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Abstract

Incremental object detection (IOD) task requires a model
to learn continually from newly added data. However, di-
rectly fine-tuning a well-trained detection model on a new
task will sharply decrease the performance on old tasks,
which is known as catastrophic forgetting. Knowledge dis-
tillation, including feature distillation and response distil-
lation, has been proven to be an effective way to alleviate
catastrophic forgetting. However, previous works on feature
distillation heavily rely on low-level feature information,
while under-exploring the importance of high-level seman-
tic information. In this paper, we discuss the cause of catas-
trophic forgetting in IOD task as destruction of semantic
feature space. We propose a method that dynamically dis-
tills both semantic and feature information with consider-
ation of both between-class discriminativeness and within-
class consistency on Transformer-based detector. Between-
class discriminativeness is preserved by distilling class-
level semantic distance and feature distance among various
categories, while within-class consistency is preserved by
distilling instance-level semantic information and feature
information within each category. Extensive experiments
are conducted on both Pascal VOC and MS COCO bench-
marks. Our method outperforms all the previous CNN-
based SOTA methods under various experimental scenar-
ios, with a remarkable mAP improvement from 36.90% to
39.80% under one-step IOD task.

1. Introduction

In real-world scenarios, learning often occurs incremen-
tally from streaming data. However, traditional object de-
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Figure 1. Visualization of semantic feature space of old cate-
gories. (a) represents the semantic feature space of old categories
before adding new categories. (b)-(f) represent the semantic fea-
ture space of old categories after adding new categories. (b) is
at epoch 1 using fine-tuning method. (c) is at epoch 12 using
fine-tuning method. The top three figures illustrate the cause
of catastrophic forgetting as destruction of within-class con-
sistency and between-class discrimnativeness. (d) using LwF
baseline method. (e) using our DMD method. (f) using DMD
method and IFD method at the same time. The bottom three fig-
ures prove that our method can alleviate catastrophic forget-
ting via maintaining the within-class consistency and between-
class discrimnativeness from teacher to student.

tection models lack this capability. They usually make im-
plicit assumptions about a fixed or stationary data distribu-
tion [9]. Directly fine-tuning a model based on newly added
data may result in a sharp decrease of its performance on
the old data, which is well-known as catastrophic forget-
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ting. Catastrophic forgetting is the key problem for incre-
mental learning/continual learning task [50]. Depending on
whether the task identity is explicitly given or must be in-
ferred, incremental learning (IL) is divided into three types:
task/domain/class IL [29]. In this paper, we focus on the
most complicated scenario: class incremental learning.

Incremental image classification task has been studied
thoroughly [20, 32, 34, 37, 43], but only a few researches
focus on incremental object detection (IOD) task [29, 9].
Unlike incremental classification task where there is only
one category of objects within each image, IOD task may
contain various categories of objects within each image.
When adding new categories, only annotations for the new
objects are provided and all the old objects are categorized
as backgrounds. The “background” labels interfere with the
memory of the previously-learnt old labels, thus resulting
in catastrophic forgetting of old categories during the in-
cremental process. Here we do a visualization of semantic
feature space before and after adding new categories to il-
lustrate the idea above. As shown in Fig.1(a)-(c), adding
new categories results in a much messier and severely dis-
torted semantic feature space of the old categories. We thus
innovatively propose a method of maintaining the semantic
feature space in order to alleviate catastrophic forgetting of
the old categories in IOD task.

Previous researches mostly utilize knowledge distillation
[14] to reduce catastrophic forgetting under IOD task [4].
There are three kinds of knowledge distillation, including
feature-based distillation, response-based distillation, and
relation-based distillation. Most works [31, 30, 45] design
feature distillation by manually selecting specific layers to
mimic the low-level features of old categories. For exam-
ple, fine-grained feature distillation method [41] and multi-
view correlation distillation method [45] selectively utilized
intermediate layers to preserve the pattern of old classes.
However, this kind of methods heavily relies on low-level
feature selection, while under-exploring the importance of
high-level semantic information.

In this paper, we focus on how to take advantage of the
high-level semantic feature space to improve the knowl-
edge distillation methods. Generally, the representation of
instance includes class-specific semantic knowledge, con-
sisting of both within-class knowledge and between-class
knowledge. Within-class knowledge represents the consis-
tency of feature expressions in a certain category, while
between-class knowledge represents the distinction of fea-
ture expressions among various categories. Previous work
[15] shows the potential of using within-class and between-
class knowledge in incremental classification task. During
incremental object detection, all old classes are categorized
as the same background, thus affecting their original dis-
tinct feature distributions, and destroying both within-class
consistency and between-class discriminativeness. How-

ever, previous works in feature distillation have not explic-
itly discussed the cause of catastrophic forgetting via these
two components. Therefore, maintaining both semantic
differences among various categories and semantic con-
sistency within each category should be fully considered,
in order to mitigate the issue of catastrophic forgetting
in incremental object detection task.

