt (DAP). (b) Adaptive Prompt Generator (G in (a)).
Figure 2. Overview of DAP (left) and the architecture of the proposed adaptive prompt generator (G) (right).

Prompt also utilize the ImageNet-pretrained ViT as a frozen
feature extractor. However, testing benchmarks in prior lit-
erature [57, 58] are still confined only to natural images,
despite no assumptions about data domain in CL. Data
with varying levels of domain similarity to natural images
can be provided as target tasks in the CL setup, e.g., Eu-
roSAT data of satellite images [19] and ISIC data of skin
diseases [12]. As such, prompts should be designed to en-
code more domain-relevant knowledge and have the abil-
ity to finely instruct the model to properly leverage learned
representations. Our findings in Figure 1 reveal that exist-
ing prompt-based CL methods exhibit two weaknesses con-
cerning domain generalization, and thus they cannot be con-
sistently effective across images with varying domains.

Their weaknesses arise since they rely on the prompt
pool. First, they require hyperparamter tuning for the target
domain in advance. The prompt pool can support varying
levels of domain similarity by adjusting the pool size, and
controlling the domain coverage of prompts. However, it is
unrealistic to assume prior knowledge of the target domain
in CL. Additionally, an expansion of the prompt pool leads
to an increase in the memory budget. As shown in Figure
1, the two representative prompt-based CL methods show a
significant performance degradation with a decrease in do-
main similarity. The best pool sizes (w/ Tune in Figure 1),
which were found via a grid search for each data domain
in advance, improve the accuracy of the model, but a large
performance drop still appears. Second, since the number
of prompts in the pool is typically much smaller than the
number of total training instances, each prompt is forced to
be optimized in a group-level fashion. This makes it diffi-
cult to provide delicate instructions to the model more suit-
able per data instance, possibly resulting in better domain
generalization.

In this paper, we propose a pool-free prompt-based CL
framework named DAP, supporting domain-adaptive CL
using the frozen backbone pre-trained on ImageNet. As

shown in Figure 2(a), without relying on the pool of a
constant number of prompts, it adaptively generates a sin-
gle prompt per instance from input tokens; hence, DAP
does not need to choose learned prompts from the pool,
unlike L2P and DualPrompt. The adaptive prompt en-
codes domain-relevant knowledge corresponding to the tar-
get task, delicately steering the frozen backbone’s represen-
tation via the attention mechanism in ViT. Specifically as
shown in Figure 2(b), a feed-forward network and a linear
transformation are utilized to extract instance-specific in-
formation conditioned on a transposed input, creating the
adaptive prompt in a timely manner. With the poolless
instance-level prompts, DAP becomes versatile for various
CL tasks without domain restrictions, even when applied to
a large benchmark. Our main contributions are:

• This is the first study to pose and examine the do-
main scalability problem of the current prompt-based CL
methods on benchmarks with varying levels of domain
similarity to natural images.

• We propose a novel framework named DAP, which no
longer relies on the prompt pool and generates each
prompt in an instance-level manner, facilitating enhanced
plasticity and reduced forgetting.

• We conduct extensive experiments on seven datasets
with varying domains, including satellite, dermatology,
and radiology images. DAP significantly outperforms the
state-of-the-art prompt-based CL methods.

2. Related Work
Prompting for Transfer Learning. Originally, prompt-
ing [31] refers to adding heuristic language instructions to
the input text to help a frozen pre-trained language model
understand a downstream task. Typically, the design of a
prompting function has been in a heuristic form, and GPT-
3 [6] showed excellent generalization performance on trans-
fer learning tasks using manually created prompts. How-
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ever, recently, prompting methods such as Prompt Tun-
ing [28] and Prefix Tuning [29] suggest the notion of learn-
able prompts in continuous space, and this technique be-
comes mainstream in prompt-based learning. The current
prompt-based CL methods, L2P and DualPrompt, includ-
ing DAP (ours), also belong to this direction. However, note
that DAP is the only method that creates a prompt on-the-fly
in an instance-level fashion using an adaptive prompt gen-
erator (in Figure 2(b)).

Continual Learning. For CL scenarios, there are multiple
setups depending on which type of data is provided as the
next task: class incremental learning [1, 5, 8, 26, 42, 57, 58]
where classes are incremented from the same domain, do-
main incremental learning [11, 16, 48] where same classes
from different domains, and cross-domain continual learn-
ing [46] where classes are incremented from different do-
mains. We mainly focus on the class incremental learning,
which is the most general setup [34] in the recent literature
on the CL community.

Class incremental learning has established a couple of
research directions. Several studies have been initially pro-
posed based on regularization [1, 8, 26]. Although they suc-
ceeded to mitigate catastrophic forgetting by constraining
the fast update of important parameters, it is difficult to pre-
serve past knowledge completely when the number of in-
coming tasks increases. In this regard, a rehearsal-based
approach [3, 5, 7, 42] maintains a replay buffer (episodic
memory) which can store a small amount of data from the
previous tasks. Active research has been made to decide
which instances to store for high diversity and uncertainty
in the buffer [3, 5, 7, 42]. However, this direction is not ap-
plicable to scenarios where data privacy or memory budget
is concerned.

