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Figure 1: We present FishNet, a comprehensive benchmark for large-scale aquatic species recognition, detection, and functional
trait identification. Our benchmark dataset is based on an aquatic biological taxonomy, consisting of 8 taxonomic classes, 83
orders, 463 families, 3,826 genera, 17,357 species, and 94,532 images. The dataset also includes bounding box annotations for
fish detection. Additionally, the dataset encompasses 22 traits, grouped into three categories: habitat, ecological rule, and
nutritional value. These traits facilitate the identification of the ecological roles of aquatic species and their interactions with
other species.

Abstract

Aquatic species are essential components of the world’s
ecosystem, and the preservation of aquatic biodiversity is
crucial for maintaining proper ecosystem functioning. Un-
fortunately, increasing anthropogenic pressures such as over-
fishing, climate change, and coastal development pose sig-
nificant threats to aquatic biodiversity. To address this chal-
lenge, it is necessary to design an automatic aquatic species
monitoring systems that can help researchers and policymak-
ers better understand changes in aquatic ecosystems and
take appropriate actions to preserve biodiversity. However,
the development of such systems is impeded by a lack of large-
scale diverse aquatic species datasets. Existing aquatic
species recognition datasets generally have a limited num-

ber of species, nor do they provide functional trait data, and
so have only narrow potential for application. To address the
need for generalized systems that can recognize, locate, and
predict a wide array of species and their functional traits,
we present FishNet, a large-scale diverse dataset containing
94,532 meticulously organized images from 17,357 aquatic
species, organized according to aquatic biological taxonomy
(order, family, genus, and species). We further build three
benchmarks, i.e., fish classification, fish detection, and func-
tional trait prediction, inspired by ecological research needs,
to facilitate the development of aquatic species recognition
systems, and promote further research in the field of aquatic
ecology. Our FishNet dataset has the potential to encourage
the development of more accurate and effective tools for the
monitoring and protection of aquatic ecosystems, and hence
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take effective action toward the conservation of our planet’s
aquatic biodiversity. Our dataset and code will be released
at https://fishnet-2023.github.io/.

1. Introduction
Aquatic biodiversity is of paramount importance in

safeguarding the structure, stability, and overall health of
aquatic ecosystems. Nonetheless, in recent decades, the
escalating anthropogenic pressures from human activities,
including fisheries, climate change, and coastal develop-
ment [22, 24, 29], have made the conservation of aquatic
biodiversity increasingly difficult and increasingly promi-
nent in public attention. A key step in aquatic biodiversity
protection is the ongoing monitoring, which calls for highly
efficient species recognition and functional trait identifica-
tion [36, 39, 42]. However, this process generally calls for a
high level of expert knowledge due to complicated species
taxonomy, which makes it time- and labor-consuming.

In recent years, deep learning methods have made signifi-
cant breakthroughs in various computer vision tasks, present-
ing a promising solution for automatic and efficient species
recognition. However, it is well-known that the accuracy of
these AI-based models is heavily reliant on the scale and
diversity of the training datasets. In the context of safeguard-
ing aquatic biodiversity, there is an urgent need to develop
large-scale and diverse datasets to facilitate AI-based aquatic
species recognition systems. Several previous works have
focused on building such datasets for fish recognition. For
example, Fish4Knowledge [15] collected 27,370 fish im-
ages from 23 distinct species. WildFish++ [44] collected
103,034 fish images from 2,348 species along with text de-
scriptions. Other works [3, 6, 16, 17, 35] have also accumu-
lated fish images from specific regions, primarily focusing
on species classification. However, these datasets are limited
to a relatively small proportion of the >35,000 described
species of fish, posing a challenge to their application in
real-world scenarios that require the recognition of diverse
species. Therefore, there is an urgent need to develop more
extensive and diverse datasets that can enable more robust
AI-based systems to accurately identify a broader range of
aquatic species, supporting aquatic biodiversity conservation
efforts.

In this work, we present a large-scale diverse dataset,
called FishNet, to foster aquatic species recognition research.
FishNet contains 94,532 images of aquatic species from
17,357 species, collected from different regions around the
world. Please refer to Table 1 for a detailed comparison
of our FishNet dataset with existing datasets. FishNet con-
tains 94,532 images with different sizes, resolutions, and
illumination, representing a diverse set of aquatic species.
The dataset is meticulously organized based on the scien-
tific classification of aquatic species, including 8 taxonomic

classes1, 83 orders, 463 families, 3826 genera, and 17,357
species, and is accompanied by manual-labeled bounding
box annotations.