To tackle the problem of within-class consistency, IFD
(Interactive Feature Distillation) method is proposed to
force information of the same category to remain close-by
via mimicking information within the same category from
teacher to student. The information includes instance-wise
interaction between high-level semantics and low-level fea-
tures. Moreover, to tackle the problem of between-class
discrimnativeness, DMD (Distance Matrix Distillation)
method is proposed to keep the class-wise between-class
semantic difference and feature difference of student the
same as that of teacher. Between-class semantic difference
and feature difference are here represented as between-class
semantic distance and feature distance between each two
classes. Here we distill between-class semantic distance
pattern and feature distance pattern from teacher to student,
so as to keep between-class dissimilarity.

The main contributions of this work can be summarized
below. (i) To the best of our knowledge, we are the first to
discuss catastrophic forgetting in IOD task as the destruc-
tion of within-class consistency and between-class discrim-
nativeness. (ii) We propose a novel instance-wise feature
distillation method based on the interaction between high-
level semantics and low-level features to keep the within-
class consistency. (iii) We propose a novel class-wise dis-
tance distillation method based on distance matrix of high-
level semantics and low-level features to keep the between-
class discriminativeness.

2. Related Work

2.1. Incremental Object Detection

The goal of incremental object detection (IOD) is to
learn a sequence of tasks and have the ability to localize
and identify all the involved classes during the test phase.
It is less explored and more complicated than incremen-
tal classification [29, 32]. In recent years, parameter iso-
lation [22], sample replay [28], and knowledge distillation
[31] were used in incremental object detection task. Be-
sides, [17] proposed a meta-learning scheme that shares op-
timal information across incremental tasks. [27] proposed
a weight consolidation scheme by applying EWC [19] to
Faster RCNN. [35] and [6] focused on incremental few-shot
scenarios. [40] presented a new online incremental object
detection dataset, and [44] used prototypical task correla-
tion guided gating mechanism to solve it. [21] designed an
incremental object detection system with RetinaNet detec-
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Figure 2. Overall framework of within-class and between-class knowledge distillation for incremental object detection. Between-class
DMD method focuses on class-wise interaction between high-level semantics and low-level features among various categories, and within-
class IFD method focuses on instance-wise interaction between high-level semantics and low-level features within each single category.

tor on edge devices. [16] introduced the concept of Open
World Object Detection (OWOD) task, which combines in-
cremental learning with open set learning. [47] followed
along this path to further detect unknown objects based on
feature space. [11] extended to use DETR for OWOD task.
However, these methods do not devote sufficient attention to
the collaborative utilization of within-class knowledge and
between-class knowledge.

2.2. Knowledge Distillation for Incremental Object
Detection

Knowledge distillation is an effective way to transfer in-
formation of old knowledge from teacher to student, thus al-
leviating catastrophic forgetting. It is widely used in incre-
mental classification tasks [32, 50], and is now frequently
involved in incremental object detection tasks. LwF [24] is
recognized as a solid baseline for this problem, which firstly
applied knowledge distillation under incremental object de-
tection task. SID [31] discussed the appropriate distilla-
tion locations by considering outputs, intermediate layers,
and the relationship among different instances. MVCD [45]
proposed the preservation of channel-wise, point-wise, and
instance-wise correlations between feature maps of teacher
and student. ILOD [38], Faster ILOD [30], RILOD [21]
and RD-IOD [46] distilled different types of knowledge to
mimic teacher’s behavior on object classification, bound-
ing box regression, and feature extraction. The state-of-
the-art method, ERD [9], was proposed as a fully response-
based distillation method focusing on classification predic-
tions and bounding boxes. All these works emphasize the

importance of knowledge selection and discuss what should
be transferred from teacher to student.

However, the feature distillation methods employed in
incremental object detection heavily rely on the selection of
low-level features, often neglecting the significance of high-
level semantic information. When compared with low-level
features, high-level features positioned near the classifier
encompass considerably more abstract semantic informa-
tion and offer a more robust representation. Semantic fea-
tures provide conclusive information about the image, and
thus, should be harnessed to more effectively guide the se-
lection of crucial information. Consequently, our emphasis
is on combining both low-level and high-level information,
along with incorporating between-class and within-class in-
formation into a cohesive framework aimed at enhancing
the incremental object detection task.

3. Methods

3.1. Overall Framework

The overall framework of our method is shown in Fig.2.
The teacher model and the student model are Transformer-
based detectors (e.g Deformable DETR [52], AdaMixer
[10]). The “Distance Matrix Distillation (DMD)” module is
used to preserve the between-class discrimnativeness, while
the “Interactive Feature Distillation (IFD)” module is used
to preserve the within-class consistency.

