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Abstract

We introduce a novel method to estimate the essential
matrix for two-view Structure from Motion (SfM). We show
that every 3× 3 essential matrix can be embedded in a 4× 4
rotation having its bottom right entry fixed to zero; we call
the latter the quintessential matrix. This embedding leads to
rich relations with the space of 4-D rotations, quaternions,
and the classical twisted-pair ambiguity in two-view SfM.
We use this structure to derive a succession of semidefinite
relaxations that require fewer parameters than the existing
non-minimal solvers and yield faster convergence with cer-
tifiable optimality. We then exploit the low-rank geometry
of these relaxations to reduce them to an equivalent opti-
mization on a Riemannian manifold and solve them via the
Riemannian Staircase method. The experimental evaluation
confirms that our algorithm always finds the globally optimal
solution and outperforms the existing non-minimal methods.
We make our implementations open source.1.

1. Introduction

A cornerstone of geometric perception is finding the rel-
ative pose between two images using 2D-2D point corre-
spondences. It constitutes the basic building block in many
structure-from-motion (SfM), visual odometry, and simulta-
neous localization and mapping (SLAM) systems. Relative
pose estimation is a complex problem since the relation be-
tween the coordinates of the correspondences is intrinsically
nonlinear and has ambiguous solutions. Also, the most nat-
ural cost function, the reprojection error, is known to have
many local minima. The traditional approach to estimating
the relative pose between calibrated cameras passes through
the essential matrix, a rank-two matrix with two identical
singular values that encode the epipolar constraint between
corresponding images in the two views [32].

Without information about the translation scale, the rela-
tive pose problem has five degrees of freedom, and finding a
solution requires at least five correspondences. Most existing

1https://github.com/armandok/QME

solvers can only handle a fixed number of correspondences
as input. These so-called minimal solvers are usually paired
with a hypothesize-and-test framework such as RANSAC to
find the maximum consensus set of inlier matches. When
inliers are found, a non-minimal solver is needed to fine-
tune the estimated solution and reduce the influence of noise.
Therefore, solvers’ real-time performance and low process-
ing and memory requirements are essential.

This paper introduces an intuitive algebraic characteri-
zation of the space of essential matrices. We show that the
space of 4-D rotations with the bottom right entry set to zero
double covers the space of essential matrices and uniquely
encode epipolar configurations up to scale. We call such
rotations quintessential matrices. We show that they share
an intuitive connection with the well-known twisted-pair
ambiguity, i.e., four different epipolar configurations exist
for the same (unsigned) essential matrix. We also explore
the relationship between quintessential matrices and unit
quaternions and show that the space of two orthonormal
quaternions double covers the space of quintessential matri-
ces. We use these findings to present two semidefinite relax-
ations of the essential matrix estimation problem and show
that a Burer-Monteiro factorization of these spaces lives
on Riemannian manifolds. We then design a Riemannian
truncated-Newton trust-region method to solve this reduction
efficiently.

2. Related Work
Two-view Structure from Motion (SfM), epipolar geom-

etry, and the essential matrix are a fundamental textbook
topic in computer vision geometry [11, 19, 22]. The typical
formulation aims to find the essential matrix given pairs of
image points that are matched across the two images. Ini-
tial algorithms were based on linear relaxations (the Direct
Linear Transform, [19]) or minimal algorithms (which use a
minimum of point correspondences [16,25]). These solution
have typically been paired with RANSAC [12] to improve
the robustness to outliers. Successive solutions followed
different instances of the problem, e.g., using optimization
on manifolds (to minimize more meaningful objective func-
tions, which, however, lead to many local minima, [20, 23]),
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or focusing on iteratively identifying and removing outlier
correspondences [18, 26]. Despite the many proposed so-
lutions, to this day there is no algorithm that has clearly
emerged as the most robust and versatile.

Some of the optimization techniques used in this paper
for two-view SfM have found success in closely related
areas. A first problem is point registration, where relaxation
to convex sets has been applied (by relaxing the geometry
of the space of rotations to their convex hulls, [21, 30]).
Another related problem is the one of pose averaging or pose
synchronization, where the goal is to combine multiple two-
view pose estimations into a single localization for all the
camera frames. The rich structure of this problem has led to
many different approaches, such as averaging in the space of
rotations [8,15,17,35], or the use of linear [24] or spectral [3]
relaxations. The latter has lead to techniques [9, 29] that
provide guarantees of global optimality despite the non-
convexity of the problem. These guarantees are mainly given
by the use of dual certificates [10,13,29] and the Riemannian
staircase algorithm [4].