Our FishNet dataset also provides traits associated with
each species of the dataset, which can facilitate a better un-
derstanding of the ecological roles of aquatic species. To the
best of our knowledge, we are the first to use deep learning
techniques to predict functional traits directly from fish im-
ages. The proposed dataset can serve as a valuable resource
for training and evaluating deep learning models for aquatic
species classification and detection, and can further support
research efforts toward the conservation and protection of
aquatic ecosystems.

Additionally, we establish three benchmarks inspired by
ecological research needs - fish classification, fish detection,
and functional trait prediction, to facilitate the advancement
of aquatic species recognition systems, and promote further
research in the field of aquatic ecology. We conducted fish
recognition and functional trait prediction using state-of-the-
art deep learning models on these three benchmarks. The
results show that accurate fish recognition and functional
trait prediction on our FishNet dataset remains challenging:
(1) The best-performing model achieved a classification accu-
racy of 61.38% at the family levels, and the best-performing
detection model achieved mAP50 of 56.5 at the order level.
(2) For functional trait prediction, the best-performing model
achieved a classification accuracy of 54.80% and 18.00%
under supervised and zero-shot settings, respectively.

2. Related Work
Fish taxonomy has been a longstanding area of scientific

inquiry, with early works dating back to Aristotle’s taxo-
nomic classification of 117 Mediterranean fish in the 4th
century BC [18]. In the 18th century, Linnaeus developed a
widely-used system for naming and classifying organisms,
and subsequent taxonomists have further built upon his work
using both morphological and genetic data [2, 32]. Despite
the advances made, classifying fish species remains a time-
consuming process [30, 43]. In recent decades, computer
vision techniques have played a vital role in automating
the fish identification process, resulting in faster and more
cost-effective identification of fish species [43]. However,
computer vision models targeted at fish classification and
detection face several challenges, including illumination
change, low contrast, frequent occlusion, turbid water, and
complex background [4, 43]. To tackle the challenges of
fish recognition, a large-scale high-quality dataset is desired
to automatically recognize aquatic species for biodiversity
monitoring and protection. In this section, we provide a
summary of previous aquatic species datasets and delineate

1We use “taxonomic class” to avoid confusion with the term “class”
in the computer vision field that denotes the categorization of images or
objects into groups based on their visual characteristics.
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Datasets Properties Tasks
Images Species Taxonomy Level Functional Traits Classification Trait Prediction Detection

Fish4-Knowledge-A [15] 27,370 23 1 ✗ ✓ ✗ ✓
SEAMPD21 [3] 28,328 130 1 ✗ ✓ ✗ ✗
Fish-gres [35] 3,248 8 1 ✗ ✓ ✗ ✗
Mediterranean Fish Species [16] ≈40,000 20 1 ✗ ✓ ✗ ✗
Fish Abundance [17] 4,909 50 1 ✗ ✓ ✗ ✗
Image Dataset [12] 33,805 30 1 ✗ ✓ ✗ ✗
NCFM [6] 16,915 8 1 ✗ ✓ ✗ ✗
iNaturalistFish 1001[21] 54,006 369 1 ✗ ✓ ✗ ✗
WildFish++ [44] 103,034 2,348 1 ✗ ✓ ✗ ✗

Ours 94,778 17,357 5-1 22 ✓ ✓ ✓

Table 1. Comparison with existing datasets for fish recognition. FishNet provides annotations following biological taxonomy from class(5) to
species(1); while previous datasets only provide species-level annotations. FishNet covers two orders of magnitude more species categories
than existing datasets (17k vs 130). More importantly, FishNet provides additional functional traits that enable trait identification.