The overall loss function of the student is defined as,

Ltotal = Lnew + Llabel + αLDMD + βLIFD (1)
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where Lnew is classification loss and localization loss to
train student detector for new classes, following the original
Deformable DETR [52]. Llabel is the response distillation
loss to train student detector for old classes, following the
baseline method LwF [24]. LDMD is between-class dis-
tance matrix distillation loss, and LIFD is within-class in-
teractive feature distillation loss. The last three losses help
transfer old knowledge from teacher to student. α and β are
the hyper-parameters to balance the loss.

Low-level feature maps and high-level semantic queries
are used in the calculation of LDMD and LIFD. As
illustrated in Fig.2, low-level feature maps refer to the
pyramid features generated by Feature Pyramid Network
(FPN), containing more concrete details. High-level seman-
tic queries refer to the queries generated by Transformer de-
coder, containing more abstract semantics.

3.2. Distance Matrix Distillation (DMD)

In order to inherit the between-class discriminativeness,
the student has to learn both semantic difference and feature
difference from the teacher. They are further represented
as high-level semantic distance and low-level feature dis-
tance among different classes, which can be calculated us-
ing high-level semantic queries and low-level feature maps,
respectively.

Concretely, we first calculate the average semantic query
Qclassi and average feature map Fclassi for each class i as:

Qclassi =
1

Ni

Ni∑
n=1

Qi,n (2)

Fclassi =
1

Ni

Ni∑
n=1

AdaptivePooling(Fi,n) (3)

where Ni refers to the total number of semantic queries for
class i. Qi,n refers to the nth semantic query for class i.
Fi,n refers to the nth feature map for class i with any height
and width. AdaptivePooling helps resize the feature map
to a standard size of 32 × 32. We then calculate the Eu-
clidean distance of average semantic queries by Eq.4 and
the Euclidean distance of average feature maps by Eq.5 for
every two classes. The results are called semantic distance
matrix (denoted as SMat) and feature distance matrix (de-
noted as FMat), respectively:

SMat = ∥Qclassi −Qclassj∥2,
1 ≤ i ≤ C, 1 ≤ j ≤ C

(4)

FMat = ∥Fclassi − Fclassj∥2,
1 ≤ i ≤ C, 1 ≤ j ≤ C

(5)

where C refers to the number of old classes. i and j refer
to two different classes. Finally, we distill the semantic dis-
tance matrix SMat and feature distance matrix FMat of
all the old classes from teacher to student by Eq.6.

LDMD = (6)
1
C ∥(SMatS − SMatT )(FMatS − FMatT )∥2

where SMatS and SMatT are the semantic distance ma-
trix calculated from the student and the teacher. FMatS

and FMatT are the feature distance matrix calculated from
the student and the teacher.

3.3. Interactive Feature Distillation(IFD)

In order to keep the within-class consistency, the stu-
dent has to ensure information similarity with the teacher
for each class. Here the information is represented as high-
level semantic information and low-level feature informa-
tion, which are further represented by high-level semantic
queries and low-level feature maps. Based on this under-
standing, IFD method is proposed to realize within-class
information transfer.

Concretely, IFD method includes three steps: For each
instance, we first calculate the difference of high-level se-
mantic queries between teacher and student by Eq.7. Then,
we calculate the corresponding difference of low-level fea-
ture maps by Eq.8. After that, we minimize the interaction
between high-level semantic differences and low-level fea-
ture differences by Eq.9.

Qdiffi =
1

Ni

Ni∑
n=1

(QS
i,n −QT

i,n) (7)

Fdiffi =
1

Ni

Ni∑
n=1

AdaptivePooling(FS
i,n − FT

i,n) (8)

LIFD =

C∑
i=1

Qdiffi × Fdiffi (9)

where Ni refers to the total number of instances predicted
by teacher for class i on an image. QS

i,n and QT
i,n refer

to the semantic query of student and teacher for the nth

instance under class i. Qdiffi refers to the semantic dif-
ference between student and teacher for class i. Similarly,
FS
i,n and FT

i,n refer to the feature map of student and teacher
for the nth instance under class i. Fdiffi represents the
feature difference between student and teacher for class i.
AdaptivePooling helps resize the feature map to a stan-
dard size of 32× 32. C refers to the number of old classes.
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Both DMD and IFD methods depend on high-level
semantic queries and low-level feature maps, but they
tend towards two different aspects of knowledge distilla-
tion, between-class knowledge distillation and within-class
knowledge distillation. Moreover, DMD adopts class-wise
operation and IFD adopts instance-wise operation. Their
collaboration achieves better dynamic knowledge distilla-
tion capabilities.

4. Experiments and Discussions

We conduct experiments under various scenarios on MS
COCO 2017[2] and Pascal VOC [8] to demonstrate the ef-
fectiveness of our method. We also perform ablation studies
to prove each component.