Currently, there is a growing research trend in CL based
on prompting and Vision Transformers (ViTs). They lever-
age a frozen backbone pre-trained on ImageNet without
maintaining the replay buffer. L2P [58] firstly introduces
the notion of the prompt pool to tune the frozen ViT
backbone for CL tasks. Then, inspired by complementary
learning systems, DualPrompt [57] utilizes two different
types of prompts, G-Prompt and E-Prompt, whose goals
are learning task-invariant and task-specific knowledge, re-
spectively. Although prompt-based CL research has re-
cently been expanded to domain incremental [55] or multi-
modal [14, 20, 23, 51] learning, prompt-based CL is still
in the early stage, and there were not enough studies or
benchmarks to examine the influence of domain similarity
between source data on pre-training and target data of CL.
In particular, the weaknesses of assuming the prompt pool
with a fixed size have yet to unveil. In this paper, we ver-
ify the limitation of current prompt-based CL methods and
propose a pool-free prompt-generation approach to enable
pre-trained ViT-backed CL robust against a domain shift.

Structurally, DAP exhibits certain similarities with
hypernetworks-based CL [52]. However, while hypernet-
works generate the parameters of the model, our adaptive
prompt generator generates prompts. We explore the differ-
ences between them in Supp. H.
Cross-Domain Transfer. Learning with cross-domain is
a more realistic scenario in which source and target do-
mains are dissimilar. Domain generalization [53] and cross-
domain few-shot learning [17, 37] are representative re-
search fields that pre-train a model on source data and then
adapt it to target data. In their scenarios, it is difficult to ef-
fectively transfer source information into the target domain
because of the large domain gap between one another. In the
CL tasks, there has been no such limitation to suffer from
a cross-domain scenario. However, the prompt pool-based
CL methods with the frozen ViT backbone yield a new chal-
lenge related to domain generalization in CL setups.

3. Prerequisites
3.1. Vision Transformer (ViT)

ViT generally consists of a single patch embedding layer,
a stack of L transformer layers, and the classifier. Specif-
ically, an input image x is split into d-dimensional patch
tokens of size n through the patch embedding layer. Next, a
trainable class token [CLS] is prepended to the patch tokens
[PATCH] along the sequence length dimension, producing
the initial input tokens E0 ∈ R(n+1)×d. Let El be the input
tokens to the l-th transformer layer,

El = [CLS;PATCH1, . . . ,PATCHn] ∈ R(n+1)×d. (1)

Then, it passes to the l-th transformer layer and produces
the input El+1 to the successor (l+1)-th layer as:

El+1 = LN(E
′

l +E
′′

l ), where E
′′

l = MLP(E
′

l)

and E
′

l = LN
(
MHSA(El,El,El)

) (2)

and each transformer layer has a multi-head self-attention
(MHSA) followed by a feed-forward network (MLP) with the
skip connection (+) [18] and layer normalization (LN) [4].
As last, the classifier of a single feed-forward layer predicts
class labels by mapping the class token [CLS] of the final
transformer layer as:

ŷ = Classifier([CLS]L), (3)

where ŷ is a predicted class probability distribution.

3.2. Continual Learning Protocol

Continual Learning (CL) solves a sequence of tasks with
a single model. For this problem, a training benchmark
D = {D1, · · · ,DT } denotes a sequence of tasks with size
T , where each task Dt = {(x, y)} are sampled from a joint
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data distribution of the input and label space Xt × Yt at
task t. Let the target model as f : X → Y . As nota-
tions, we denote the patch embedding layer as fp, the stack
of transformer layers as fb, and the classifier parameterized
by θ as fc,θ (f = fp ◦ fb ◦ fc,θ). Then, following Du-
alPrompt [57], we consider the disjoint class-incremental
learning setting, where task boundaries do not share classes,
task identity is only given at training time, and utilize a ViT-
Base model pre-trained on ImageNet as the frozen feature
extractor; ViT-Base and ImageNet are the most commonly
used backbone and source data [57, 58]. In our setup, the
training data D can have varying levels of domain similarity
to ImageNet, which is the source data used for pre-training.

3.3. Prompt-based Continual Learning

The modern prompt-based CL methods, L2P [58] and
DualPrompt [57], leverage prompts to tune the frozen
ImageNet-pretrained ViT-Base, where a single prompt
P is defined as a sequence of d-dimensional tokens
with sequence length p. Given a prompt pool P =
{P1, P2, . . . , PM} of pool size M , they select a fixed num-
ber of suitable prompts using different prompting functions
from the pool and then prepend them to the input token E
of Eq. (1) as:

Ê = [Ps1 ; · · · ; , Pso ;E] ∈ R
(
(o×p)+n+1

)
×d, (4)

where si is the index of an i-th selected prompt from the
pool, and o is the number of selections, which is commonly
set to be 1 – 4 in L2P and DualPrompt.

