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Abstract

Pre-trained vision-language models, e.g., CLIP, work-
ing with manually designed prompts have demonstrated
great capacity of transfer learning. Recently, learnable
prompts achieve state-of-the-art performance, which how-
ever are prone to overfit to seen classes, failing to gen-
eralize to unseen classes. In this paper, we propose a
Knowledge-Aware Prompt Tuning (KAPT) framework for
vision-language models. Our approach takes the inspira-
tion from human intelligence in which external knowledge
is usually incorporated into recognizing novel categories of
objects. Specifically, we design two complementary types
of knowledge-aware prompts for the text encoder to lever-
age the distinctive characteristics of category-related ex-
ternal knowledge. The discrete prompt extracts the key in-
formation from descriptions of an object category, and the
learned continuous prompt captures overall contexts. We
further design an adaptation head for the visual encoder
to aggregate salient attentive visual cues, which establishes
discriminative and task-aware visual representations. We
conduct extensive experiments on 11 widely-used bench-
mark datasets and the results verify the effectiveness in few-
shot image classification, especially in generalizing to un-
seen categories. Compared with the state-of-the-art Co-
CoOp method, KAPT exhibits favorable performance and
achieves an absolute gain of 3.22% on new classes and
2.57% in terms of harmonic mean.

1. Introduction
Recently, large-scale pre-trained vision-language mod-

els, e.g., CLIP [29], ALIGN [15], and FLIP [44], have
demonstrated remarkable performance in zero/few-shot
learning tasks. Unlike traditional vision-only frameworks
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(a) (b) (c)

What's the  Gentiana
Acaulis? Gentiana Acaulis

.. leaves are evergreen in a
basal rosette, forming clu-
mps. The flowers are blue
with olivegreen spotted...

Figure 1: A motivating example. The textual description
of the “Gentiana Acaulis” conduces to the recognition of
the corresponding image (b) of Gentiana Acaulis.

that are trained mainly by a closed set of single-modal
data, vision-language models train two uni-modal encoders
on massive amounts of image-text pairs to exploit cross-
modal alignments in the semantic space. By leveraging
large-scale web-scale image-text data, pre-trained vision-
language models are endowed with the ability to solve
zero/few-shot downstream tasks and even recognize open-
set visual concepts [29, 15, 44]. Expressly, when a new
classification task arrives, the CLIP text-encoder encodes
manually designed textual prompt (e.g., “a photo of a [la-
bel].”), and then cosine similarity between textual features
and image features is computed. However, identifying ap-
propriate manually designed prompts is an art that requires
both domain expertise and laborious prompt engineering.

To avoid the manual prompt design, some recent re-
search (e.g., CoOp [49]) on visual representations are
mainly inspired by prompt tuning approaches [47, 18,
21] in Natural Language Processing (NLP), like learn-
able prompts. By optimizing their models with learnable
prompts in closed datasets, these methods achieve outstand-
ing performance in seen classes. However, the learned
prompts are usually prone to overfit to the seen classes
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Prompts Dataset Acc. Dataset Acc. Dataset Acc.

Original 
Prompts 42.4 24.2 83.7

Knowledge 
Prompts 42.8 25.2 86.4

Original 
Prompts 60.9 74.5 86.0

Knowledge 
Prompts 67.3 75.9 83.4

DTD EuroSAT OxfordPets

Flowers101 Food101 Caltech

Figure 2: External knowledge improves the generaliz-
ability of CLIP. We perform zero-shot classification with
discrete prompts on six image classification datasets. The
original prompt from CLIP [29] is a photo of a [label]. The
proposed knowledge prompt concatenates category-related
external knowledge from the Wikipedia Encyclopedia with
the original prompt.

and suffer from insufficient generalization ability to unseen
classes under the same task.

Recently, CoCoOp [48] was developed to improve the
generalizability. The model constructs specific prompts
by conditioning them on each instance, which achieves
stronger robustness to category shift. Nonetheless, their
learnable prompts are shared across all categories, which
leads to weak discrimination between distinct characteris-
tics of different categories; meanwhile, the model is inca-
pable of perceiving factual details for class labels due to
lack of fine-grained textual information on category, es-
pecially for uncommon classes that are rarely encountered
during pre-training or have poor relevance to seen classes.
Thus, the CoCoOp model still falls short of the generaliz-
ability to unseen scenarios.

Inspired by how humans utilize knowledge bases to learn
novel visual concepts, we propose to incorporate external
knowledge into prompt learning by leveraging accurate de-
scriptions of concepts and their contextual relationships to
overcome the aforementioned issues. As a motivating ex-
ample, we can see in Figure 1 that it is generally hard for
humans to imagine the visual appearance of uncommon cat-
egories, and even harder to recognize them when seeing a
scientific name for the first time (e.g., Gentiana acaulis).
However, once we learn the key characteristics by read-
ing the textual description from the knowledge base, it be-
comes much easier to recognize the images and the corre-
spondence between different categories. Considering that
textual descriptions of scientific names are unparalleled and
contain identifying authentication information, we assign
unique knowledge for each category to improve the general-
ization ability by enhancing the discrimination of prompts.