3. Preliminaries

General Notation. We use lowercase characters to de-
note scalars (e.g., s), bold lowercase characters to denote
real vectors (e.g., v), and bold uppercase characters for real
matrices (e.g., M). We denote the i-th row and j-th column
entry of M by Mij , and the identity matrix as Id ∈ Rd×d.
The trace, determinant, and vectorization of M are given by
tr(M), det(M), and vec(M), and ⊗ denotes the Kronecker
product. The inner product between two matrices is given
by

⟨Z1,Z2⟩
.
= tr(ZT

1Z2) = vec(Z1)
Tvec(Z2). (1)

The norm induced by this inner product is the Frobenius
norm given by ∥Z∥F

.
=

√
tr(ZTZ). The cross-product be-

tween two vectors t,v ∈ R3 is given by t × v = [t]×v,
where for t = [tx, ty, tz]

T we have [t]× as

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 . (2)

The Riemannian gradient and Hessian of a function f :
M 7→ R acting on a Riemannian manifoldM are denoted
as grad f(X) and Hess f(X)[Ẋ]. Projection on the tangent
space ofM at X is given by ProjX(·). A double cover is a
two-to-one mapping from one topological space to another.

Sets. The d-dimensional unit sphere is denoted as Sd−1 .
=

{u ∈ Rd : ∥u∥ = 1}. The sets of d × d symmetric and
symmetric positive semidefinite matrices are denoted as Sd
and Sd+ = {M ∈ Sd : M ⪰ 0}. The set of orthonormal k-
frames in Rd is shown by St(k, d)

.
= {Y ∈ Rd×k | YTY =

Ik} for k ≤ d. This set represents a smooth and compact

matrix manifold known as the Stiefel manifold [1]. We con-
sider the Riemannian metric induced by its embedding in
Rd×k given in (1). The orthogonal and special orthogonal
groups are denoted as O(d) = {O ∈ Rd×d : OTO = Id}
and SO(d) = {R ∈ O(d) : det(R) = +1}. Every non-
trivial rotation in SO(3) is about an axis, or equivalently
about an axis-plane normal to the rotation axis. Non-trivial
rotations in SO(4) are about two axis-planes that are com-
pletely orthogonal to each other. If the rotation angle about
one of the axis-planes is zero, it is called a simple rotation,
otherwise called a double rotation. If the angle of rotation in
both planes are equal, then the double rotation is called an
isoclinic rotation. If the two angles have the same sign, it is
called a left isoclinic rotation, otherwise it is a right isoclinic
rotation.

Quaternions. We denote a unit quaternion as a unit-norm
vector q = [vT s]T ∈ S3, where s is the scalar part and v =
[vx vy vz]

T is the vector part. The inverse of a quaternion is
given by negating its vector part, i.e., q−1 = [−vT s]T. The
left and right product by a quaternion q is given by matrices

QL(q)
.
=

[
s −vz vy vx
vz s −vx vy
−vy vx s vz

−vx −vy −vz s

]
=

[
+[v]× v
−vT 0

]
+sI4, (3)

QR(q)
.
=

[
s vz −vy vx

−vz s vx vy
vy −vx s vz

−vx −vy −vz s

]
=

[
−[v]× v
−vT 0

]
+sI4, (4)

such that q ◦ p = QL(q)p = QR(p)q, where ◦ denotes
the quaternion product operation. The two matrix operators
QL(·),QR(·) represent left and right isoclinic rotations.
Every rotation matrix R in SO(4) can be written as the
product of a pair of left and right isoclinic rotations, e.g.,
R = QL(p)QR(q) for p,q ∈ S3. The quaternion pair
(p,q) is unique up to a change of sign, i.e., (−p,−q) pro-
duces the same matrix R. In other words, S3 × S3 is the
(unique) double cover of SO(4). For any quaternion q, the
pair (q,q−1) yields a matrix of the form

QL(q)QR(q
−1) =

[
R 03

0T
3 1

]
, R ∈ SO(3), (5)

meaning that S3 is a double cover of SO(3).

4. Essential Matrix as an Orthogonal Matrix
A normalized essential matrix is typically defined as the

product of a rotation matrix R and a cross product matrix
[t]× of a unit vector t such that

E
.
= [t]×R. (6)

This matrix encodes the relative pose between two cameras,
and the objective of the non-minimal essential matrix esti-
mation problem is to estimate E by minimizing the squared
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algebraic error

E⋆ = argmin
E∈E

N∑
k=1

(fTi,kEfj,k)
2, (7)

given N ≥ 5 correspondences of bearing vectors (fi,k, fj,k)
observed by cameras i, j. The optimal solution E⋆ is then
decomposed into matrix R⋆ and the vector t⋆, which are the
orientation and normalized position of camera j represented
in the coordinate frame of camera i. Finally, E is the set of
all normalized essential matrices.

In the literature, several endeavors have been undertaken
to characterize E as a Riemannian product manifold. The
most direct definition arises from (6), where E is defined as

E = {E = [t]×R : R ∈ SO(3), t ∈ S2}, (8)

expressed in terms of the SO(3)× S2 manifold. An alterna-
tive characterization based on the Singular Value Decompo-
sition (SVD) is provided by

E = {E ∈ R3×3 : σ(E) = {1, 1, 0}}, (9)

which is equivalent to a quotient of the O(3) × O(3) man-
ifold as demonstrated in [14]. More recently, a different
characterization involving a quotient of SO(3)× SO(3) has
been presented in [32]. These approaches depend on the
parametrization of E, primarily due to the challenges in en-
forcing the constraints on the singular values as given in (9).
The derivatives of the singular values depend on the singular
vectors, which are not explicitly expressed in terms of the
entries of E.