The selection of prompts from P is crucial for achieving
excellent performance in CL. While L2P and DualPrompt
employ similar prompting functions, DualPrompt further
trains and utilizes the task-specific key. More specifically,
DualPrompt maintains an auxiliary learnable token called
the task-specific key kt, which is encouraged to be closer
to the [CLS] tokens of all training instances Dt belonging
to the target task t using the pre-trained model. To optimize
kt, the matching loss [57] is formulated as:

ℓmatching(x, kt) = SC(fb(fp(x))[CLS], kt), x ∈ Dt, (5)

where SC represents cosine similarity and fb(fp(·))[CLS]
is the [CLS] token of the last transformer layer of the
frozen pre-trained model (without prompts). They choose
prompts for x based on the closest task-specific key k′t by
argmaxt∈{1,...,T}. With the selected prompts, E

′
of Eq. (2)

is replaced as:

E
′
= LN

(
MHSA(E, Ê, Ê)

)
. (6)

Thus, the information of prepended prompts is percolated
to the patch tokens. The number of output tokens does not
change since only the key and value inputs change in MHSA.

4. Domain-adaptive Prompt (DAP)
We propose Domain-Adaptive Prompt (DAP) to adapt

the frozen pre-trained ViT for domain-adaptive CL. DAP
injects a prompt generated by the adaptive prompt gen-
erator into all transformer layers and preserves the back-
bone frozen during training a sequence of tasks. Figure 2
overviews the proposed DAP framework.

4.1. Adaptive Prompt Generator

The motivation for proposing the adaptive prompt gen-
erator is the limited scalability of the prompt pool. In other
words, limiting the number of available prompts to a pre-
defined pool size forces each prompt to be optimized in a
group-wise fashion because the pool size is much smaller
than the number of total training instances. Especially, in
realistic CL scenarios where there is a possibly large do-
main gap between source and target domains, prompts must
encode fine-grained instructions to adjust the learned rep-
resentations from the source data to the target domain more
effectively. However, the prompt pool only allows encoding
partial knowledge of the target domains constrained by the
pool size. As a result, it makes essential to tune the pool-
related hyperparameters in advance, which requires prior
knowledge of the target domain. However, in any domain,
expanding the pool size without limit is impractical when
the memory budget is tight.

To pursue a domain-adaptive rehearsal-free CL frame-
work, DAP generates prompts instantaneously using the
adaptive prompt generator. The adaptive prompt generator
(G) consists of input transpose (⊤), LN, MLP, and a lin-
ear transformation layer (LT). It receives the input tokens
E ∈ R(n+1)×d and generates the adaptive prompt P a, di-
rectly conditioning on the relation between the tokens as:

P a = LT
(
MLP

(
LN(E)⊤

)
;ψ(e)

)⊤
=

(
γeMLP

(
LN(E)⊤

)
+ βe

)⊤ ∈ Rp×d,
(7)

where ψ is a linear layer that predicts two types of affine
transformation parameters [γ, β] and e is a conditional input
embedding for ψ.

The primary objective of the adaptive prompt genera-
tor (Eq. (7)) is to create a prompt that contains instance-
specific fine-grained instructions for each input. To encode
the instance-level instructions required for a correct pre-
diction, it is essential to examine the relationship across
input patches rather than considering each patch individ-
ually [49]. For it, after normalization, we first transpose
(⊤) the input dimension from (n+1) × d to d × (n+1)
before passing through MLP. Then, the generator’s MLP en-
codes (n+1)-dimensional input into p-dimensional output,
providing instance-level prompts considering the global in-
formation of each channel. Through the MLP layer, we gen-
erate a prompt that well holds instance-wise domain-related
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knowledge to adapt to the target domain. To mitigate catas-
trophic forgetting, the MLP layer is frozen after several train-
ing epochs sufficient to adapt to the target domain.

Subsequently, we make use of the feature-wise trans-
formation framework (LT) [40, 41, 43] to encode addi-
tional instructions that aid in prediction along with the cre-
ated instance-level prompts. LT performs an affine trans-
formation on the created instance-level prompts using two
types of parameters: a scaling parameter γe ∈ Rd and
another shifting parameter βe ∈ Rd conditioned on e as
[γe, βe] = ψ(e). For the conditional input embedding e,
we utilize the task embedding obtained from k′t of Eq. (5)
to encode task-relevant instructions. Whereas DualPrompt
uses k′t to select a prompt in the prompt pool, we utilize
it to embed supplementary instruction beneficial to predic-
tion in conjunction with the created instance-level prompts.
We empirically verify that DAP outperforms L2P and Dual-
Prompt, as it is relatively robust to matching accuracy. The
analysis is presented in Supp. E.