Specifically, we present a novel, Knowledge-Aware
Prompt Tuning (KAPT) framework for vision-language
models. We first retrieve encyclopedic knowledge related
to category names from Wikipedia Encyclopedia contain-

ing a large number of entity descriptions. To take full ad-
vantage of category-related external knowledge, we design
two complementary types of prompts: discrete and learn-
able continuous prompts. Discrete prompts carry the sum-
marized texts that directly describe the visual appearance of
the category, and learnable continuous prompts carry con-
textual information that may cover a broader background of
the category. As shown in Figure 2, a preliminary experi-
ment verifies that the proposed discrete knowledge-aware
prompt improves performance of CLIP on several image
datasets. Meanwhile, to further adapt the visual represen-
tation towards a specific task for inhibiting disturbance of
task-irrelevant visual concepts, we propose an adaptation
head that refines the image features by attending to the
salient visual cues relevant to categories of the target task.

The main contributions can be summarized as follows:

• We propose a novel prompt tuning framework for
vision-language models by incorporating external
knowledge, which greatly improves the generalizabil-
ity on unseen object categories.

• We design two complementary types of knowledge-
aware prompts, which enables the model to fully ex-
ploit category-related dense knowledge retrieved from
the Wikipedia Encyclopedia.

• We further propose a task-aware visual adaptation
head to aggregate the attentive visual features condi-
tioned on linguistic description of categories, which
maximally capture task-related visual cues, while sup-
pressing the disturbance caused by task-irrelevant vi-
sual concepts.

• Extensive experimental results on 11 popular image
datasets demonstrate the effectiveness of the proposed
method. Our method significantly outperforms state-
of-the-art methods on the overall metric in the base-to-
new generalization setting.

2. Related Work
2.1. Vision-Language Pre-training

In recent times, the introduction of extensive image-text
data into pre-trained vision-language models has emerged
as a prominent trend [29, 15, 44, 19, 20, 5, 39]. A rep-
resentative work is CLIP [29], which aggregates 400 mil-
lion image-text pairs from websites, facilitating the vision-
language representation learning using a contrastive objec-
tive. Contemporary work with CLIP, ALIGN [15] also takes
advantage of a large-scale dataset, 1.8 billion noisy image-
text pairs, to pre-train a model with contrastive loss. These
vision-language models are dual-encoder architectures con-
sisting of an image encoder and a text encoder. Leveraging
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Abyssinian: The Abyssinian is a breed of
domestic short-haired cat with a
distinctive ticked tabby coat, ...
Mexican Petunia: Ruellia simplex, the
Mexican petunia, Mexican bluebell or
Britton's wild petunia, is a species ...
...

Abyssinian: the abyssinian is a breed of
domestic short-haired cat.
Mexican Petunia: the Mexican petunia is
a species of flowering plant in the family
Acan.
Pug: pug is a type of dog with a wrinkly
face.
...

Discrete Prompt

WikiPedia Knowledge

Figure 3: Overview of our proposed KAPT (Knowledge-Aware Prompt Tuning) for vision-language models. We first
retrieve textual descriptions of task labels from the external knowledge base. Then, we construct the discrete and continuous
knowledge prompts to enhance the discrimination of prompts for each category. The discrete, continuous prompts and the
class label are concatenated as the input for the text encoder. The output tokens for the image encoder are modulated by an
adaptation head, which aggregates task-related visual cues conditioned on high-level text features. The final classification
confidence is obtained by calculating the cosine similarity between visual and text embeddings. Wikipedia knowledge (top
left) is sourced from Wikipedia Encyclopedia, denoted as {category:description}. Discrete prompts (lower left) are sum-
maries of corresponding descriptions in Wikipedia. and represent frozen and tunable weights during tuning, respectively.

extensive image-text pairs and dual-encoder architectures,
these approaches showcase remarkable prompt-based zero-
shot performance across diverse visual classification tasks,
by exploiting alignments between text and image features.

2.2. Prompt Learning

With the continuous parameter scaling of pre-training
models like GPT-3 [3] and CLIP, fine-tuning the entire mod-
els for downstream tasks becomes daunting because of in-
efficiency in parameters and potential catastrophic forget-
ting [28]. Notably, recent works [21, 4, 47] have introduced
prompt learning that exclusively fine-tune a limited parame-
ter subset, yielding robust results in NLP tasks. Inspired by
the swift proliferation of prompt learning within NLP, the
computer vision domain has also delved into prompt tuning
for resolving downstream tasks [38, 45, 1, 16, 41, 8]. In
this context, manual prompt templates within CLIP (e.g., “a
photo of a [label]”) have been employed for image recogni-
tion. However, research in NLP [10] reveals that identifying
suitable manual prompts demands both domain expertise
and laborious prompt engineering. Some works [49, 31]
adopt learnable continuous prompts to make the vision-
language model recall the task-relevant knowledge. Due to
the weak generalizability of simple learnable prompts, Co-
CoOp [48] proposes conditional prompts by further learn-
ing a lightweight neural network to generate an input-
conditional token for each image. Different from previous
works, we advance the generalization of prompt learning by
incorporating external knowledge, achieved by integrating
accurate descriptions of concepts and their relationships.