the limitations that impede their applicability for detailed
analysis of aquatic species.
Lack of species diversity. Fish4Knowledge [15] is one
of the pioneering works to build a fish recognition dataset.
This dataset comprises a vast collection of approximately
700,000 underwater video clips captured in open sea waters
in the Adriatic Sea in Croatia. A subset of 27,370 images
was extracted from these video clips and manually annotated
with bounding boxes and the corresponding species name.
Another work [12] collects 33,805 images of 30 different
fish species along with information about the meteorological
and oceanographic conditions from the region of Barcelona,
Spain. Several other works like [3, 6, 16, 17, 35] also collect
fish images for classification from specific regions. These
datasets are limited to a small number of species, posing a
challenge to their application in real-world scenarios that
require the recognition of diverse species. In contrast, our
FishNet dataset contains more than 17,000 aquatic species
which is more suitable for real-world application.
Lack of taxonomic diversity. Taxonomic classification of
fishes is a crucial task in ecology and conservation biol-
ogy [40]. Although several datasets have been previously
developed for this task [3, 12], most of them have focused
on a narrow taxonomic range (i.e. containing species from a
small number of higher-order taxonomic groups), limiting
their utility for exploring the wider diversity of fish species.
For instance, the SEAMPD-21 [3] dataset comprises over
23,000 images, but only encompasses 130 species, while
another dataset [12] containing more than 30,000 images
includes merely 30 species. While these datasets serve as
valuable resources for studying specific species, they do not
provide a comprehensive representation of the diverse range
of fish species present, which is crucial for understanding
the fish ecosystem and recognizing the unique properties of
different fish species.
Lack of functional traits. Functional traits are characteris-
tics of an organism that relate to its ecological role [31, 39].

Functional traits in fish, such as trophic ecology, swimming
modality, habitat use, and reproductive strategies, provide
crucial insights into their ecological role and interactions
with other species [28]. Understanding these traits can aid
in sustainable fisheries management and maintaining ecosys-
tem balance [38]. Monitoring functional diversity, rather
than species diversity, is a common method of understand-
ing ecosystem health, and guiding ecosystem management.
Moreover, predicting functional traits can facilitate the un-
derstanding of probable functions performed by unknown
or novel species, which otherwise may take considerable
research effort and time to ascertain [9].

Unlike most existing large-scale bio-related datasets (such
as iNaturalist [21] and WildFish++ [44]) that primarily fo-
cuses on species classification, the Brackish dataset [33]
provides underwater images with bounding box annotations
of fish, crabs, and starfish. The BrackishMOT [34] dataset
focuses on tracking schools of small fish and provides 98
video sequences captured in the wild. The Caltech fish count-
ing dataset [23] consists of sonar videos, which makes it
challenging for diverse species recognition. Similar to func-
tional traits in our FishNet dataset, the NEWT dataset [41]
offers functional attributes within broader domains such as
behavior, age, and health. In contrast, FishNet places its
emphasis on habitat-related functional traits, e.g., tropical
area suitability. A notable distinction lies in the breadth
of species categories covered: our FishNet dataset encom-
passes a significantly larger spectrum of categories compared
to the NEWT dataset (17,000 vs. 183). We compare our
FishNet dataset with other existing fish-related datasets and
summarize the key differences in Table 1.

3. FishNet

The goal of our FishNet dataset is to provide a large-
scale fish image dataset that benchmarks fish recognition,
detection, and functional trait predictions. In this section,
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Figure 2. Order distribution. We plot the natural logarithm of the number of images per order. We show 42 more frequent orders at the top
and 41 less frequent orders at the bottom.

we outline our dataset collection approach, including fish
taxonomy construction, image and attribute collection, and
detection annotation. To ensure the accuracy and consistency
of our annotations, we implemented a quality control process
during annotation collection. Finally, we present statistics of
FishNet.

3.1. Fish taxonomy construction

The construction of fish taxonomy represents a critical
preliminary step for the development of a fish recognition
system. In order to facilitate the scientific and user-friendly
utilization of our FishNet dataset, we constructed and or-
ganized the dataset in accordance with standard fish taxon-
omy protocols. To ensure the quality of the data and meet
the ecological objectives, aquatic behavioral ecologists ac-
tively participated in this project and provided input on the
design of the data collection for both taxonomical labels
and functional traits. Initially, a comprehensive list of fish,
amounting to approximately 35,024 distinct species, was
sourced from FishBase [13]. Within FishBase, each indi-
vidual fish is mapped to its respective position within the
taxonomic hierarchy, consisting of taxonomic class, order,
family, genus, and species. See Fig. 1 for a detailed structure
of fish taxonomy.