4.2. Optimization of DAP

As can be seen in Figure 2(a), DAP prepends the adap-
tive tokenP a

l to the input tokens El in Eq. (1) of every trans-
former layer as:

Ẽl = [P a
l ;El] ∈ R

(
(1×p)+n+1

)
×d, 1 ≤ l ≤ L. (8)

We train a separate generator Gl for each transformer layer.
DAP uses a single adaptively generated prompt and, there-
fore, the number of prompts o = 1 unlike L2P and Du-
alPrompt in Eq. (4). This simplicity is a strong advantage
since a simple method often makes a significant impact and
is widely accepted [21].

DAP is updated to minimize the following total loss:

min
fc,θ,G1:L,ϕ,rt

ℓce(fc,θ(fb(Ẽ1:L)[CLS]), y)− λℓmatching(x, kt),

(9)
where (x, y) ∈ Dt, ℓce is the cross-entropy loss, and
ℓmatching is the matching loss described in Eq. (5). λ is a
balancing term between the two losses (we use the fixed
λ = 0.1 for simplicity). While the parameters of the ViT
backbone are frozen, only the parameters ϕ of the adaptive
prompt generator and θ of the classifier are updated.

5. Experiments
Evaluation Benchmarks. We conduct extensive experi-
ments with seven datasets of the varying levels of domain
similarity1 to ImageNet [37, 45].

• Natural Domain: Split CIFAR-100 is a typical bench-
mark widely used in the CL community. It is built by di-
viding the original CIFAR-100 [27] into 10 tasks with 10
1Domain similarity is inferred using Earth Mover’s Distance [13, 37].

disjoint classes each. Original Oxford-IIIT Pet data [38]
consists of 37 pet categories with roughly 200 images per
category. Split Pets is built by selecting 35 categories
among 37 and splitting them into 7 tasks.

• Aerial Domain: EuroSAT [19] is a collection of satel-
lite images of the landscapes. Split EuroSAT is built by
splitting the original 10 classes into 5 tasks of 2 disjoint
classes each. RESISC45 [10] contains 45 scene classes,
each class having 700 images. Split RESISC45 is built by
splitting the 45 classes into 9 tasks of 5 disjoint classes
each. The two aerial datasets are still color images of
natural scenes but without perspective distortion.

• Medical Domain: CropDiseases [36] is a collection of
diseased plant images, which contains natural images
but is specialized in the medical and agriculture indus-
tries. ISIC2018 [12] and ChestX [54] are dermoscopy
images of human skin lesions and X-Ray images on the
human chest, which no longer represent natural images.
CropDiseases, ISIC2018, and ChestX consist of 38, 7,
and 8 categories, respectively. Considering task splitting
and class imbalance, we chose 35, 6, and 6 categories
and split them into 7, 3, and 2 tasks respectively for Split
CropDiseases, Split ISIC, and Split ChestX.

The domain similarity with ImageNet decreases in the order
of natural, aerial, and medical domains [37]. More analysis
including data description is provided in Supp. A.

Methods. We compare DAP with two groups of rehearsal-
free approaches, regularization-based methods including
EWC [26] and LwF [30] and prompt-based methods includ-
ing L2P [58] and DualPrompt [57]. For a fair comparison,
all of the compared methods are started from the same Im-
ageNet pre-trained ViT-Base2 [15]. We also compare the
settings favorable to the compared methods. We mark † in
the method (e.g., L2P† in Table 1) when the method is favor-
ably tuned for each target domain in advance by conducting
the pool-related hyperparameter search. A detailed descrip-
tion of the compared methods and grid-search space of the
favorable setting are provided in Supp. B and C. In addi-
tion, as a reference to readers, we provide the results of FT-
seq, which is a default CL method only using fine-tuning in
a sequential manner, and Upper-bound, which is a method
to obtain the maximal performance in non-CL setup using
fine-tuning. Refer to [57] for the comparison of prompt-
based and rehearsal-based methods.

Evaluation Metrics. For evaluation, we repeat every ex-
periment 3 times and report their average values with stan-
dard errors using three widely used CL metrics: average
accuracy (Avg Acc ↑) [32] of the final average accuracy by
the model, forgetting measure (Forgetting ↓) [9] of the abil-
ity to alleviate forgetting, and learning accuracy (Lrn Acc

2We use the same pre-trained model by L2P [58] and DualPrompt [57].
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Method (a) Average Accuracy (↑) Total Avg Acc (↑)Split CIFAR-100 Split Pets Split EuroSAT Split RESISC45 Split CropDiseases Split ISIC Split ChestX

FT-seq 27.64±2.18 27.82±0.26 20.50±0.71 12.30±0.99 27.60±1.98 34.70±1.84 28.97±1.76 25.65