2.3. External Knowledge Bases

In natural language processing (NLP), external knowl-
edge bases, such as WordNet [25] and ConceptNet[35],
are frequently harnessed to enhance performance [22, 46].
Early attempts [42, 24] in the computer vision community
have also verified its effectiveness in visual question an-
swering. Another notable work K-LITE[33], distinctively
employs external knowledge in the vision-language pre-
training phase, yielding visual models with better transfer-
ability and sample efficiency. However, within the scope
of prompt tuning for vision-language models, there is little
attention on harnessing external knowledge for model gen-
eralization. Moreover, our knowledge base and task-related
knowledge extraction methods, derived from visual entity
understanding, distinctly set our work apart from previous
NLP research.

3. Methodology

KAPT is a prompt tuning method that incorporates
category-related external knowledge into vision-language
pre-training models. Our method builds upon CLIP [29] to
effectively leverage its strong zero/few-shot transferability
(Section 3.1). To construct knowledge-aware prompt tun-
ing, we propose two variants of prompts to take full ad-
vantage of category-related external knowledge and a task-
aware visual adaptation head to adapt the visual representa-
tion toward a specific task (Section 3.2). The overall frame-
work is illustrated in Figure 3.
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3.1. Preliminary: Prompting for CLIP

The CLIP model [29] is a typical dual-encoder architec-
ture consisting of an image encoder and a text encoder. For
each image-text pair, an image and the paired text are trans-
formed into high-dimensional embeddings by image en-
coder (e.g., ResNet [11]) and text encoder (e.g., Transform-
ers [36]), respectively. The training objective is to align the
uni-modal embeddings by contrastive learning, where the
model pulls paired image-text together and pushes the un-
paired ones away in latent space. By pre-training on 400M
large-scale web datasets, the learned visual representations
are discriminative and transferable to zero/few-shot down-
stream tasks.

For the zero-shot transfer to image classification with N
classes, CLIP constructs a simple prompt “a photo of a [la-
bel]”, fills label with each class name Ci, and hence ob-
tains the corresponding textual embedding wi by the text
encoder. Meanwhile, the image I is fed into the image
encoder to generate image embedding x. The prediction
probability is acquired by calculating the cosine similarity
between the image embedding and N text embeddings:

p (y = i|x) = exp(sim(x,wi)/τ)∑N
j=1 exp(sim(x,wj)/τ)

, (1)

where sim(·, ·) represents the computation of cosine simi-
larity, and τ represents the temperature ratio.

3.2. Knowledge-Aware Prompt Tuning (KAPT)

The manually designed prompts of CLIP show infe-
rior performance compared with learnable prompts trained
on few-shot datasets. However, learnable prompts usually
overfit to seen classes, suffering from the weak generaliz-
ability problem in unseen classes. To improve the general-
izability to novel concepts under the same task, we present
a novel prompt tuning method called Knowledge-Aware
Prompt Tuning (KAPT). Specifically, we design two com-
plementary knowledge-aware prompts to take full advan-
tage of category-related external knowledge, and we pro-
pose a task-aware visual adaptation head to capture task-
related visual cues.

Summarized Knowledge. Category-related knowledge
is retrieved from the open-source external knowledge base.
Note that from existing external knowledge bases [25, 35],
it is difficult to retrieve related knowledge for rare or fine-
grained concepts, thus resulting in a lower coverage of cat-
egories in mainstream vision datasets. For a high cover-
age rate of object categories of downstream datasets, we
use textual descriptions sourced from Wikipedia Encyclo-
pedia to form a category knowledge base K for a specific
downstream task. However, the resultant textual knowl-
edge is usually expatiatory and contains irrelevant informa-
tion for visual recognition. To remove redundant informa-

tion from category-related external knowledge, we feed the
knowledge into T5 [30], an end-to-end pre-training model
which takes text as input and is expected to output modi-
fied text summarizing the description of each category. The
short text summary is considered as the automatic discrete
prompt D for capturing the key description of categories.

Contextual Knowledge. In simplified text descriptions,
some category-related information is inevitably filtered as
redundant information. In order to make prompts carry con-
textual information that may cover a broader background
of the category, we feed category-related external knowl-
edge retrieved from K into a pre-trained KEPLER [40]
model to generate continuous features. Furthermore, we
map obtained continuous features to the multi-modal em-
bedding space by employing a lightweight projector which
is composed of two linear layers with a bottleneck struc-
ture. The features are then combined with the context vec-
tors to construct the learnable continuous prompt C for the
corresponding category. Note that the context vectors are
learnable parameters with random initialization.