In this section, we provide a novel characterization of
E as a Riemannian submanifold defined by differentiable
algebraic constraints. This achievement is realized by em-
bedding essential matrices into 4×4 rotation matrices within
SO(4). Furthermore, we demonstrate that this embedding
successfully resolves the twisted-pair ambiguity, thereby dis-
ambiguating the two possible rotation and unit translation
decompositions for each normalized essential matrix.

4.1. Orthogonal Embedding

To accomplish this embedding, we start by replacing the
definition given in (8) with a canonical representation pro-
posed in [3,32]. This alternative representation preserves the
inherent symmetry of the epipolar constraint. Leveraging the
explicit poses of the two cameras and their relative bearing,
denoted as (Ri, ti), (Rj , tj), and tij

.
= (tj−ti)∥tj−ti∥−1,

the expression in (6) takes the form [RT
i tij ]×R

T
i Rj . Utiliz-

ing the identity R[t]×R
T = [Rt]×, we rewrite (6) as

Eij = RT
i [tij ]×Rj . (10)

In the next step, we proceed to embed Eij in R4×4, ensuring
that the resulting matrix achieves full rank. The key idea here

is that Eij has a rank of two, and concatenating it with its left
null vector horizontally yields a matrix with full column rank.
Similarly, vertical concatenation of Eij with its right null
vector gives a matrix with full row rank. These left and right
null vectors are the epipoles RT

i tij and RT
j tji. Importantly,

negating these vectors does not alter this property.

Definition 1 (Signed Quintessential Matrix). Given an
essential matrix Eij ∈ E, the signed quintessential matrix
Qij ∈ R4×4 is defined as

Qij =

[
Eij δiR

T
i tij

δj(R
T
j tji)

T 0

]
, (11)

for δi, δj ∈ {−1,+1}.

This definition entails four matrices per essential matrix.
Interestingly, signed quintessential matrices are orthogonal
and the space of all signed quintessential matrices is given
by the set Q defined as

Q = {O ∈ O(4) : O44 = 0}. (12)

Lemma 1. Given a unit vector t ∈ S2, we have [t]2× =
ttT − I3.

Proof. For U = [t]2×, since ∥t∥ = 1 we have uii = −t2j +
−t2k = t2i − 1 and uij = titj for {i, j, k} = {1, 2, 3}.

Theorem 1. Q is the set of all signed quintessential matri-
ces.

Proof. It suffices to show that QT
ijQij = I4. We have

QT
ijQij =

[
ET

ijEij+δ2jR
T
j tjit

T
jiRj δiE

T
ijR

T
i tij

δit
T
ijRiEij δ2i t

T
ijRiR

T
i tij

]
=

[
RT

j (−[tij ]
2
×+tijt

T
ij)Rj δiR

T
j [tij ]

T
×tij

δit
T
ij [tij ]×Rj tTijtij

]
Using Lemma 1, tji = −tij , and [tij ]

T
× = −[tij ]×, the top

left block simplifies to I3. Since δ2i = δ2j = 1 and tij has
unit norm, the bottom right element equals to one. The top
right and bottom left 3-dimensional vectors are zero, since
tTij [tij ]× = 0T,[tij ]×tij = 0. Conversely, for a matrix

Q =
[ E tl
tTr 0

]
∈ Q, we have ∥E∥2F = ∥Q∥2F − ∥tr∥2F −

∥tr∥2F = 4 − 2 = 2 and also ETtl = Etr = 0 due to
orthonormality of the rows and columns. This means that E
must have at least one zero singular value (σ3 = 0) which
yields ∥E∥2F = σ2

1 + σ2
2 = 2. Since the singular values of

Q are all equal to one, the interlacing property dictates that
σ1, σ2 ≤ 1. Thus σ(E) = {1, 1, 0}, hence E ∈ E.

We can determine the condition on δi and δj under which
Qij is a rotation matrix.

Theorem 2. A signed quintessential matrix is a rotation if
δiδj = +1.
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Proof. The matrix Qij can be decomposed as

Qij =

[
RT

i 03

0T
3 1

] [
[tij ]× δitij
δjt

T
ji 0

] [
Rj 03

0T
3 1

]
.

The left and right matrices are in SO(4). Take the unit
quaternion qij = [tTij 0]. The middle matrix is equal to
matrices QL(qij),QR(qij)

T for the values (+1,+1) and
(−1,−1) of (δi, δj), both of which are in SO(4).