EWC [26] 59.60±1.27 59.40±0.14 47.40±1.13 61.75±1.48 73.30±5.09 44.35±1.77 30.65±5.02 53.78
LwF [30] 68.22±1.63 62.50±3.54 40.40±5.37 51.15±0.64 75.10±1.98 38.15±0.21 35.00±1.84 52.93
L2P [58] 83.07±1.12 78.34±0.92 42.58±0.90 59.37±2.09 53.26±0.25 42.27±3.98 32.51±0.90 55.91
L2P† [58] 83.07±1.12 83.25±1.04 69.17±8.62 69.28±0.21 59.73±1.41 51.60±6.11 39.48±4.41 65.08
DualPrompt [57] 85.93±0.82 86.85±0.76 76.48±1.75 73.35±1.14 80.84±0.58 53.81±5.19 45.28±4.61 71.79
DualPrompt† [57] 85.93±0.82 86.85±0.76 79.41±1.94 75.68±0.81 84.23±2.22 55.50±0.41 47.29±3.98 73.56
DAP 94.05±1.19 91.02±0.44 98.18±0.56 92.84±1.68 97.88±0.89 84.18±2.54 52.50±3.57 87.24

Upper-bound 94.20±0.80 91.83±1.92 99.03±0.55 96.54±1.56 99.56±0.36 84.65±3.18 52.98±2.23 88.40

Method (b) Forgetting Measure (↓) Total Forgetting (↓)

FT-seq 83.56±2.89 82.51±1.49 99.96±0.07 98.90±0.14 84.15±1.63 93.85±0.92 62.30±2.07 86.46

EWC [26] 24.65±0.07 8.85±0.35 2.30±1.56 20.10±2.12 9.30±3.25 5.50±0.71 4.30±4.67 10.71
LwF [30] 15.44±1.48 18.15±0.92 6.00±1.84 11.25±0.78 27.35±1.95 1.80±0.99 13.10±2.83 13.30
L2P [58] 7.45±0.14 15.01±1.10 47.03±1.10 31.98±4.83 25.75±5.76 43.33±3.08 25.20±7.46 27.96
L2P† [58] 7.45±0.14 10.45±1.10 12.47±6.05 11.76±0.18 12.78±2.83 15.25±1.22 12.57±4.24 11.82
DualPrompt [57] 5.60±0.62 8.38±0.74 12.78±1.23 12.03±1.03 7.85±2.88 22.15±2.60 4.10±0.28 10.41
DualPrompt† [57] 5.60±0.62 8.38±0.74 9.74±2.64 11.21±0.57 7.04±0.81 23.47±4.07 2.55±1.24 9.71
DAP 2.28±0.96 1.21±0.45 0.61±0.53 6.24±1.89 1.71±1.02 0.72±0.42 1.97±1.54 2.11
Method (c) Learning Accuracy (↑) Total Lrn Acc (↑)

FT-seq 98.30±2.17 98.06±0.33 99.96±0.06 99.44±0.06 99.42±0.17 95.99±0.56 59.20±1.15 92.91

EWC [26] 81.78±1.29 66.20±0.42 46.30±3.54 79.30±0.71 80.90±7.92 48.00±1.27 32.80±7.35 62.18
LwF [30] 82.05±0.07 76.00±1.27 45.20±3.82 61.05±0.07 89.55±2.05 39.30±0.85 41.60±0.42 62.11
L2P [58] 89.57±0.71 89.84±0.37 80.19±0.02 87.73±2.12 75.33±5.20 71.16±5.94 45.10±2.83 76.99
L2P†0 [58] 89.57±0.71 90.38±0.40 79.15±3.78 79.73±0.37 70.96±4.24 73.71±1.53 45.38±2.83 75.55
DualPrompt [57] 90.54±0.35 92.14±0.37 86.70±2.74 84.04±0.22 87.55±1.90 65.91±1.20 47.33±4.47 79.17
DualPrompt† [57] 90.54±0.35 92.14±0.37 87.12±0.04 86.18±1.05 90.18±1.58 71.15±3.13 48.81±3.36 80.87
DAP 96.37±0.74 92.91±0.19 98.54±0.47 98.26±0.85 99.34±0.09 84.49±2.45 53.47±2.88 89.05
Table 1. Results on class-incremental learning on various data domains. † indicates that the method is carefully tuned with pool-
related hyperparameter searches on each data domain using their validation sets. Datasets are sorted with domain similarity to ImageNet
in descending order from left to right.

↑) [44] of the ability to acquire new information well. Fur-
thermore, to evaluate robustness against the domain gap be-
tween source and target data, we report the total average
accuracy (Total Avg Acc ↑), which is the average of Avg
Acc for all datasets with varying domain similarity. Refer
to Supp. D for a detailed description of evaluation metrics.

We follow two evaluation setups in the literature [57, 58],
namely batch- and instance-wise inference3. For the former,
multiple testing instances with the same label constitute a
batch, while for the latter, each testing instance is consid-
ered a batch. We report the results of the batch-wise setup
as the main results following L2P and DualPrompt. The
results of the instance-wise setup are presented in Supp. E.