Datasets and Evaluation Metric. MS COCO and Pas-
cal VOC are two object detection datasets with 80 and 20
categories, respectively. Each dataset is split into old classes
and new classes following alphabetic order. The models are
trained with 12 epochs (1x schedule) for each incremental
step. The evaluation metrics include: (1) standard COCO
protocols: mAP, mAP50, mAP75, mAPS , mAPM and
mAPL; standard VOC protocols: mAP50. (2) AbsGap
and RelGap [27, 29] represent the absolute gap and relative
gap, respectively, between final mAP of incremental learn-
ing and mAP of full-training (a.k.a. upper-bound). These
gaps are only meaningful when both methods are compared
with the same base framework and training protocol [13].
(3) Omega (Ω) [13], defined in Eq.10, represents the cu-
mulative capability of multi-step incremental learning step
by step.

Ω =
1

T

T∑
t=1

mAPfinal,t

mAPupper,t
(10)

where T is the number of total tasks and t refers to the tth

task in incremental learning. mAPfinal,t and mAPupper,t

refer to the task-average mAP and upper-bound mAP on
all testing data containing learned categories after task t. A
higher value of the Ω metric corresponds to a better capabil-
ity of reducing cumulative knowledge forgetting Ω metrics
here can be easily extended under different IoU and area
thresholds to achieve a more complete performance evalua-
tion, including Ω50, Ω75, ΩS , ΩM and ΩL.

Experiment Setup. In order to thoroughly study our
methods, we implement our models under different exper-
imental scenarios (denoted as A+B, where A is the normal
training at the first step, and +B is the incremental train-
ing afterward). For example, 2-step COCO scenario of
40+20+20 means 20 new classes are added to the previ-
ously learned classes at each step. For simplicity, it can
be denoted as COCO(40+20+20). Experimental scenarios
include: (i) One-step: 40+40, 50+30, 60+20, 70+10, last

40 + first 40 for MS COCO; 10+10, 15+5, 19+1 for Pas-
cal VOC. (ii) Multi-step: 40+20+20, 40+10+10+10+10 for
MS COCO; 15+1+1+1+1+1, 5+5+5+5 for Pascal VOC.

Implementation details. We build our model based on
Deformable DETR detector. Teacher and student detectors
defined in our experiments are standard Deformable DETR
architecture. All experiments are performed on 4 NVIDIA
Tesla V100 GPU with a batch size of 8 images per GPU.
The image size is 640 × 640. We use AdamW as the op-
timizer for all the incremental steps. The learning rate is
set as 2e-4, and divided by 10 at 8th and 11th epoch. The
weight decay is 0.0001.

5. Overall Performance
One-step. We report the incremental performance of

COCO under 40+40, 50+30, 60+20 and 70+10 scenario in
Table 1. Under 40 classes + 40 classes scenario, our method
has a much larger final mAP of 39.10 and a smaller gap
of 1.10 toward the upper bound, compared with LwF [24],
RILOD [21], SID [31] and ERD [9]. Since the state-of-the-
art methods have different upper bounds, base frameworks,
and training protocols, we also use Ω metrics to make them
comparable. All the Ω metrics of our method are larger
than those of the current SOTA ERD method by [9], demon-
strating the effectiveness of our model under different IoU
and area thresholds. Similarly, for all the other incremen-
tal conditions (50+30, 60+20, and 70+10), our method also
keeps the best performance over other typical incremental
object detection approaches. We provide the result under
last 40 classes + first 40 classes scenario as well. The per-
formance is improved with a larger Ωall of 0.995, indicating
our method can alleviate catastrophic forgetting with no in-
fluence of the category orders.

We also report incremental performance of VOC under
scenarios of 10+10, 15+5, and 19+1 in Appendix Table 10.
It shows that our method outperforms all other methods on
VOC dataset. Fig.1(c)(f) illustrates the changes of seman-
tic feature space of old categories. By adding our distilla-
tion method (DMD+IFD), within-class knowledge becomes
more consistent while between-class knowledge becomes
more distinct, proving the effectiveness of our method.

Multi-step. We report incremental learning results un-
der multi-step settings, so as to reveal its ability of long-
term incremental learning. Table 2 shows the results under
3-step VOC scenario. Table 4 shows the results under 2-
step COCO scenario. Appendix Table 9 and Appendix Ta-
ble 11 show the results under 4-step COCO scenario and
5-step VOC scenario, respectively. Under all these sce-
narios, our incremental results all realize a smaller gap to
the corresponding full-training results and show a larger
Ω value, which demonstrates its excellent capability of al-
leviating catastrophic forgetting even over multiple steps.
Meanwhile, our method does not increase network parame-
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Table 1. Incremental results (%) on COCO benchmark under different scenarios. AbsGap and RelGap represents the absolute gap and the
relative gap toward upper bound.