Following the results of Theorem 2, we denote the set of
(rotational) quintessential matrices Q+ ⊂ Q as

Q+ = {R ∈ SO(4) : R44 = 0}. (13)

For a given essential matrix Eij , Q+ contains two matrices
per the two configurations (δi, δj) ∈ {(+1,+1), (−1,−1)}.
As we will show in the next section, these two matrices corre-
spond to two different decompositions of Eij into a rotation
matrix and a baseline vector. This means that this redun-
dancy from embedding essential matrices in SO(4) serves to
disambiguate the mapping from an essential matrix to its two
relative pose decompositions. In simpler terms, quintessen-
tial matrices uniquely encode epipolar configurations up to
scale.

4.2. Twisted-pair Ambiguity

Since the objective of problem (7) is quadratic, an es-
timated solution is recovered up to an arbitrary choice of
sign. In addition, there are two relative pose decompositions
per an essential matrix. These two facts indicate four differ-
ent epipolar configurations corresponding to an estimated
essential matrix, known as the twisted-pair ambiguity.

As discussed, Q+ contains two members per essential ma-
trix. Considering both Eij and−Eij , there are four members
of interest in Q+. We prefer the configuration δi = δj = +1
for Qij representing the actual epipolar configuration, lead-
ing to

Qij=

[
Eij RT

i tij
tTjiRj 0

]
, Q

ij=

[
Eij −RT

i tij
−tTjiRj 0

]
.

(14)
While these two correspond to Eij , we have−Qij ,− Q

ij for
−Eij , thanks to the central inversion −I4 ∈ SO(4). These
configurations are depicted in Figure 1. The relation between
Qij ,

Q

ij is given by Hij ∈ SO(4) such that

Qij = Hij

Q

ij , Hij =

[
RT

i (I3 − 2tijt
T
ij)Ri 03×1

01×3 −1

]
,

where the top left 3×3 block of Hij contains a Householder
reflection.

4.3. Relations to Quaternions

Another useful insight is the connection between essential
matrices and quaternions. Here we show that the set of all
orthonormal quaternion pairs covers Q+ twice.

Corollary 1. The set St(2, 4) is a double cover of Q+.

Proof. Since a matrix R ∈ Q+ lies in SO(4), it can be
decomposed uniquely (up to a sign change) by a unit quater-
nion pair (p,q) = ([vT

p sp], [v
T
q sq]) such that R =

QL(p)QR(q). We also have R44 = −vT
pvq + spsq = 0,

which is equivalent to pTq−1 = 0. The matrix [p q−1]
hence lives in St(2, 4), same as [−p − q−1]. Alterna-
tively, for two perpendicular unit quaternions p,q we have
R = QL(p)QR(q

−1) ∈ Q+.

Based on Corollary 1, the two pairs (q1,q2), (−q1,−q2)
both yield a quintessential matrix Qij = QL(q1)QR(q

−1
2 )

if they are orthonormal. We saw four possible quintessential
matrix solutions for the relative pose estimation problem
in the previous section. This indicates that there are eight
possible orthogonal quaternion pair solutions. If we denote
these pairs as {qk = [vT

k sk]
T ∈ S3}2k=1, then we have

Qij =[
[v1]×[v2]×+s1[v2]×

+s2[v1]×+v1v
T
2+s1s2I3

−[v1]×v2−s1v2+s2v1

−vT
1 [v2]×−s2vT

1 +s1v
T
2 vT

1v2 + s1s2

]
.

The bottom right element is zero since q1 ⊥ q2. Using the
identity [v1]×[v2]× = v2v

T
1 −vT

1v2I3, we can simplify this
further to

Eij =v2v
T
1+v1v

T
2 +s1[v2]×+s2[v1]×+2s1s2I3, (15)

RT
itij =− [v1]×v2 − s1v2 + s2v1, (16)

RT
jtji =[v2]×v1 + s1v2 − s2v1. (17)

One immediate observation is that if we multiply both
q1,q2 by −1, the three terms above remain the same, but
if we multiply only one of them, the sign of all three
terms changes. Another interesting observation is that if
we swap q1 and q2, the essential matrix Eij remains the
same, but the sign of epipoles is flipped, indicating that

Q

ij = QL(q2)QR(q
−1
1 ). These relations are summarized in

Table 1.

4.4. Reduced Quintessential Manifold

We’ve established that the quintessential manifold is em-
bedded in SO(4) with an additional constraint: the bottom
right element must be zero. This characterization relies on
15 parameters and 10 quadratic constraints to ensure the
orthonormality of columns. This section will introduce an al-
ternative but equivalent representation for Q+ that employs
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(a) Qij (b) Q

ij (c) − Q

ij (d) −Qij

Figure 1: Twisted-pair ambiguity in two-view SfM and the four corresponding quintessential matrices.

Matrix 1st pair 2nd pair

Qij q1,q2 −q1,−q2

−Qij −q1,q2 q1,−q2

Q

ij q2,q1 −q2,−q1

− Q

ij −q2,q1 q2,−q1

Table 1: All possible quaternion-pair decompositions of
quintessential matrices corresponding to the four solutions
of the essential matrix estimation problem.

fewer parameters by embedding it in a lower-dimensional
ambient space.