Knowledge-Aware Prompts. To take full advantage
of category-related external knowledge and considering
learning-based continuous prompts have a higher risk of
overfitting towards seen classes than discrete prompts, we
concatenate learnable continuous prompt Cyi

, yi, and au-
tomatic discrete prompt Dyi

to build knowledge-aware
prompt for category yi. Feeding knowledge-aware prompts
into the text encoder fT (·), we obtain the text features
W = {wi}Ni=1 which are used to calculate similarity with
visual representations and provided to adaptation head as
the salient cues relevant to categories.

Adaptation Head. Given an image I , the image en-
coder f I (·) transforms I into a set of visual feature vec-
tors X = [xcls,x1, . . . ,xj , . . . ,xL]. To further adapt the
visual representation towards a specific task to reduce dis-
turbance of task-irrelated visual concepts, we construct the
task-aware visual adaptation head to focus the attentive vi-
sual features by attending to the salient cues relevant to cate-
gories. For each text features wi, we take it as query vector,
and image features X as the key and value vector.

X̂cls
i = LN(xcls +CrossAttention(wi;X)), (2)

where X̂cls
i represents the enhanced image features,

CrossAttention(·) refers to cross attention, LN is Layer
Normalization and xcls denotes the [CLS] token of the in-
put image. To converge all information of X̂cls

i , we obtain
the mean image features by computing the average of all
enhanced image features [X̂cls

i ]Ni=1.

X̄ = AvgPool([X̂cls
i ]Ni=1) =

1

N

N∑
i=1

X̂cls
i , (3)
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Table 1: Evaluation on the base-to-new generalization setting. Prompt-based methods learn their prompts from the base
classes with 16 shots. We report the accuracy on base and new classes. H (Harmonic mean) evaluates overall performance.

(a) Average over 11 datasets.

Base New H

CLIP 64.83 70.27 67.44

CoOp 79.88 59.39 68.12
CoCoOp 76.70 67.30 71.69
KAPT 78.41 70.52 74.26

(b) ImageNet.

Base New H

CLIP 67.50 64.00 65.70

CoOp 71.30 62.40 66.55
CoCoOp 70.90 66.66 68.71
KAPT 71.10 65.20 68.02

(c) Caltech101.

Base New H

CLIP 93.70 94.00 93.84

CoOp 97.30 89.10 93.01
CoCoOp 97.13 93.06 95.05
KAPT 97.10 93.53 95.28

(d) OxfordPets.

Base New H

CLIP 86.80 96.30 91.30

CoOp 91.20 89.73 90.46
CoCoOp 93.43 94.66 94.04
KAPT 93.13 96.53 94.80

(e) StanfordCars.

Base New H

CLIP 60.90 69.90 65.09

CoOp 75.16 50.63 60.50
CoCoOp 65.86 66.03 65.94
KAPT 69.47 66.20 67.79

(f) Flowers102.

Base New H

CLIP 68.70 72.40 70.50

CoOp 96.46 54.23 69.43
CoCoOp 90.43 63.66 74.72
KAPT 95.00 71.20 81.40

(g) Food101.

Base New H

CLIP 84.50 84.10 84.29

CoOp 82.80 80.30 81.53
CoCoOp 86.20 87.00 86.59
KAPT 86.13 87.06 86.59

(h) FGVCAircraft.

Base New H

CLIP 20.10 28.10 23.43

CoOp 34.10 18.96 24.37
CoCoOp 27.13 25.00 26.02
KAPT 29.67 28.73 29.19

(i) SUN397.

Base New H

CLIP 69.80 73.10 71.41

CoOp 78.40 62.20 69.36
CoCoOp 77.23 74.73 75.96
KAPT 79.40 74.33 76.78

(j) DTD.

Base New H

CLIP 53.90 58.10 55.92

CoOp 77.13 41.43 53.90
CoCoOp 73.56 52.70 61.40
KAPT 75.97 58.30 65.97

(k) EuroSAT.

Base New H

CLIP 43.40 61.40 50.85

CoOp 92.13 51.83 66.34
CoCoOp 82.33 50.00 62.21
KAPT 84.80 67.57 75.21

(l) UCF101.

Base New H

CLIP 63.90 71.60 67.53

CoOp 82.76 52.53 64.27
CoCoOp 79.50 66.76 72.57
KAPT 80.83 67.10 73.33

where X̄ represents average-pooled image features. We
then compute the cosine similarity between X̄ and text fea-
tures W,

p
(
y = i|X̄

)
=

exp(sim(X̄,wi)/τ)∑N
j=1 exp(sim(X̄,wj)/τ)

, (4)

where τ is a learned temperature parameter and sim(·) de-
notes cosine similarity.