Implementation. We train DAP using Adam [24] with
β1, β2 of 0.9, learning rate of 0.01, and batch size of 128.
We resize the input images to 224×224 resolution and nor-
malize them between 0 and 1. Regarding hyperparameters,
we set the prompt sequence length p to 10, the balancing
term λ to 0.1, and, the task embedding size to 16 through-
out all experiments. We use a single classifier head at infer-
ence. To ensure models converge, we train Split Pets, Split
RESISC45, Split ISIC, and Split ChestX for 30 epochs per

3https://github.com/google-research/l2p/tree/main/configs

Method Total Avg Acc (↑) Additional Parameters
Min. Max.

L2P [58] 55.91 0.08M 0.16M
L2P† [58] 65.08 0.16M 0.39M
DualPrompt [57] 71.79 0.25M 0.33M
DualPrompt† [57] 73.56 0.33M 1.02M
DAP 87.24 0.36M 0.44M

Table 2. Paramter efficiency comparison. We compare the num-
ber of minimum and maximum additional parameters required for
Table 1’s results by the three prompt-based CL methods.

each task, and Split CIFAR-100, Split EuroSAT, and Split
CropDiseases for 5 epochs per each task. MLP consists of a
single linear layer. The hyperparameters of L2P and Dual-
Prompt are set to the best ones for Split CIFAR-100 given
in the original paper. The implementation details including
the hyperparameter search are provided in Supp. C.

5.1. Main Results with Varying Domain Similarity

Average Accuracy. Table 1(a) compares the average ac-
curacy of five different CL methods including DAP on
seven datasets with varying domain similarity. As the do-
main similarity gets lower, the average accuracies of the
two existing prompt-based methods, L2P and DualPrompt,
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Ablated Components Split CIFAR-100 Split EuroSAT Split ISIC
Avg Acc (↑) Forgetting (↓) Lrn Acc (↑) Avg Acc (↑) Forgetting (↓) Lrn Acc (↑) Avg Acc (↑) Forgetting (↓) Lrn Acc (↑)

None 94.05±1.19 2.28±0.96 96.37±0.74 98.18±0.56 0.61±0.53 98.54±0.47 84.18±2.54 0.72±0.42 84.49±2.45

(A) w/o LN layer 94.01±1.58 2.46±1.25 95.96±0.74 96.39±1.35 1.26±0.42 97.00±1.35 79.98±1.02 1.30±0.87 80.02±0.46
(B) w/o input tranpose 78.47±1.66 8.50±2.01 85.53±0.80 46.64±1.85 37.65±2.55 79.76±1.02 60.28±3.02 15.30±1.97 71.33±2.16
(C) w/o MLP layer 87.30±1.27 6.48±1.70 92.50±0.64 79.95±2.97 7.24±1.19 85.48±1.93 46.30±4.45 22.21±3.33 64.33±2.91
(D) w/o LT layer 79.76±1.84 8.26±0.71 86.68±1.81 52.03±2.83 12.47±3.54 61.01±1.41 41.61±2.93 8.13±0.35 47.19±2.80

Table 3. Ablation studies on the layers of the adaptive prompt generator (G). The domain similarity with ImageNet decreases in order
of Split CIFAR-100, Split EuroSAT, and Split ISIC. See text for detailed explanations.

Method Split ImageNet-R Split DomainNet
Avg Acc Forgetting Lrn Acc Avg Acc Forgetting Lrn Acc

L2P 60.98±0.70 9.93±0.43 69.23±0.78 80.67±0.85 5.33±0.87 85.14±0.99
DualPrompt 68.97±2.87 4.66±2.15 72.85±2.27 81.89±0.63 5.21±1.17 87.27±1.80
DAP 70.12±2.24 2.90±2.70 73.24±2.81 83.51±1.07 5.30±0.52 88.77±0.79

Table 4. Results on benchmarks with a large number of classes.

drop much greater than that of the two regularization-based
methods, EWC and LwF. That is, the methods of using a
frozen backbone with the prompt pool are indeed vulnerable
to a domain gap between source and target data. The pool-
related hyperparameter tuning with prior domain knowl-
edge improves their average accuracy by up to 26.6% (see
L2P† and DualPrompt†), but still the performance is much
worse than DAP without any domain-based tuning. Since
the prompts by DAP can tune the frozen backbone to adapt
even distant domains, its total average accuracy over all
datasets is higher by 13.7–31.1% than the two prompt-
based methods including their improved ones.

Forgetting Measure and Learning Accuracy. In Tables
1(b) and 1(c), we observe that DAP outperforms other meth-
ods not only on average accuracy but also on forgetting
measure and learning accuracy. This is presumably because
unlike the existing methods that select prompts from the
optimized pool, DAP creates a suitable prompt on-the-fly
based on the transposed input tokens, as in Eq. (7). Thus,
DAP can achieve finer granularity in the prompt generation,
enabling fine-grained encoding. As a result, except the FT-
seq method, DAP attains the lowest forgetting measure and
the highest learning accuracy in every dataset, explaining
the high average accuracy of DAP in Table 1(a).