The core concept here revolves around the fact that any
rotation matrix with a removed row or column can be fully
recovered. This can be achieved, for instance, by performing
a QR decomposition and selecting the sign of the removed
row or column to maintain a determinant of one. Technically
speaking, St(n− 1, n) is diffeomorphic to SO(n).

Using this concept, we propose removing either the last
row or the last column of Qij to preserve the essential matrix
Eij . The resulting matrices from eliminating the last row
and column of Qij are given by:

Vr =

[
ET

ij

tTijRi

]
, Vc =

[
Eij

tTjiRj

]
. (18)

These matrices are in R4×3 and satisfy VTV = I3. More-
over, their last row has a norm of one. We then define the
Reduced Quintessential Manifold as:

Q
.
= {V ∈ St(3, 4) : ∥eT4V∥ = 1}, (19)

where e4 = [0, 0, 0, 1]T. This representation needs 12 pa-
rameters and enforces 7 constraints. In the following section,
this definition will be utilized to solve the non-minimal es-
sential matrix estimation problem.

5. Fast Global Solver using Burer-Monteiro Fac-
torization

The algebraic error in (7) is quadratic in vec(E) ∈ R9,
or equivalently in vec(V) ∈ R12 for V ∈ Q. Furthermore,

members of Q can be characterized using seven quadratic
constraints. This enables the formulation of the algebraic
error minimization problem as a Quadratically Constrained
Quadratic Program (QCQP), which can subsequently be
transformed into a convex semidefinite programming (SDP)
problem using Shor’s relaxation. The relaxed SDP problem
is defined as

min
X∈S12

+

⟨C,X⟩ s.t. A(X) = b. (20)

In this formulation, X replaces vec(V)vec(V)T while relax-
ing the rank-1 constraint. The linear operator A(·) enforces
the three columns and the last row of V to be of norm one
and also forces its columns to be orthogonal to each other.
By adopting the convention of Vr from (18) and column-
wise vectorization, the objective matrix C ∈ R12×12 takes
the form

C =

N∑
k=1

(fi,k ⊗ f̌j,k)(fi,k ⊗ f̌j,k)
T, (21)

for f̌j,k
.
= [fTj,k 0]T. Finally, this problem can be handed off

to a standard SDP solver to obtain the optimal solution X⋆,
from which the optimal essential matrix can be extracted
through a rounding procedure.

An equivalent SDP formulation of (20) was previously
proposed in [37], in which the quadratic constraints used is
EET = [t]×[t]

T
×. The author proves this relaxation’s tight-

ness and local stability and utilizes an off-the-shelf interior-
point-based SDP solver to find the optimal solution. Despite
the efficient performance and certifiable global optimality,
this method is not yet suitable for real-time applications due
to the following reasons: 1) The domain of the corresponding
SDP problem is S12+ , which requires 78 parameters if we ne-
glect the repeated ones due to the symmetry. This relaxation
is largely over-parameterized, considering that the actual
domain of interest E is five-dimensional. 2) Standard interi-
or-point algorithms used for semidefinite optimization have
a high computational cost. In real-time applications with
spurious feature matches, fast global solvers are needed to
solve the essential matrix estimation problem multiple times
in an iteratively reweighted least squares [27] or graduated
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non-convexity [34] routine. More computationally efficient
solvers are hence needed to accommodate such needs.

In this section, we will introduce a Burer-Monteiro fac-
torization [7] of (20) and analyze the feasible set of the fac-
torized problem. Then we derive the machinery needed for
applying a second-order Riemannian solver, which yields
super-linear convergence and is robust to poor numerical
conditioning. Later we present the expression for the cer-
tificate of optimality matrix and employ these derivations
to solve the factorized problem with the Riemannian stair-
case algorithm [4]. The proposed algorithm exploits the
fact that this formulation admits a low-rank solution, and
its rank-restricted version is a smooth optimization prob-
lem on a Riemannian manifold. This approach needs as
low as 24 parameters, and we will show that it outperforms
state-of-the-art SDP solvers in runtime when the noise is
mild.

5.1. Factorized SDP Problem

The Burer-Monteiro method proposes to factorize X
from (20) as X = YYT and solve for Y by finding

min
Y∈R12×r

⟨C,YYT⟩ s.t. A(YYT) = b. (22)

This yields a rank-restricted version of (20) as its solution
has rank(YYT) ≤ r. This reformulation reduces the search
space dimension from 78 to 12r and eliminates the positive
semidefiniteness constraint, albeit at the expense of convex-
ity. However, a second-order optimal solution Y of (22)
for a given r is not necessarily such that YYT is the global
optimal solution of (20). A pivotal aspect in this approach is
the availability of a dual certificate matrix S(X), which aids
in detecting if a solution from (22) is globally optimal and
provides a direction for improvement if it is not.