Training Objective. During training, we update the gra-
dients of knowledge-aware prompts and adaptation head
while keeping the parameters of CLIP frozen. The training
objective is to minimize he cross-entropy loss:

Lce = −
∑
i

log p
(
y = i|X̄

)
, 1 ≤ i ≤ N. (5)

4. Experiments
4.1. Experimental Setup

Datasets. For evaluation, we perform extensive experi-
ments on 11 image classification datasets: Flowers102 [26],
OxfordPets [27], Food101 [2], StanfordCars [17], FGV-
CAircraft [23], SUN397 [43], DTD [6], EuroSAT [12],
UCF101 [34], Caltech101 [9], and ImageNet [7]. These
datasets cover a variety of fine-grained classification tasks,
building an all-around benchmark, including species of
plants or animals, satellite imagery of traffic, and diverse
general objects. Meanwhile, we use Wikidata5m [40],
the main source of external knowledge, which is a large-
scale knowledge graph dataset with aligned text descrip-
tions from the corresponding Wikipedia pages.

Training Details. We adopt ViT-B/32 as the backbone
network for all experiments. For constructing automatic
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Table 2: Model comparison in the one-shot setting. We fine-tune KAPT and other models mentioned above on 11 datasets
with only one sample in each category, where KAPT performs best in the average.

(a) Comparison to CoOp and CoCoOp in one-shot setting.

Method
Image

Net
Caltech

101
Oxford

Pets
Stanford

Cars
Flowers

102
Food
101

FGVC
Aircraft

SUN
397

DTD
Euro
SAT

UCF
101

Avg.

CoOp 60.20 91.16 86.43 60.56 71.06 74.73 15.23 63.90 47.66 55.46 66.23 62.96

CoCoOp 64.50 92.43 87.43 60.60 68.30 79.46 10.26 65.66 45.46 48.60 67.56 62.75

KAPT 62.90 89.63 87.60 60.73 74.17 78.07 22.13 64.50 50.93 46.50 65.90 63.91

(b) Model ablations.

Method Avg.

Baseline 62.96
w/ knowledge 63.47
w/ adaptation 63.20
KAPT 63.91

discrete prompts, we set the maximum length of discrete
prompts and beam search as 20 and 6, respectively. We
fix the number of context tokens for automatic continuous
prompts to 16. The adaptation head is configured with the
dropout rate of 0.1 and 8 attention heads. Throughout train-
ing, the initial learning rates for both the knowledge-aware
prompts and adaptation head are established at 0.002 and
0.005, respectively, with adjustment governed by the co-
sine annealing rule. Our optimization approach employs
SGD, and we set the maximum epoch count to 50. To en-
sure fair comparisons with previous works, we average the
three scores with different seeds. All experiments are con-
ducted on a single Tesla V100 GPU with 32GB memory,
within the PyTorch framework.

Compared Methods. We compare KAPT with existing
representative prompting methods based on CLIP. CoOp
[49] is the landmark prompt tuning method, which learns
the context prompt to make CLIP recall the task-relevant
knowledge for downstream image recognition. To over-
come the deficiency of learnable prompts on generalization
ability, CoCoOp [48] proposes conditional prompts with a
network module to improve the generalization on unseen
classes. Note that the results of baseline models are ob-
tained by the released official codes.

4.2. Comparison with State-of-the-Art Methods

The performance of KAPT and two baselines are shown
in Table 1. KAPT achieves outstanding performance and
establishes state-of-the-art results on the overall accuracy
(evaluated by harmonic mean). Compared to CoOp, KAPT
demonstrates an overall performance improvement across
all datasets, with a notable increase of 11.13% particularly
on unseen classes. As the generalization to unseen classes
is an essential capability of models, CoCoOp proposes con-
ditional prompts to improve the generalizability. Although
CoCoOp achieves a better performance than CoOp, KAPT
still makes considerable progress compared with CoCoOp
in average scores of all metrics. When contrasting KAPT
with CoCoOp, improvements of 1.71%, 3.22%, and 2.57%
are observed in base classes, new classes, and harmonic
mean, respectively. Importantly, KAPT outperforms Co-
CoOp across 10 out of 11 datasets. Zhou et al. [48]

claim that CLIP is a strong competitor in unseen classes
due to learning-based prompts easily overfitting to base
classes than manual prompts. Compared with zero-shot
CLIP, KAPT achieves an absolute gain of 0.25% on new
classes and outperforms CLIP on 7 out of 11 datasets, in-
cluding ImageNet, DTD, EuroSAT, OxfordPets, Food101,
SUN397, and AirCraft101. However, it’s worth noting that
CoCoOp’s accuracy on new classes outperforms zero-Shot
CLIP only on ImageNet and SUN397.