3.2. Image and Functional Traits Collection

For each of the fish species in our taxonomic list, we
collected available images from two key online databases,
FishBase [13] and iNaturalist [21]. 51,433 images were
scraped from FishBase using an updated version of the spi-
derfish package [37]. After we obtained the fish images
from Fishbase [13], to ensure the quality and relevance of
the data, we manually reviewed all the images and removed
any instances that were not suitable for our analysis. This
involved removing images that were not photographs of fish,
such as images of fish sketches, coin images, stamp images,
larval fish, and images of fish bone structures. By perform-
ing this manual filtering process, we were able to ensure
that our dataset consisted only of high-quality images that
were suitable for our research purposes. This process also
helped to reduce the potential for errors or inaccuracies in
our analysis, by removing any images that could introduce
additional bias or noise into the data. Some of the removed
instances are shown in Figure 3.

During this phase, 7,634 images were dropped from the
dataset and the remaining 43,799 were added to our FishNet
dataset. A further 51,006 images were then downloaded
from the iNaturalist database. Combined, the compiled im-
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Figure 3. Examples removed from the dataset: The first row shows bone structures, the second row shows larval fish, the third row shows
stamps and coins, and the fourth row shows fish sketches. All instances of these were identified and excluded.

age library encompasses 94,805 images from 17,518 species.
To facilitate model training and evaluation, we dropped 273
images whose families have less than 5 images. For each
species in our dataset, we gathered information on 22 traits
(90,147 images have traits), which we believe to be impor-
tant indicators of ecological roles and nutritional properties.
These traits include the true functional traits of trophic level,
feeding pathway, and habitat preferences based on temper-
ature and salinity. In addition, we also included nutritional
content ”traits” for calcium, iron, omega-3 fatty acid, protein,
selenium, vitamin A, and zinc content [20]. Table 2 provides
detailed descriptions of the ten true functional traits.

3.3. Fish Detection Annotations

We employed the Amazon Mechanical Turk (AMT) [7]
platform to collect bounding box annotations for all images
in our dataset. Specifically, three independent annotators
were tasked with providing locations for every instance in
each image. To ensure accurate and reliable annotation of
our image dataset, we have implemented a rigorous process
for collecting annotations for object detection. Each image
undergoes annotation by three different users on Amazon
Mechanical Turk (AMT) [7]. We only accept annotations if
all three users provide the same number of bounding boxes
and if all the boxes have an Intersection over Union (IOU)
value greater than 0.9. In cases where the annotations do
not meet these criteria, we collect an additional annotation
for the image and repeat the process of comparing the anno-
tations reported by the different AMT users. We continue
this process until we have at least three user annotations that
agree with the number of bounding boxes and have an IOU
greater than 0.9. For image categorization, we have already

Trait Value Description

Trophic level Real
value

The position in the food chain or food
web.

Feeding path Benthic/
Pelagic

Species feeds primarily from which
trophic pathway.

Tropical True/
False

Whether the fish can live in tropical ar-
eas.

Temperate True
False

Whether the fish can live in temperate
areas.

Subtropical True/
False

Whether the fish can live in subtropical
areas.

Boreal True/
False

Whether the fish can live in boreal areas.

Polar True/
False

Whether the fish can live in polar areas.

Freshwater True/
False

Whether the fish can live in freshwater.

Saltwater True/
False

Whether the fish can live in saltwater.

Brackish True/
False

Whether the fish can live in brackish.

Table 2. The explanation for 10 selected functional traits in the
FishNet dataset. Please check the supplementary for the rest.

assigned labels to each image and asked users to select im-
ages that belong to a specific family by providing example
images of that family. Through this meticulous process, we
were able to calculate 114,375 object instances.

3.4. FishNet Statistics

The FishNet dataset comprises a total of 94,532 images
featuring 17,357 distinct species. The images were compiled
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Backbone
Family Classification (%) Order Classification (%)

Common Medium Rare All Common Medium Rare All

ResNet-34 [19] 77.16 69.10 36.65 40.82 83.42 77.87 47.36 52.07
ResNet-50 [19] 76.82 70.27 35.99 40.37 82.46 75.93 42.84 47.94
ResNet-101 [19] 75.73 69.00 31.61 36.38 81.35 75.01 42.32 47.36

ViT-S [10] 76.08 67.02 33.67 37.97 84.14 74.78 44.09 48.79
ViT-B [10] 82.93 74.50 38.26 42.91 88.52 81.64 52.44 56.93
ViT-L [10] 85.51 77.05 44.18 48.40 89.02 83.89 55.94 60.26