Scenarios Method AbsGap RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑ Final mAP Upper Bound

40 classes + 40 classes

LwF[24] 23.00 57.21% 0.714 0.718 0.713 0.341 0.417 0.466 17.20 40.20

RILOD[21] 10.30 25.62% 0.872 0.886 0.867 0.681 0.748 0.776 29.90 40.20

SID[31] 6.20 15.42% 0.923 0.941 0.916 0.793 0.871 0.860 34.00 40.20

ERD[9] 3.30 8.21% 0.959 0.967 0.954 0.918 0.916 0.910 36.90 40.20

Ours 0.50 1.24% 0.994 0.992 0.998 0.980 0.986 0.993 39.80 40.30

50 classes + 30 classes

LwF[24] 35.20 87.56% 0.562 0.581 0.553 0.216 0.152 0.109 5.00 40.20

RILOD[21] 11.70 29.10% 0.854 0.870 0.846 0.664 0.717 0.728 28.50 40.20

SID[31] 6.40 15.92% 0.920 0.937 0.914 0.759 0.864 0.864 33.80 40.20

ERD[9] 3.60 8.96% 0.955 0.963 0.946 0.836 0.916 0.920 36.60 40.20

Ours 1.50 3.72% 0.981 0.983 0.982 0.975 0.963 0.962 38.80 40.30

60 classes + 20 classes

LwF[24] 34.40 85.57% 0.572 0.593 0.561 0.172 0.193 0.148 5.80 40.20

RILOD[21] 14.80 36.82% 0.816 0.833 0.807 0.599 0.658 0.646 25.40 40.20

SID[31] 7.50 18.66% 0.907 0.927 0.897 0.741 0.853 0.833 32.70 40.20

ERD[9] 4.40 10.95% 0.945 0.954 0.940 0.888 0.893 0.891 35.80 40.20

Ours 2.00 4.96% 0.975 0.978 0.976 0.946 0.949 0.943 38.30 40.30

70 classes + 10 classes

LwF[24] 33.10 82.34% 0.588 0.606 0.580 0.207 0.215 0.192 7.10 40.20

RILOD[21] 15.70 39.05% 0.805 0.825 0.795 0.612 0.621 0.642 24.50 40.20

SID[31] 7.40 18.41% 0.908 0.920 0.901 0.737 0.837 0.852 32.80 40.20

ERD[9] 5.30 13.18% 0.934 0.945 0.929 0.806 0.880 0.872 34.90 40.20

Ours 2.70 6.70% 0.967 0.972 0.968 0.961 0.947 0.916 37.60 40.30

Last 40 classes
+ First 40 classes

LwF[24] 19.70 49.00% 0.755 0.756 0.753 0.780 0.755 0.742 20.50 40.20

RILOD[21] 6.10 15.17% 0.924 0.938 0.922 0.912 0.931 0.920 34.10 40.20

SID[31] 6.70 16.67% 0.917 0.937 0.916 0.909 0.927 0.912 33.50 40.20

ERD[9] 2.70 6.72% 0.966 0.973 0.963 0.959 0.966 0.962 37.50 40.20

Ours 0.40 0.99% 0.995 0.994 0.997 0.993 0.999 0.990 39.90 40.30

Table 2. Incremental results (%) on VOC benchmark under 5+5+5+5 three-step setting, when five classes are added sequentially.

Method
mAP

Final mAP AbsGaP↓ RelGaP↓ Ω ↑ Upper Bound
A (1-5) +B(6-10) +B(11-15) +B(16-20)

CF 1.25 2.34 3.12 36.32 11.31 43.94 61.37% 0.6362 70.64
RILOD [31] 22.11 34.70 37.24 29.80 30.97 39.63 56.13% 0.6876 70.60
SID [31] 27.26 40.10 43.02 34.44 36.21 35.40 49.43% 0.7360 71.60
ILOD [38] 29.55 43.47 46.65 37.34 39.25 30.55 43.76% 0.7548 69.80
CIFRCN [12] 34.60 44.10 55.60 59.60 48.48 22.04 31.25% 0.7972 70.51
ERD [9] 41.25 57.38 63.57 53.12 53.83 16.77 23.55% 0.9021 70.60
Ours 46.14 60.50 69.53 50.54 58.72 12.07 17.05% 0.9218 70.79

ters and extra FLOPs for detection inference.

Qualitative Analysis. Fig.3 shows the detection re-
sults of Teacher, LwF and “DMD+IFD” on an image from
COCO validation set, in which the two old categories (hand-
bag v.s. backpack) have similar appearance and semantics.
Fig.3(a) shows the best confidence differentiation obtained
by Teacher, while Fig.3(b) and Fig.3(c) respectively shows
the worst and better confidence differentiation obtained by
LwF and “DMD+IFD”. This reflects that our method effec-
tively preserve the teacher knowledge about between-class

discriminativeness and within-class similarity, thus reliev-
ing catastrophic forgetting.