4.3. One-shot Classification Performance

KAPT performs excellently on the generalization test,
demonstrating outstanding overall performance on the base-
to-new setting. Meantime, the anti-overfitting ability is also
essential for KAPT. Here, we train KAPT and other baseline
methods in the one-shot setting to evaluate anti-overfitting
ability. Table 2a shows the comparisons of KAPT with
other models on 11 datasets. Overall, our KAPT shows its
superiority over baseline models on average performance
on one-shot settings. It is well known that CoOp trained on
closed datasets has strong performance on seen classes in
closed datasets. However, our KAPT still beats CoOp on 8
out of 11 datasets under closed datasets and one-shot set-
ting. In Table 2b, the integration of the knowledge-aware
prompt and the adaptation head has demonstrated remark-
able achievement. The success of this approach can be at-
tributed to the fact that when the downstream task has lim-
ited samples, category-related external knowledge is able to
make up the lack of visual information to a certain extent
and assist the adaptation head in filtering out irrelevant in-
formation, which is not associated with the category.

4.4. Distribution Shift Robustness

We systematically evaluated the robustness of KAPT un-
der distribution shifts, i.e., cross-dataset transfer and do-
main generalization scenarios. In the cross-dataset transfer
scenario, we train two models seperately using ImageNet
and SUN397 datasets. Subsequently, our approach’s per-
formance was assessed across 9 diverse datasets. As ev-
ident in Table 3a, when utilizing ImageNet as the source
dataset, KAPT exhibits a modest improvement in transfer-
ability compared to CoCoOp, achieving an average accu-
racy of 61.50%, surpassing CoCoOp by 0.25%. Similarly,
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Table 3: Robustness evaluation to distribution shift. All models are trained with 16-shot samples.

(a) Cross-dataset transfer (source: ImageNet or SUN397).

Method
Caltech

101
Oxford

Pets
Stanford

Cars
Flowers

102
Food
101

FGVC
Aircraft

DTD
Euro
SAT

UCF
101

Avg.

Source dataset: ImageNet
CoCoOP 92.15 88.90 60.30 65.80 80.65 17.50 40.05 41.70 64.20 61.25
KAPT 88.90 89.40 58.15 68.00 79.95 17.95 44.80 41.35 65.05 61.50

Source dataset: SUN397
CoCoOP 90.95 80.20 52.00 57.70 76.70 12.15 37.90 43.60 66.35 57.50
KAPT 90.20 85.45 53.85 61.80 78.10 14.55 42.95 33.30 59.90 57.78

(b) Domain generalization.

Source dataset: ImageNet

Target CoCoOp KAPT

INV2 58.40 58.10

IN-S 42.00 42.30
IN-A 31.60 31.10

IN-R 66.30 66.60

Table 4: Ablation study over KAPT components. Aver-
age accuracy (%) over 11 datasets is reported.

Method Base New H

Baseline 79.41 64.02 70.88
w/ knowledge 77.70 67.24 72.09
w/ adaptation head 80.09 65.58 72.11
KAPT 78.41 70.52 74.26

when SUN397 is employed as the source dataset, KAPT
showcases slightly better performance relative to CoCoOp,
outperforming CoCoOp across 6 out of 9 datasets and yield-
ing an average accuracy gain of 0.28% over CoCoOp.

Furthermore, in order to study the robustness of our
method to domain generalization, we evaluate the trans-
ferability of the model trained on ImageNet (IN) to vari-
ous out-of-domain datasets, i.e., ImageNetV2 (INV2) [32],
ImageNet-Sketch (IN-S) [37], ImageNet-A (IN-A) [14] and
ImageNet-R (IN-R) [13]. By observing Table 3b, it be-
comes evident that KAPT and CoCoOp yield comparable
performance in the domain generalization. We conclude
that the proposed knowledge enhances the transferability to
new categories, while robust to the domain change on seen
categories.

4.5. Ablation Study

We investigate the importance of the critical components
of KAPT for its excellent generalization ability through
a series of ablation experiments. Initially, we assess the
performances of two variants, namely, ablated knowledge-
aware prompt or adaptation head, in base-to-new settings
to ascertain their necessity. Subsequently, we quantitatively
examine the essential role of discrete and learnable contin-
uous prompts in enhancing KAPT’s generalization ability
under unseen setting. Lastly, additional experiments offer
further hyperparameter analysis.

Effectiveness of Proposed Components. In our frame-
work, knowledge-aware prompts and adaptation head are
two core components. To investigate the effectiveness of

Figure 4: Performance comparisons with different shot
numbers. KAPT and CoOp/CoCoOp are trained on 11
benchmark datasets with varying shots on the base-to-new
generalization setting. KAPT outperforms other models
from 1-shot to 16-shot settings.

each component, we conduct ablation experiments to re-
veal how the combination of two modules improves the
overall performance of KAPT, especially on unseen classes.
Specifically, we carry out the experiments by adding them
one by one to observe the change in overall performance.
We take CoOp as the baseline. The experimental results are
shown in Table 4. We can find that adding the adaptation
head helps to improve the accuracy on base, new and har-
monic by a margin of 0.68%, 1.56%, and 1.23% compared
with the baseline method. The result demonstrates that the
adaptation head not only adopts visual representation to-
wards a specific task but also helps improve the model’s
generalizability on unseen classes in the same task. More-
over, we also find that adding knowledge-aware prompts
can improve the baseline by 3.22% and 1.21% on new ac-
curacy and harmonic mean. Although the base accuracy
of adding knowledge-aware prompts drops below the base-
line model, the gains on unseen classes are far outweighed
by the losses on seen classes. The result demonstrates that
knowledge-aware prompts are able to relieve the weak gen-
eralizability problem greatly. Compared to the baseline
model, KAPT constructed by knowledge-aware prompts
and adaptation head shows an improvement of 6.50% and
3.38% on classification accuracy on unseen classes and har-
monic mean.
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Table 5: Ablation study over types of prompts. We report the accuracy of KAPT (discrete + continuous) and other variant
models (with continuous only or with discrete only) across the 11 datasets in the unseen setting.