BeiT [1] 86.09 77.67 50.78 54.26 91.41 88.24 38.16 45.97

ConvNeXt∗ [27] 42.63 26.56 12.57 14.53 63.58 40.67 17.82 21.12
ConvNeXt [27] 90.32 85.13 57.03 60.61 94.07 90.49 64.84 68.81

ConvNeXt [27] + FL [25] 88.28 82.02 51.22 55.16 87.60 81.11 22.22 31.37
ConvNeXt [27] + CB [8] 90.53 84.80 57.94 61.38 93.15 90.56 71.41 74.38
ConvNeXt [27] + FL [25] + CB [8] 84.89 77.92 48.99 52.71 85.14 57.25 39.28 41.76

Table 3. Fish Family/Order classification accuracy. * denotes training from scratch, ‘FL’ denotes using focal loss during training, and ‘CB’
denotes using class-balanced training.

from 8 taxonomic classes, 83 orders, 463 families, 3,826
genera, and 17,357 species, with each species having at least
one image. We present the distribution of Orders within
our dataset in Fig. 2. The figure displays the logarithmic
frequency of each Order category, and it demonstrates a long-
tail distribution within the FishNet dataset with respect to
Order categories. We observed similar distribution for other
taxonomy levels. In our FishNet dataset, each image in the
dataset is accompanied by 22 functional traits. Additionally,
the dataset includes instance-level bounding box annotations.
In total, the FishNet dataset encompasses 114,375 object
instances.

4. Experiments
Based on FishNet, we build three main challenges: 1)

Fish classification. To identify family/order labels from in-
put images; 2) Fish detection. Identifying the fish locations
and family/order labels from input images; 3) Functional
trait prediction. Predicting 10 functional traits from input im-
ages. For each challenge, we baseline several state-of-the-art
models to show the capabilities of automatic fish identifi-
cation and functional trait prediction using deep learning
models. For all experiments, unless otherwise stated, we
randomly select 80% for training and the remaining 20% for
performance evaluation.

4.1. Fish Classification

Benchmark settings. We conducted Family/Order classi-
fication using both ResNet-based and ViT-based architec-
tures, including ResNets (ResNet-34, ResNet-50, ResNet-
101) [19], ViT (ViT-S, ViT-B, ViT-L) [10], BeiT [1], and
ConvNeXt [27].We replaced the classification head using

two fully connected (FC) layers, with a dropout of 0.5 for
the first FC layer. For all comparing methods, the backbone
networks were pretrained on ImageNet, and we finetuned the
whole model using an Adam optimizer for 100 epochs. The
initial learning rate was set to 3e-5, and 3e-4 for backbone
networks and classification head, and we divided the learn-
ing rate by 2 every 20 epochs. In our experiments, we also
explored recent techniques to address the long-tail classifica-
tion problem. We explored focal loss [25] and class-balanced
training [8] to improve the fish recognition performance in
less frequent classes. Furthermore, we provided genus-level
classification in the supplementary file.
Class split. To capture the effect of the long-tailed nature of
the FishNet dataset, the FishNet dataset was partitioned into
three distinct subsets, namely common, medium, and rare
categories, based on their respective class frequencies. To
categorize the classes according to their frequencies, we es-
tablished a criterion for the Family/Order categories. Specif-
ically, we selected those categories with a proportional rep-
resentation of 25% of the total number of images as the
common classes, those categories with subsequent 50% as
medium classes, and the remaining 25% as rare classes. Af-
ter splitting, we identified a total of 6, 52, and 405 common,
medium, and rare family classes, respectively. In our exper-
iments, we reported class-averaged accuracy for each split
and also the overall accuracy among all splits.
Results. Table 3 shows the fish classification results at
the Family and Order levels. From Table 3, it is evident
that larger models consistently outperform smaller models
in terms of classification accuracy. Specifically, the best-
performing ConvNeXt model achieved an average classifica-
tion accuracy of 60.61% and 68.81% at the Family and Order
levels, respectively. We also observed that the performance
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Figure 4. Selected visualization of FishNet Family classification. For each ground truth class, we showcase six examples in which the
ConvNeXt model accurately predicts the correct Family label on the left. Additionally, we display two examples in which the ConvNeXt
makes incorrect predictions on the right. For reference, we show the predicted Family class (‘Cls’) and confidence score (‘Conf’) above each
image.