(a) Teacher (b) LwF (c) DMD+IFD

Figure 3. Incremental object detection results for COCO(70+10).
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Table 3. Ablation study (%) using the COCO benchmark under first 40 classes + last 40 classes.

Method AbsGap RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑ Final mAP Upper Bound

Baseline 1.41 3.50% 0.982 0.982 0.984 0.951 0.972 0.969 38.89 40.30

Manhattan Distance 1.16 2.87% 0.986 0.985 0.985 0.956 0.972 0.971 39.14 40.30

Cosine Distance 0.87 2.16% 0.989 0.988 0.991 0.961 0.982 0.983 39.43 40.30DMD

Euclidean Distance 0.72 1.80% 0.991 0.990 0.992 0.966 0.982 0.985 39.58 40.30

Feats 1.37 3.40% 0.983 0.985 0.984 0.926 0.970 0.978 38.93 40.30

ForeFeats 0.94 2.33% 0.988 0.988 0.991 0.949 0.980 0.991 39.36 40.30IFD

SemanticForeFeats 0.62 1.55% 0.992 0.992 0.995 0.971 0.984 0.991 39.68 40.30

SemanticForeFeats + Euclidean Distance 0.50 1.24% 0.994 0.992 0.998 0.980 0.986 0.993 39.80 40.30

Table 4. Incremental results (%) on COCO under the 40+20+20
two-step setting. A(a-b) is the one-step normal training for classes
a-b and +B(c-d) is the incremental training for classes c-d.

A(1-40)

+B(40-60)

mAP AbsGap RelGap↓ Ωall ↑ Upper Bound

CF 10.70 29.10 73.38% 0.634 39.80

RILOD[21] 27.80 12.00 30.85% 0.849 39.80

SID[31] 34.00 5.80 15.42% 0.927 39.80

ERD[9] 36.70 3.10 7.79% 0.961 39.80

Ours 39.30 0.60 1.53% 0.992 39.90

+B(60-80)

mAP AbsGap RelGap↓ Ωall ↑ Upper Bound

CF 9.40 30.80 76.62% 0.501 40.20

RILOD[21] 15.80 24.40 60.70% 0.697 40.20

SID[31] 23.80 16.40 40.80% 0.815 40.20

ERD[9] 32.40 7.80 19.40% 0.909 40.20

Ours 36.60 3.70 10.11% 0.964 40.30

6. Ablation Study

To test each component, we implement our methods un-
der COCO first 40 + last 40 scenario in Table 3. “Base-
line” denotes LwF[24] method, which distills predicted la-
bels from teacher to student, with no feature distillation or
relation distillation. Our model is built based on this base-
line model (with distillation on predicted labels) plus two
modules (DMD and IFD). For IFD module, “Feats” denotes
distilling the entire feature map from teacher to student. Af-
ter that, since foreground objects have meaningful seman-
tic information, we select all the foreground objects out of
background for further discussion. “ForeFeats” represents
distillation on low-level feature map for foreground objects
only. “SemanticForeFeats” denotes distillation on the in-
teraction between low-level feature map and high-level se-
mantic information for foreground objects only. For DMD
module, we respectively use “Manhattan Distance”, “Co-
sine Distance” (cosine similarity) and “Euclidean Distance”

(a) Original (b) w/o Distill (c) w/ Distill

Figure 4. Effect of within-class IFD method. (a) is the orginal
picture. (b) is the activation map without IFD method. (c) is the
activation map with IFD method.

as the measurement of between-class distance.
Table 3 demonstrates that our model reaches its best per-

formance when combining the two modules, with a final
mAP of 39.80% and a 0.50% gap to the upper bound. All
Ω values are higher than the baseline model and than all the
other state-of-the-art models, supporting the effectiveness
of our method.

6.1. Interaction Feature Distillation (IFD) module

Table 3 shows that adding IFD increases the final mAP
from 38.89% to 39.68% and reduces the gap toward full
training from 1.41% to 0.62%. All Ω values are dramat-
ically improved. Moreover, we illustrate the effectiveness
of this module in Fig.1 and Fig.4. Fig.1(e)(f) shows that
IFD helps concentrating information from the same cate-
gory so as to keep within-in class consistency. Fig.4 shows
adding high-level semantic information to low-level feature
map results in more precise attention to important regions.
Both the quantitative and qualitative results demonstrate the
usefulness of within-class feature distillation module.