Method
Image

Net
Caltech

101
Oxford

Pets
Stanford

Cars
Flowers

102
Food
101

FGVC
Aircraft

SUN
397

DTD
Euro
SAT

UCF
101

Average

discrete + continuous 65.20 93.53 96.53 66.20 71.20 87.06 28.73 74.33 58.30 67.57 67.10 70.52
w/ continuous only 66.06 93.46 96.10 66.96 66.63 87.46 11.30 74.66 51.76 58.23 68.73 67.53

w/ discrete only 64.36 92.93 96.33 63.80 66.93 85.00 23.70 71.10 57.86 64.60 66.33 68.86

Figure 5: Attention heatmaps of adaptation head. Two
images are from Flowers102 and OxfordPets, respectively.

Generalizability of Knowledge Prompts. The con-
struction of automatic prompts is an essential part of KAPT.
Although we analyze the importance of knowledge-aware
prompts in Section 4.5, we still need to explore the inde-
pendent role and mutual influence of two different auto-
matic prompts. We consider two variant models: i) KAPT
(with continuous only) and ii) KAPT (with discrete only).
As shown in Table 5, KAPT outperforms two variant mod-
els on most datasets and obtains the best average accuracy
on unseen classes. This demonstrates that the cooperation
of the two kinds of automatic prompts can promote the im-
provement of the generalization ability of the model. Mean-
while, we discover that the average results of KAPT (with
continuous only) and KAPT (with discrete only) outper-
form KAPT (with adaptation head) in Table 4 by 1.95%
and 3.28% on unseen classes, respectively. The above find-
ings prove that any automatic prompts sourced from related-
category external knowledge help the adaptation head to re-
move task-irrelevant concepts to improve its generalization
ability. However, we also notice that our KAPT underper-
forms KAPT (with continuous only ) on 5 out of 11 datasets.
This is probably because some noise information is still re-
tained in discrete prompts and the qualities of textual de-
scriptions between the different domains in the Wikipedia
Encyclopedia have significant differences. Thus, we leave
more sophisticated data processing as future work.

Shot Number. Section 4.2 reports the performance of
KAPT, CoOp, and CoCoOp in 16-shot setting. Here, we
want to investigate further the effect of different shot set-
tings on base-to-new generalization setting. Therefore, we
conduct experiments with varying shot values on KAPT,
i.e.,1, 2, 4, 8, 16. By examining the outcomes depicted in
Figure 4, it becomes evident that the performance of both

Table 6: Performance comparisons using different vision
backbones from CLIP. KAPT outperforms CoOp and Co-
CoOp in three vision backbones overall and even achieves
better performance in all settings than CoCoOp. ∆ denotes
absolute gains of KAPT over CoCoOp.

Method
ResNet-50 ViT-B/32 ViT-B/16

Base New H Base New H Base New H

CoOp 77.54 57.48 66.02 79.88 59.39 68.12 82.83 62.82 71.45
CoCoOp 75.26 64.36 69.39 76.70 67.30 71.69 79.53 71.49 75.29

KAPT 75.39 64.71 69.94 78.41 70.52 74.26 81.10 72.24 76.41
∆ +0.13 +0.35 +0.55 +1.71 +3.22 +2.57 +1.57 +0.75 +1.12

KAPT and CoCoOp progressively improves with the aug-
mentation of shot numbers in the new setting and overall
performance. In contrast, the performance of CoOp exhibits
instability with increasing sample numbers. This erratic
behavior in CoOp’s results might arise from its tendency
to overfit to seen classes, resulting in diminished accuracy
on unseen classes. In contrast, KAPT achieves an optimal
overall performance by striking a skillful balance between
seen and unseen classes.

Visualization of the Adaptation Head. We conducted
experiments to analyze the adaptation head’s ability to filter
out task-irrelevant information. For this analysis, we uti-
lized images from OxfordPets and Flowers102 datasets as
examples. As depicted in Figure 5, the model pays more at-
tention to task-related content, like flowers and cats. There-
fore, the adaptation head aligns the visual representation
towards the specific task, mitigating the interference from
task-irrelated visual concepts.