Parameter Efficiency. Table 2 summarizes the number
of additional learnable parameters introduced by the three
prompt-based methods including their total average accu-
racy. L2P and DualPrompt require a small amount of ad-
ditional learnable parameters for prompts and classification
heads (see the 1st and 3rd rows). However, the number of
required parameters greatly increases by up to 3 times if the
pool size increases by the pool-related hyperparameter tun-
ing (see 2nd and 4th rows). Contrarily to them, DAP main-
tains a consistently small number of learnable parameters
while achieving the best average accuracy. The change in
the number of learnable parameters of DAP is attributed to
an increase in the number of task embeddings and classifi-

cation heads, which are independent of prompts.

ImageNet-R and DomainNet. Moreover, to demonstrate
that DAP is not only resilient to domain shifts but also per-
forms well on larger and longer benchmarks, we experiment
with Split ImageNet-R [57] and Split DomainNet [39], and
report the results in Table 4. Further analysis and results on
a different number of sequences are presented in Supp. G.

5.2. Component Ablation Study

The adaptive prompt generator consists of three lay-
ers and input transpose: (A) the normalization layer, LN in
Eq. (7), for input tokens, (B) the normalized input tokens are
transposed before passing through MLP layer, ⊤ in Eq. (7),
(C) the MLP layer with the transposed input, MLP in Eq. (7),
to generate an instance-specific prompt token, and (D) the
linear transformation layer, LT in Eq. (7), to embed supple-
mentary instructions for prediction. Table 3 removes each
layer or input transpose from the canonical DAP, and report
the results on Split CIFAR-100, Split EuroSAT, and Split
ISIC, belonging to natural, aerial, and medical domains, re-
spectively. For (B), a fixed random mapping is performed to
match the dimension of the created adaptive prompt token
with the dimension of other input tokens. For (C), instead
of using the MLP layer, we initialize a fixed random prompt
token and pass it through the LT layer.

First, (A) the removal of the pre-activation LN puts un-
normalized patch tokens to the MLP and LT layers, so the
overall performance shows a slight decline, however, the
degree of degradation is quite significant when dealing with
datasets with distant similarity to ImageNet. That is, the
normalization and affine transformation of the LN layer
seem to contribute to improving the adaptation ability to
a specialized domain. Second, (B) if the input tokens are
not transposed, the information used to train MLP is limited
to each individual input token, rather than a combination of
all tokens’ each dimension. This means that MLP cannot en-
code instance-specific instructions that take into account the
relationship between input tokens. Empirically, when input
transpose is not used, all benchmarks suffer from a drastic
performance drop. Third, (C) the removal of MLP disables
the instance-level prompt generation. Therefore, the perfor-
mance drop gets severe as the domain similarity decreases.
On Split CIFAR-100 with high domain similarity, the degra-
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(a) DualPrompt with G- and E-prompts. (b) DAP with instance-wise (IP) and adaptive (AP) prompts.

Figure 3. t-SNE plots on prompts. For a single batch of each task (t1-t10) on Split CIFAR-100, we compare G-prompt (G)
and E-prompts (E) selected by DualPrompt (left) vs. instance-wise (IP) and adaptive (AP) prompts generated by MLP

(
LN(E)⊤

)
and

LT
(
MLP

(
LN(E)⊤

)
), respectively (right). Each point represents a prompt vector of d-dimension, and all the prompts are taken from the final

model of each method.

dation is relatively small, while the degradation is signif-
icant on the rest two datasets with low similarity. These
results empirically confirm that the MLP layer with the trans-
posed input is a necessity for encoding instance-specific
domain-related information. Particularly, when only LT is
used without MLP, DAP is prone to vulnerable to catas-
trophic forgetting (see the Forgetting in Split EuroSAT and
ISIC). Fourth, (D) the removal of LT disables the encoding
of additional beneficial instructions for prediction based on
input feature similarity. Thus, regardless of domain sim-
ilarity with ImageNet, learning accuracy (Lrn Acc) is af-
fected. As a result, the three layers and input transpose must
be combined all together for pool-free prompt-based CL,
which is effective for benchmarks with varying domains.

5.3. Hyperparameter Search

Figure 4. Ablation on p.

The sequence length p of a
single prompt is a tunable hyper-
parameter that can largely affect
DAP’s performance. Regarding
the sequence length, the p deter-
mines the capacity of the single
prompt to encode knowledge for
desired instructions. Figure 4
shows that DAP obtains consistently high average accu-
racy as long as the prompt length is greater than 10 for
the three datasets with different domain similarities to Ima-
geNet. Therefore, we set to fix p = 10 for all experiments.