Level Method
Common Classes/Medium Classes/Rare Classes Average Per Class

mAP50 mAP60 mAP70 mAP80 mAP90 mAP50 mAP60 mAP70 mAP80 mAP90

Order
YOLOF [5] 77.3/65.2/39.2 72.7/62.1/38.0 61.6/53.4/34.7 38.8/34.9/25.4 11.7/9.6/11.8 45.0 43.4 39.3 27.8 11.7
TOOD [11] 84.8/76.8/50.3 80.1/73.2/48.5 69.4/64.4/43.6 46.1/42.6/32.7 15.4/14.3/13.6 56.5 54.3 48.5 35.4 14.1

Family
YOLOF [5] 67.2/53.1/27.1 64.0/50.4/26.6 54.9/43.3/24.4 35.5/27.3/18.8 9.9/7.9/7.7 30.6 29.8 26.9 20.0 7.8
TOOD [11] 81.1/64.0/22.5 77.1/60.1/21.9 66.5/51.2/20.1 44.0/32.8/15.7 14.5/10.9/7.7 27.9 26.9 24.2 18 8.2

Table 4. Fish detection performance on common, medium, and rare classes at the order and family taxonomic levels.

for rare classes was significantly worse than that for common
classes, with an average classification accuracy of 57.03%
and 64.84% at the Family and Order levels, respectively.
This is because these rare classes have insufficient annota-
tions, which poses great challenges for fish classification
recognition.

Fig. 4 visualizes selected classification results on the
Family level using the ConvNeXt model. We showed both
good cases in the first six columns and bad cases in the last
two columns. Based on the results presented in Figure 4, it
is evident that the ConvNeXt model is capable of accurately
identifying the Family categories of input images, even when
they exhibit significant variations in illumination and shape.
However, there are some instances where the model failed
to perform optimally. These failures are primarily attributed
to factors such as low contrast, challenging view-angles, or
visual similarities between different families. For example,
arhynchobatidae, urolophidae, and dasyatidae belong to car-
tilaginous fish meaning skeletons are made of cartilage, have
flattened bodies, and have a venomous spine on their tail,
which can cause confusion for our classification models, as
shown in the bottom right of the figure. More examples can

be found in the supplementary file.
Effect of pretraining. We investigated the effect of us-
ing pretraining on the ImageNet dataset. By comparing
the performance between ConvNeXt and ConvNeXt∗, us-
ing ImageNet pretraining can significantly improve the fish
classification performance on our FishNet dataset.
Effect of balanced loss. From Table 4, using class-balanced
loss can significantly improve classification performance,
especially in rare classes; while using focal loss harms the
performance. Specifically, for Order classification, using
class-balanced loss improved the classification accuracy on
rare classes from 64.84% to 71.41%. We emphasize that
there exist several other techniques that can be employed
to mitigate long-tail classification problems, which may po-
tentially yield superior results. Nonetheless, our focus in
this experiment was not to maximize performance but rather
to raise awareness of the long-tail issue with our FishNet
dataset, thereby encouraging further investigations.

4.2. Fish Detection

Benchmark settings. We conducted fish detection exper-
iments using two well-known methods, YOLOF [5], and
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Figure 5. Visualization of fish detection results using family-level
classification labels. We show successful cases in the first 2 rows
and failure cases in the last row.

TOOD [11] on our FishNet dataset. For both methods, the
backbone networks are pretrained on MS-COCO [26], and
we finetuned the whole model using the stochastic gradient
descent (SGD) optimizer with a learning rate of 2.5e-4, a mo-
mentum of 0.9, and a weight decay of 0.0001 for 100 epochs.
For performance evaluation, we reported performance on
two splits according to the Family/Order distribution, includ-
ing common, medium, and rare classes, that contain 25%,
50%, and 25% of images.
Results. Table 4 shows the fish detection results at both
the Family and Order levels. Our results demonstrated
that for order-level classification, TOOD [11] outperformed
YOLOF [5] in all the dataset splits. However, we observed
that for family-level classification, YOLOF [5] exhibited
better performance for Rare classes. Given the significantly
higher number of Rare classes (405) as compared to Medium
(52) and Common (6) classes, it is not surprising that the
average Mean Average Precision (MAP) per class was lower
for TOOD [11]. Therefore, we note that the evaluation of
model performance can be influenced by the prevalence of
different classes in the dataset, as shown in Table 4.