Comparison with traditional feature distillation. We
also discuss different feature distillation methods in Table 3.
Adding a full feature map distillation has almost the same
performance as the baseline. But selecting the meaning-
ful foreground feature map improves the final mAP from
38.89% to 39.36%. After that, adding semantic information
to foreground feature map shows a better performance of
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39.68% final mAP and 0.62% as the gap to the upper bound.
Our IFD method is thus demonstrated to be an effective way
compared with traditional feature distillation methods.

6.2. Distance Matrix Distillation (DMD) module

(a) Teacher (b) w/o Distill (c) w/ Distill

Figure 5. Distance matrix (upper) and confusion matrix (bottom)
of first 40 classes. (a) represents the teacher model. (b) represents
student without between-class DMD method. (c) represents stu-
dent with DMD method.

Table 3 indicates that adding DMD is also meaningful
with an improvement of final mAP from 38.89% to 39.58%
and a gap descending from 1.41% to 0.72%. All Ω values
increase significantly, showing better performance with the
help of this module. Further analyses are shown in Fig.1
and Fig.5. Fig.1(d)(e) shows that DMD helps discrimi-
nate information from different categories, in order to keep
between-class discrimnativeness. Fig.5 (upper) shows the
distance pattern among all the old classes. Within each cell
of the distance matrix, the number represents 1−distance.
A larger number means that the two classes are closer to
each other. Notably, the distance pattern generated by stu-
dent with DMD (Fig.5c upper) tends to be more consis-
tent with teacher than that generated by student without this
module (Fig.5b upper). In addition, confusion matrix of
student with DMD (Fig.5c bottom) shows less misclassifi-
cation among old classes, and thus has a clearer and more
distinguishable relationship. These results indicate the suc-
cess of using DMD to learn between-class distinctiveness.

Comparing three types of distance functions. In Ta-
ble 3, we compared three types of distance presented as
Euclidean distance, Manhattan distance, and cosine simi-
larity between each two categories. It is obvious that Man-
hattan distance only has a negligible improvement, while
cosine similarity and Euclidean distance are better ways to
describe the between-class distance. Specifically, Euclidean
distance-based distance distillation improves the final mAP
from 38.89% to 39.58%, indicating it is the most effective
distance distillation method of the three.

6.3. More Ablation Studies

We provide more ablation studies under COCO (70+10)
scenario in Table 5. (1) We address the contribution of
high-level semantic information and low-level feature infor-
mation separately. FeatOnly calculates LDMD(Eq.6) and
LIFD(Eq.9) with only the feature component, while Se-
mOnly calculates LDMD and LIFD with only the seman-
tic component. The results show that distilling semantics
alone has better performance than distilling features alone.
Feat+Sem and Feat×Sem refer to adding and multiplying
the two components in Eq.6 & Eq.9. Multiplying results in
better performance than adding. (2) We ablate Llabel(Eq.1)
to check how much the method is indeed relying on LwF
regularization. LwF refers to label distillation only. Ours
refers to IFD+DMD without label distillation. LwF+Ours is
their combination. The results show that our method works
well alone and improves LwF significantly. (3) We discuss
the setting of two hyper-parameters α and β in Eq.1. The re-
sults show that performances are similar and insensitive for
α and β from 1 to 1.5. (4) We discuss the sensitivity of our
method to the number of queries. The results show that the
performance increases as the number of queries increases
from 100 to 300.

Table 5. Ablation results (%) on COCO under 70 + 10 scenario.
Method mAP AbsGap↓ RelGap↓ Ωall ↑

1
Effect of
semantic

information

Feat Only 36.80 3.50 8.68% 0.957
Sem Only 37.10 3.20 7.94% 0.960
Feat+Sem 37.50 2.80 6.95% 0.965
Feat×Sem 37.60 2.70 6.70% 0.967

2
Effect of

LwF

LwF 36.40 3.90 9.68% 0.952
Ours 36.60 3.70 9.18% 0.954

LwF + Ours 37.60 2.70 6.70% 0.967

3
Hyper params

(α, β)

in Eq.1

(1, 1) 37.60 2.70 6.70% 0.967
(1, 1.5) 37.60 2.70 6.70% 0.967
(1.5, 1) 37.50 2.80 6.95% 0.965
(1, 2) 37.20 3.10 7.69% 0.962
(2, 1) 37.10 3.20 7.94% 0.960

4
Num of
queries

100 36.20 2.90 7.42% 0.963
300 37.60 2.70 6.70% 0.967

5
Generality

(Teacher+Student)

DETR+DETR 37.60 2.70 6.70% 0.967
Ada+DETR 38.20 2.10 5.21% 0.974
Ada+Ada 40.20 1.90 4.51% 0.977

6.4. Generality Studies

To demonstrate the generality of our method on
Transformer-based detectors, we perform extended ex-
periments on the latest Adamixer [10] detector, which
has query-based structure with bipartite matching pro-
cess. First, we set two standard AdaMixer detectors as
the teacher model and the student model to build incre-
mental Adamixer, with the same incremental learning set-
tings as Section 3. The results of incremental Adamixer
under MS-COCO 40+40, 50+30, 60+20, and 70+10 sce-
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narios are shown in Appendix Table 6. Our incremental
Adamixer exceeds the state-of-the-art ERD [9] method. In
addition, we set Adamixer as the teacher model and set De-
formable DETR as the student model to validate the gener-
ality between different transformer architectures. Table 5(5)
shows the experimental results, which indicate that high-
level queries carry robust semantic information, and bet-
ter teacher and better student result in better performance.
These experiments fully demonstrate the good generality of
our method.