The performance of DAP is also influenced by the num-
ber of training epochs before freezing the MLP layer. How-
ever, we empirically find that the performance of DAP re-
mains robust against variations in the number of training
epochs. We explore the influence of the number of training
epochs on MLP and report them in Supp. F. We also con-
firm that the performance remains consistent when the class
order is randomly shuffled, which we report in Supp. F.

Selection Size: 5 Prompt Pool Size: 100

Figure 5. Scalability of L2P and DualPrompt on Split ISIC when
expanding pool-related hyperparameters.

5.4. t-SNE Plots for Prompt Comparison

Because both DualPrompt and DAP utilize the task-
specific key, we compare our generated prompts with the
G- and E-prompts of DualPrompt using t-SNE [50] in Fig-
ure 3. Although the G- and E-prompts also learn task-
invariant and task-relevant knowledge, respectively, they
exhibit monotonous patterns with low diversity because
they are chosen from the prompt pool of fixed size. Dual-
Prompt encodes the group-wise instructions that are typi-
cally necessary for a given set of inputs belonging to a cor-
responding task. In contrast, using MLP conditioned on the
transposed input, DAP first generates the necessary instruc-
tion capacity to more efficiently guide the pre-trained repre-
sentation through instance-level prompting. Then, DAP in-
corporates task-relevant information that can improve plas-
ticity along with the instance-level prompts exhibiting much
higher diversity relying on each input instance.

6. Discussion: Scalability of Prompt Pool
One might argue that L2P and DualPrompt can be more

robust against a large domain gap by simply increasing the
prompt pool size and the number of selected prompts for a
batch. This is partially true but not sufficient to obtain satis-
factory performance. For a concrete answer, we test their
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scalability with respect to the increased number of pool-
related parameters, namely pool size and selection size. Fig-
ure 5 shows the scalability results using Split ISIC (medical)
with a large domain gap from ImageNet (natural). There
are some accuracy improvements before a certain size of
pool and selection–i.e., 100 and 5 for each–but the accuracy
remains almost the same regardless of further increases in
their sizes. This is likely attributed to the key-value based
query strategy of L2P and DualPrompt. With this strategy,
the difficulty of finding proper prompts from the pool is
prone to increase drastically as the pool and selection size
increase. However, DAP takes patch tokens as input and
generates the appropriate per-instance prompt, so even in
Split ISIC, it achieve much higher performance only with a
single prompt–i.e. the green square box.

7. Conclusion

Prompt-based CL, showing impressive performance
without a replay buffer, has arisen in the field of CL. L2P
and DualPrompt revise prompting to well adapt to the CL
problem. However, this trend raises a different question,
wondering about the scalability of the prompt-based CL
methods on benchmarks with varying levels of domain sim-
ilarity to ImageNet. To our knowledge, this is the first work
that sorts out this curiosity and shows the limitations of the
existing prompt-based CL methods on CL benchmarks with
various domains. To overcome it, we propose DAP, a pool-
free framework consisting of a prompt generator enabling
pre-trained ViT-backed CL to be independent of domain re-
liability, while maintaining a significant performance.
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earns gödel prize. https://www.
ibm.com/blogs/research/2014/05/
simple-threshold-algorithm-earns-godel-prize/,
2014. Accessed: 2017-02-01. 5

[22] Dahuin Jung, Dongjin Lee, Sunwon Hong, Hyemi Jang, Ho
Bae, and Sungroh Yoon. New insights for the stability-
plasticity dilemma in online continual learning. In ICLR,
2023. 1

[23] Muhammad Uzair Khattak, Hanoona Rasheed, Muham-
mad Maaz, Salman Khan, and Fahad Shahbaz Khan.
Maple: Multi-modal prompt learning. arXiv preprint
arXiv:2210.03117, 2022. 3

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[25] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sci-
ences, 114(13):3521–3526, 2017. 1

[26] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sci-
ences, 114(13):3521–3526, 2017. 3, 5, 6

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[28] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021. 3

[29] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021. 3

[30] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935–2947, 2017. 5, 6

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt, and

predict: A systematic survey of prompting methods in nat-
ural language processing. arXiv preprint arXiv:2107.13586,
2021. 1, 2

[32] David Lopez-Paz, Robert Nishihara, Soumith Chintala,
Bernhard Scholkopf, and Léon Bottou. Discovering causal
signals in images. In CVPR, pages 6979–6987, 2017. 5

[33] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In CVPR,
pages 7765–7773, 2018. 1

[34] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-
incremental learning: survey and performance evaluation
on image classification. arXiv preprint arXiv:2010.15277,
2020. 3

[35] James L McClelland, Bruce L McNaughton, and Randall C
O’Reilly. Why there are complementary learning systems in
the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory.
Psychological Review, 102(3):419, 1995. 1

[36] Sharada P Mohanty, David P Hughes, and Marcel Salathé.
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