Fig. 5 visualizes several examples of fish detection results
obtained by the TOOD model [11]. The model has proven
successful in detecting fish from various species, with dif-
ferent scales, orientations, and backgrounds. However, the
TOOD model may struggle to predict family labels for less
frequent classes or those with low contrast. We provide more
examples in the supplementary file.

4.3. Functional trait Prediction

Benchmark settings. In this section, we explored using
deep learning models to predict fish functional traits based
on input images. We tried ten functional traits in our experi-

Backbone
Seen (%) Unseen (%)

F1/Acc. Acc-all F1/Acc. Acc-all

ResNet-34 [19] 74.83 / 87.20 40.04 54.38 / 78.48 15.84
ResNet-50 [19] 71.80 / 84.52 30.85 53.52 / 76.71 13.92
ResNet-101 [19] 73.80 / 85.67 34.45 54.37 / 77.47 15.12

ViT-S [10] 75.25 / 86.86 38.62 54.62 / 78.99 16.94
ViT-B [10] 78.65 / 88.94 46.91 55.72 / 79.93 18.44
ViT-L [10] 81.72 / 90.45 54.00 55.94 / 80.23 18.80

BeiT [1] 78.15 / 88.93 49.97 54.60 / 78.82 17.26
ConvNeXt [27] 83.30 / 91.03 54.80 56.34 / 79.50 18.00

Table 5. Habitat Classification performance in supervised and
zero-shot settings.

ments, namely trophic level, feeding path, and presence or
absence in the following temperature and salinity zonations:
tropical, temperate, subtropical, boreal, polar, freshwater,
saltwater, and brackish. We used the same network architec-
tures and training strategies as Section 4.1. For evaluating
trophic level regression, we reported Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). For habitat
classification, we used the average F1 score and overall ac-
curacy to evaluate the performance. Additionally, we calcu-
lated the classification-all metric, which reflects the model’s
ability to accurately predict all functional traits simultane-
ously.
Trophic level Regression. In our experiments, we found
that different models showed similar performance for trophic
level prediction, with an MAE of 0.45 and an RMSE of 0.60,
respectively. We found that trophic level prediction is a chal-
lenging task when using common L1 or L2 loss functions.
More advanced techniques, such as ordinal regression [14],
could potentially remedy this challenge. However, we leave
this for further research.
Habitat Classification Results. Table 5 shows the classi-
fication results for nine fish functional traits. Overall, the
larger models outperformed the smaller ones. Specifically,
the ConvNeXt model achieved the best results with an av-
erage f1-score of 81.72% and a classification accuracy of
90.45%. We also reported the classification accuracy when
our model correctly predicts all nine functional traits simul-
taneously, marked as “Acc-all”. It was surprising that the
best-performing ConvNeXt model obtained an accuracy-all
of 54.0% for correctly predicting all classes simultaneously.
Fig. 6 shows selected examples of functional trait classifica-
tion using the ConvNeXt model. From the figure, we can see
that the ConvNeXt model can successfully predict most of
the functional traits with large color and structure variations.
In addition, Table 6 provides a detailed breakdown of the
per-trait classification performance of the ConvNeXt model.
The results show that the model achieved an f1-score of over
90% for four out of nine functional traits. However, the
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Figure 6. Selected visualization of functional trait classification. For each image, we show its species name on the top, and the “ground
truth/predicted” functional trait labels on the right. The first two columns show success cases and the last two column show failure cases.
Correct predictions are shown in blue color, false predictions are shown in red color.

Metric FeedingPath Tropical Temperate Subtropical Boreal Polar Freshwater Saltwater Brackish Avg.

Acc. 84.73 88.64 84.41 90.95 92.88 96.88 91.98 93.10 90.51 90.45
F1 68.07 92.97 88.03 94.49 76.99 59.91 91.02 95.59 68.40 81.72

Table 6. Per-trait classification performance. For each trait, we report both the F1 score (%) and classification accuracy (%).

model obtains less impressive performance for feeding path
and polar classification.
Zero-shot Habitat Classification. We further evaluated
the habitat classification performance in a zero-shot setting,
where we evaluated habitat classification on unseen classes,
which were not never seen during training. To achieve this,
we trained the ConvNeXt model on 58 common and medium
classes (according to their family classes) and evaluated the
performance on 405 rare classes. From Table 5, although
zero-shot habitat classification performance is worse than
the supervised setting, the best-performed ViT-L model still
shows a reasonable performance for zero-shot habitat classifi-
cation, with a classification accuracy of 80.23% and 18.80%
on accuracy and accuracy-all. This demonstration show-
cases the capacity of the deep learning model to predict
the functional traits of previously unseen species, thereby
establishing a valuable tool for the discovery of new species.