Backbone Models. CLIP provides a variety of vision
backbones, such as ResNet-50, ViT-B/32 and ViT-B/16. We
assess the performance of KAPT not only with ViT-B/32 as
our backbone but also with ResNet-50 and ViT-B/16. Ta-
ble 6 presents the averaged performance across 11 datasets
using different backbones. As anticipated, KAPT consis-
tently outperforms both CoOp and CoCoOp across various
backbone architectures.

Parameter Number. Considering the introduction of
trainable parameters through the adaptation head, we em-
pirically investigated their influence on model performance.
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Table 7: Parameter Comparison. † means CoCoOP with
more prompt tokens and larger dimension of Meta-Net.

Method Parameters Base New H

CoCoOp 0.4M 76.70 67.30 71.69
CoCoOp† 1.5M 76.79 68.62 72.47

KAPT 1.3M 78.41 70.52 74.26

To ensure fair evaluation, we devised CoCoOp† to increase
the parameter number of CoCoOp to the same level as our
models. As presented in Table 7, the results verify the no-
table advantages of our method, even when parameters in
both approaches are matched in scale.

5. Conclusion
To overcome potential overfitting towards seen classes

and underperforming generalizability in unseen scenarios
under the same task, we propose a knowledge-aware prompt
tuning (KAPT) for vision-language models. Specifically,
we identify the importance of exploring category-related
external knowledge by designing two types of knowledge-
aware prompts for text. Further, we also present an adap-
tation head to adapt the visual representation toward a spe-
cific task. Extensive experiments validate KAPT’s superior-
ity over state-of-the-art approaches on standard benchmark
datasets. However, since KAPT builds upon the CLIP back-
bone, inherent biases and fairness concerns from the orig-
inal model may persist during prompt learning. While our
model exhibits enhanced performance, further refinements
are possible. To achieve broader coverage of visual con-
cepts, Wikipedia Encyclopedia and other external knowl-
edge bases could be jointly used as the knowledge source.
Meanwhile, existing external knowledge bases are gener-
ally diverse in the open domain, often lacking task-specific
expertise. Constructing multi-source knowledge bases with
specialized expertise remains future investigation.

Acknowledgments. This work was supported by the
National Key R&D Program of China (Grant NO.
2022YFF1202903) and the National Natural Science Foun-
dation of China (Grant NO. 62122035).

References
[1] Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Glober-

son, and Alexei Efros. Visual prompting via image inpaint-
ing. Advances in Neural Information Processing Systems,
35:25005–25017, 2022. 3

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In European Conference on Computer Vision, pages
446–461. Springer, 2014. 5

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in Neural In-
formation Processing Systems, 33:1877–1901, 2020. 3

[4] Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, Yun-
zhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and Huajun Chen.
Knowprompt: Knowledge-aware prompt-tuning with syner-
gistic optimization for relation extraction. In Proceedings of
the ACM Web conference 2022, pages 2778–2788, 2022. 3

[5] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In European
Conference on Computer Vision, pages 104–120. Springer,
2020. 2

[6] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3606–3613, 2014. 5

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255. Ieee, 2009. 5

[8] Junjie Fei, Teng Wang, Jinrui Zhang, Zhenyu He, Chengjie
Wang, and Feng Zheng. Transferable decoding with vi-
sual entities for zero-shot image captioning. arXiv preprint
arXiv:2307.16525, 2023. 3

[9] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
2004 Conference on Computer Vision and Pattern Recogni-
tion Workshop, pages 178–178. IEEE, 2004. 5

[10] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-
trained language models better few-shot learners. In Pro-
ceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1:
Long Papers), pages 3816–3830, 2021. 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer vision and Pattern
Recognition, pages 770–778, 2016. 4

[12] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 12(7):2217–2226, 2019. 5

[13] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021. 7

[14] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 15262–15271, 2021. 7

[15] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom

15678



Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International
Conference on Machine Learning, pages 4904–4916. PMLR,
2021. 1, 2

[16] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In European Conference on Computer
Vision, pages 709–727. Springer, 2022. 3

[17] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3D object representations for fine-grained categorization. In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 554–561, 2013. 5

[18] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3045–3059, 2021. 1

[19] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019. 2

[20] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei
Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu
Wei, et al. Oscar: Object-semantics aligned pre-training
for vision-language tasks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXX 16, pages 121–137. Springer,
2020. 2

[21] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. In Proceedings of
the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Pa-
pers), pages 4582–4597, 2021. 1, 3

[22] Kaixin Ma, Filip Ilievski, Jonathan Francis, Yonatan Bisk,
Eric Nyberg, and Alessandro Oltramari. Knowledge-driven
data construction for zero-shot evaluation in commonsense
question answering. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 13507–13515,
2021. 3

[23] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
5

[24] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta,
and Marcus Rohrbach. Krisp: Integrating implicit and sym-
bolic knowledge for open-domain knowledge-based VQA.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14111–14121, 2021.
3

[25] George A Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41, 1995. 3, 4

[26] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 5

[27] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In 2012 IEEE Conference

on Computer Vision and Pattern Recognition, pages 3498–
3505. IEEE, 2012. 5

[28] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
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