Theorem 3 ( [4, 28]). If Y is a feasible point and a local
minimizer of (22), then there exists a matrix S ∈ S12 such
that SY = 0. In addition, if S ⪰ 0 then X = YYT is a
global minimizer of (20). Otherwise, there exists v ∈ R12

with vTSv < 0 such that Ẏ+ = [012×r v] is a feasible
second-order direction of descent from the lifted point Y+ =
[Y 012×1] ∈ R12×(r+1).

Theorem 3 provides a strategy to achieve a globally op-
timal solution for (20). If the domain of (22) happens to
be a Riemannian manifold, this theorem allows us to apply
the Riemannian Staircase Algorithm [4, Alg. 1], outlined
in Algorithm 1, to find such a solution. Instead of using Y di-
rectly in this algorithm, we rearrange its entries into another
matrix V, explaining this rearrangement in the subsequent
section.

Algorithm 1 Riemannian Staircase

Require: An initial point V ∈ Q(r0), r0 ≥ 2
for r = r0, . . . , 12 do

Starting from V, find a second-order optimal solution
V⋆ ∈ Q(r) by applying a Riemannian optimizer

S← CertificateMatrix(V⋆)
if S ⪰ 0 then

return V⋆

else
V←

[
V⋆

04×3

]
Escape saddle point by finding a direction of

descent V̇+ from S and update V ▷ Theorem 3
end if

end for

5.2. Factorized Manifold

This section finds the manifold structure of Y, which is
imposed by the seven linear constraints in A(X) = b as

4∑
i=1

xk+i,k+i = 1, k ∈ {0, 4, 8},

4∑
i=1

xk1+i,k2+i = 0, k1, k2 ∈ {0, 4, 8}, k1 < k2,

x4,4 + x8,8 + x12,12 = 1.
(23)

If we denote the three 4× r blocks of Y as

Y =

Y1

Y2

Y3

 , Yi =

[
e
(1)
i . . . e

(r)
i

t
(1)
i . . . t

(r)
i

]
∈ R4×r, (24)

then we can rewrite the constraints in (23) for Y as

∥Yi∥F = 1 i ∈ {1, 2, 3}
⟨Yi,Yj⟩ = 0, i ̸= j

∥eT4Y1∥2F + ∥eT4Y2∥2F + ∥eT4Y3∥2F = 1.
(25)

The first three constraints in (25) force the vec(Yi)s to be
unit norm vectors, and the next three enforce that vec(Yi) ⊥
vec(Yj). Concatenating these three orthonormal vectors
into a matrix V ∈ R4r×3 gives

V =
[
vec(Y1) vec(Y2) vec(Y3)

]
∈ St(3, 4r). (26)

The last constraint of (25) requires that ∥Vt∥F = 1, where
Vt ∈ Rr×3 is a submatrix of V containing the rows with
epipole variables t(k)i , given as Vt

.
= (Ir ⊗ eT4 )V.

If r = 1, we have that V from (26) lives in St(3, 4)
and satisfies ∥eT4V∥ = 1, which means that V lives in the
reduced quintessential manifold Q defined earlier in (19).
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For larger r, we can define a similar set by extending the
definition of Q using

Q(r)
.
= {V ∈ St(3, 4r) : ∥(Ir ⊗ eT4 )V∥F = 1}. (27)

Notice how increasing the rank increases the size of the
domain

Q(1) ⊂ Q(2) ⊂ · · · ⊂ Q(12). (28)

We will use the Stiefel-based arrangement of variables
in V instead of Y since it allows for a more succinct ex-
pression of the derivatives and projections. In the interest of
space, we will present the proofs of these derivations in the
supplementary material.

5.3. Projection on Tangent Space

A point V̇ on the tangent space of Q(r) must satisfy
VTV̇ + V̇TV = 0 and also ⟨Vt, V̇t⟩ = 0. Given a point
Z, its projection on the tangent space of Q(r) is given by

Z̃ = Z−Vsym(VTZ),

ProjV(Z) = Z̃− ⟨Vt, Z̃t⟩
1− ∥VT

t Vt∥2F
(I4r −VVT)GV,

(29)
where G is defined as G

.
= Ir ⊗ (e4e

T
4 ) ∈ R4r×4r. Intu-

itively, this is a two-step process where first Z is projected
on the tangent space of St(3, 4r) given by Z̃, and then the
component of Z̃t parallel to Vt is removed.

5.4. Newton Retraction

A retraction is essentially a smooth mapping from the
tangent bundle of a manifold onto itself, approximating the
exponential map to the first order. We employ the Newton re-
traction [36], which provides a second-order approximation
of the exponential map by shifting points along manifolds
orthogonal to the constraint manifold. To execute this op-
eration, we require a function f(·) : R4r×3 7→ R7 that
evaluates the values of the seven constraints on Q(r)—six
values for the orthonormality of columns and one for the unit
Frobenius norm of rows with epipole variables. Additionally,
we need a function J(·) : R4r×3 7→ R7×12r that computes
the Jacobian matrix of f(·). With these components in place,
we can outline the retraction process as depicted in Algo-
rithm 2. The mat(·) represents the inverse of vec(·) function.
We set the convergence threshold to c0 = 10−4.