7. Discussion
Transformer vs CNN. Previous researches highlight the

influence of model architecture in incremental classification
task [32]. Existing IOD methods are all built upon CNN-
based detectors, like Fast RCNN[24], Faster RCNN [30],
YOLO-series [48], RetinaNet[26], FCOS[39], GFLv1[9].

Here we are the first to use a Transformer-based detec-
tor (Deformable DETR [52]) under full-dataset incremen-
tal object detection task. Compared with CNN-based de-
tector, Transformer-based detector provides several advan-
tages: (1) Representation advantages: Transformer mod-
els use the self-attention mechanism to ensure long-range
dependencies, providing more effective feature extraction
capability and more robust semantic representation. Our
method benefits from this characteristic to realize more ac-
curate between-class distance computation and within-class
feature guidance. (2) Architecture advantages: Compared
with the extremely large amount of candidates generated by
CNN-based detector (Faster-RCNN: about 6300 candidate
boxes per image), Transformer-based detector (Deformable
DETR: about 300 candidate queries per image) can generate
a relatively small set of queries as its candidates, leading to
simplified statistical calculations for both the between-class
distance matrix and within-class guidance. This efficiency
greatly facilitates the implementation of our method. Lever-
aging these two advantages, our Transformer-based model
outperforms all previous CNN-based models, showing re-
markable enhancements. (seen in Table 4, Table 10).

Our methods can also be used in CNN-based detectors
with intentional and sophisticated adaptation. To effectively
perform DMD+IFD methods, the NMS can be used to fil-
ter candidate boxes and generate top-K high-quality pre-
dictions. The filtered features closest to the classifier can
be used as high-level semantics, and FPN features can be
used as low-level features. Obviously, the NMS influences
the quality and quantity of high-level semantics. Therefore,
it needs to be carefully designed according to the dataset
to strike a balance between performance and computation,
which can result in certain limitations.

Compared with metric learning. Metric learning aims
to decrease the distance between similar objects and in-
crease the distance between dissimilar objects [18]. Our

method in incremental object detection task shares the same
idea of reducing between-class discriminativeness and en-
larging within-class consistency. However, newly added in-
stances destroy the pattern of existing feature space, and
thus leading to the forgetting of old knowledge. Since old
knowledge is not provided during incremental training, we
are not able to use metric learning to reduce the between-
class distance and enlarge the within-class distance. We can
only transfer the feature space pattern of old knowledge to
the student model, so as to keep the within-class distance
and between-class distance of old knowledge.

Comparison with OWOD methods. The recent work
OW-DETR [11] also uses Transformer architecture. How-
ever, OW-DETR is designed for open-world object detec-
tion (OWOD) task, which deals with the coexistence of
known and unknown objects at the same time, setting it
apart from conventional incremental object detection work-
flows. ORE [16], Topology [47] and OW-DETR [11] are
all designed for OWOD tasks, with sample replay as part of
their methods. Here we compare our method with all these
methods in Appendix Table 7. The results show that our
method has the smallest AbsGap and RelGap and the largest
Ω value, which indicates the excellent performance of our
knowledge distillation method over other OWOD methods.

8. Conclusion

In this paper, we innovatively uncover the cause of catas-
trophic forgetting in incremental object detection task as the
interference of “background” labels and destruction of se-
mantic feature space. We elaborately design a method to
alleviate the destruction of the semantic feature space and
thereby mitigate the issue of catastrophic forgetting. We
employed the distance matrix distillation (DMD) method to
preserve the between-class discriminativeness and the in-
teractive feature distillation (IFD) method to maintain the
within-class consistency. Our method merges low-level and
high-level information, while incorporating both between-
class and within-class information into a unified framework.
Extensive experiments on COCO and VOC datasets validate
our effectiveness and generalization. The results demon-
strate that utilizing within-class and between-class knowl-
edge distillation helps exceed the state-of-the-art (SOTA)
performance. Moreover, our method is the first to imple-
ment knowledge distillation in Transformer structure for
full-dataset incremental object detection, which shows the
remarkable potential of the Transformer structure in incre-
mental object detection. More details can be found in Ap-
pendix.
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