5.5. Gradient and Hessian

Since V comes from rearranging the entries of Y, there
is a direct relationship between the gradient and the hessian
of the objective function g(Y) = h(V)

.
= ⟨C,YYT⟩. If

we denote the mapping Y → V by ℓ(·) : R12×r 7→ R4r×3

introduced in (26), then we obtain the Euclidean gradient
and hessian of h as

∇h(V) = ℓ(∇g(Y)) = ℓ(2CY),

∇2h(V)[V̇] = ℓ(∇2g(Y)[Ẏ]) = ℓ(2CẎ).
(30)

Algorithm 2 Newton Retraction

Require: point & tangent (V, V̇), convergence thresh. c0
V← V + V̇
repeat

J← J(V) ▷ Update the Jacobian using V
solve (JJT)x = f(V)
δ ← −JTx
V← V +mat(δ)

until ∥δ∥ < c0
return V

From there, we get the Riemannian gradient and Hessian as

gradh(V) = ProjV(∇h(V))

Hess g(V)[V̇] = ProjV

(
D
(
gradh(V)

)
(V)[V̇]

) (31)

The gradient is thus given using the projection in (29), and
the full expression of the Hessian is available in the supple-
mentary material.

5.6. Certificate Matrix

We present a closed-form expression for the certificate
matrix S introduced in Theorem 3. For a KKT point Y
of (22), we have grad g(Y) = Projℓ(Y)

(
ℓ(2CY)

)
= 0.

Simplifying this leads to SY = 0, and S is given by

S = C− sym(M)⊗ I4 (32)

where M is a 3× 3 matrix whose entries are the trace of the
corresponding 4× 4 blocks of CX, from X = YYT. More
formally, mij = ⟨CX, (eie

T
j ) ⊗ I4⟩ where ek ∈ R3 is the

unit vector with its kth entry equal to one.
We emphasize that this certificate matrix can be used to

determine the global optimality of the relaxed problem (20)
for a solution obtained from other solvers, e.g., a minimal
solver like the 5-point method.

5.7. Random Sampling on Q(r)

To obtain a random point on Q(r), we first sample a ran-
dom 4r × 3 matrix Ṽ. Then from Ṽ, we obtain V• ∈ Q(r)
by first normalizing rows corresponding to the epipole vari-
ables. Later, we update the remaining rows by multiplying
them by a symmetric matrix, as

V•
t = Ṽt∥Ṽt∥−1

F ,

K = (I3 −V•T
t V•

t )
1
2 ,

V•
E = ṼEK(KṼT

EṼEK)
†
2K,

(33)

where † is the Moore–Penrose inverse.
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5.8. Initialization Technique

Albeit our solver can obtain the globally optimal solution,
having a good starting point can speed up the process. We
propose to initialize the solver using the eigenvector corre-
sponding to the smallest eigenvalue of the bearing matrix,
defined as

CE
.
=

N∑
k=1

(fi,k ⊗ fj,k)(fi,k ⊗ fj,k)
T ∈ R9×9. (34)

This vector is then placed in a 3× 3 matrix and projected on
the essential manifold by taking an SVD and replacing the
singular values with {1, 1, 0}. This essential matrix and its
corresponding right null vector are then placed into the top
4× 3 block of the initial matrix V ∈ Q(r0).

5.9. Rounding the Solution

We use the rounding procedure from [37]. First, from a
given solution X⋆ ∈ S12+ we construct the matrix X⋆

E ∈ S9+
containing only entries of the essential matrix. Later we find
the eigenvector v corresponding to the largest eigenvalue of
X⋆

E and then project mat(v) ∈ R3×3 onto E.

6. Local Solver by Orthogonal Decomposition
After solving (20), whether through an interior point

solver or the Riemannian Staircase method, we obtain a
solution X⋆ with a rank of at least two. This outcome stems
from the twisted-pair ambiguity, i.e., all cross-terms between
the essential matrix and its epipole in X⋆ can be flipped
without impacting its optimality. Should X⋆ exhibit a rank
exceeding two (i.e., if X⋆

E has a rank greater than one), we
project the solution onto E. This projection yields a solution
close to the higher-rank global solution, yet it may not pre-
cisely be the global optimizer of (7). To bridge this gap, we
introduce a local solver here to refine this rounded solution
further.

Our local solver surfs Q by decomposing Q into two
orthogonal matrices as

Q = OT
1O2, (35)

where the last columns of O1,O2 are perpendicular due
to q44 = 0. We define the QO2 manifold to capture these
constraints as follows

QO2 .
= {(O1,O2) ∈ O(4)2 : ⟨OT

1O2,F⟩ = 0}, (36)

where F is given by F
.
= e4e

T
4 ∈ R4×4. Needless to say, we

can always fix one of these matrices (e.g., set O1 to I4) to
reduce the number of parameters in this approach.

6.1. Projection on Tangent Space

The matrices (Ȯ1, Ȯ2) on the tangent space of QO2

must satisfy {OT
i Ȯi + ȮT

i Oi = 0}2i=1 and ⟨ȮT
1O2 +
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Figure 2: Runtime of our global solver (BM & BM+local)
implemented in MATLAB versus the SDPT3 solver.

OT
1 Ȯ2,F⟩ = 0. Similar to Q, we see that projection on

the tangent space of QO2 is a two-step process, in which the
first step is the projection on the tangent space of O(4)2 and
the second one makes the last columns perpendicular.

Z̃i
.
= Zi −Oi sym(OT

i Zi),

ProjOi
(Zi)

.
= Z̃i −

∑
⟨OT

i Z̃j ,F⟩
2

Oi skew(O
T
i OjF).

(37)

6.2. Retraction

One popular retraction on O(4) is given by QR and QL
decompositions [1]. These two retractions have the useful
property of leaving the direction of the first/last column un-
changed. For the QO2 manifold, the last columns of O1,O2

are orthonormal, i.e., they belong to St(2, 4). Using this
property, we use the SVD retraction [2] for the Stiefel mani-
fold on these two columns and insert the retracted values in
the last columns of Oi + Ȯi. Later, we perform a QL retrac-
tion to keep the last columns we got from SVD unchanged.
This will ensure that the retracted matrices belong to QO2.

6.3. Gradient and Hessian

Given an error function f(Q) such as (7), we have the
Euclidean gradients as

∇O1
f(Q) = 2O2∇Qf(Q)T

∇O2
f(Q) = 2O1∇Qf(Q)

(38)

Using the projection in (37), we find the Riemannian gradi-
ent and Hessian, as given in the supplementary material.

7. Results
We implemented our global and local solvers in MAT-

LAB and C++. For the MATLAB version, we use
Manopt [6] and its second-order Riemannian trust-region
method [5]. To evaluate the performance of our staircase
method, we compare it with its SDP version given in (20)
and use SDPT3 [31] to solve it. We use synthetic data with
1900 randomly generated epipolar configurations and feature
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Figure 3: Rotation and translation error between the estimated relative pose and the ground-truth values. The top row shows
the rotation error in degrees and the bottom row shows the angle between the estimated and ground-truth baseline vector.

0 5 10 15
0

2

4

Noise Level [pixels]

R
un

tim
e

[m
s]

BM, eigen
BM+L, eigen

0 5 10 15
0

2

4

6

8

M
ea

n
E

rr
or

[d
eg

]

SDPA Rot
SDPA Tra

(a) N = 8

0 5 10 15
0

1

2

3

Noise Level [pixels]

BM, random
BM+L, random

0 5 10 15
0

1

2

3
BM Rot random
BM Rot eigen
BM Tra random
BM Tra eigen

(b) N = 12

0 5 10 15
0

1

2

Noise Level [pixels]

SDPA

0 5 10 15
0

1

2
BM+L Rot random
BM+L Rot eigen
BM+L Tra random
BM+L Tra eigen

(c) N = 16

0 5 10 15
0

1

2

Noise Level [pixels]

0 5 10 15
0

0.5

1

1.5

2

(d) N = 20

Figure 4: Performance comparison between our solvers (BM and BM+L) and SDPA. Top row shows the rotation (Rot) and
translation (Tra) errors between the estimated relative and the ground truth. For each experiment, the BM solver is initialized
both randomly (random) and using the method from Sec. 5.8 (eigen).

points. We add Gaussian noise to feature points in the im-
age plane with a standard deviation between 1 and 10, with
increments of 0.5. For a given N and standard deviation,
25 total random configurations are generated such that the
relative rotation and translation are randomly generated over
a uniform distribution. The rotation angle is uniformly sam-
pled between 0 and π

2 . We also compare our algorithm with
MATLAB’s 5-point solver. These results are given in Fig. 2
and 3 for random initialization as described in Sec. 5.7.

For the C++ implementation, we compare our approach’s
runtime and estimation error with SDPA [33], the highly
efficient SDP solver used in [37]. We use standard devia-
tions from 0 to 15; for each N and standard deviation, we
generated 100 random configurations. In the C++ implemen-
tation, once the staircase method (denoted as BM) returns a
rounded solution, we carry the local optimization on Q(1)
instead of QO2 for faster runtime. These results are given

in Fig. 4.
We can see in Fig. 2 and 4 that as N increases, the stair-

case method finds a solution faster. We speculate this to
be due to the improved condition number of C and, con-
sequently, the Hessian as the Euclidean Hessian is propor-
tional to C (see (30)). More importantly, we see in Fig. 4
that our global solver with the initialization from Sec. 5.8
outperforms SDPA in most noise levels, with a much better
performance in low noise scenarios, whereas SDPA (and
SDPT3) yield a nearly constant runtime in all cases.

8. Conclusion
We presented a fast and certifiably correct essential ma-

trix solver that outperforms the best existing method in low
to moderate noise levels. We also introduced quintessen-
tial matrices and uncovered their relationship with epipolar
configurations and orthogonal unit quaternions.
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