5. Conclusions and Future Work

This work presents FishNet, a large-scale diverse dataset
consisting of 94,532 images from 17,357 species organized
based on the scientific classification of aquatic species. The
dataset is accompanied by 114,375 manually labeled bound-
ing box annotations and 22 functional trait information. Fur-

thermore, we establish three benchmarks, namely fish clas-
sification, fish detection, and functional trait prediction, to
facilitate the advancement of aquatic species recognition and
promote further research in the field of aquatic ecology. The
experimental results demonstrate that accurate fish recogni-
tion and functional trait prediction are still challenging due
to several factors, such as large species diversity, diverse
backgrounds, low contrast, etc.

We release our data and associated code to encourage
further research in developing more accurate and effective
tools for monitoring and protecting aquatic ecosystems. Our
FishNet dataset will also encourage research into evaluating
the impact of climate change on aquatic ecosystems and
identifying potential solutions to help maintain the health and
resilience of aquatic ecosystems and contribute to mitigating
the impacts of climate change.
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Fabré. Functional traits of fish species: Adjusting resolu-
tion to accurately express resource partitioning. Frontiers in
Marine Science, 6, 2019. 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 6, 8

[11] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R. Scott, and
Weilin Huang. Tood: Task-aligned one-stage object detection,
2021. 7, 8

[12] Simone; ;Martı́nez Enoc;Del Rı́o Joaquı́n;Toma Daniel
M.;Nogueras Marc; Francescangeli, Marco; Marini and Ja-
copo Aguzzi. Image dataset for benchmarking automated
fish detection and classification algorithms. Scientific Data,
117(24):13596–13602, 2023. 3

[13] R. Froese and D. Pauly. Fishbase, 2021. Accessed: March 6,
2023. 4

[14] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In Proceedings of the

IEEE conference on computer vision and pattern recognition,
pages 2002–2011, 2018. 8

[15] J. Chen-Burger G. Nadarajan and R. Fisher. A knowledge-
based planner for processing unconstrained underwater
videos. Proc. IJCAI-09 Workshop on Learning Structural
Knowledge From Observations, (37-44), 200-9. 2, 3

[16] Giannis Georgiou. Fish species. Kaggle Data, 2021. 2, 3
[17] Ben L. Gilby, Andrew D. Olds, Rod M. Connolly, Nicholas A.

Yabsley, Paul S. Maxwell, Ian R. Tibbetts, David S. Schoe-
man, and Thomas A. Schlacher. Umbrellas can work under
water: Using threatened species as indicator and manage-
ment surrogates can improve coastal conservation. Estuarine,
Coastal and Shelf Science, 199:132–140, 2017. 2, 3

[18] E. W. Gudger. The five great naturalists of the sixteenth
century: Belon, rondelet, salviani, gesner and aldrovandi: A
chapter in the history of ichthyology. 1934. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6, 8

[20] Christina C. Hicks, Philippa J. Cohen, Nicholas A. J. Graham,
Kirsty L. Nash, Edward H. Allison, Coralie D’Lima, David J.
Mills, Matthew Roscher, Shakuntala H. Thilsted, Andrew L.
Thorne-Lyman, and M. Aaron MacNeil. Harnessing global
fisheries to tackle micronutrient deficiencies. Nature, 574,
2019. 5

[21] iNaturalist. inaturalist, 2021. Accessed: March 6, 2023. 3, 4
[22] S. Irfan and A Alatawi. Aquatic ecosystem and biodiversity:

A review, 2019. 2
[23] Justin Kay, Peter Kulits, Suzanne Stathatos, Siqi Deng, Erik

Young, Sara Beery, Grant Van Horn, and Pietro Perona. The
caltech fish counting dataset: A benchmark for multiple-
object tracking and counting, 2022. 3

[24] Schaffner-F.C. Abdelhadi A. Goosen M.F.A. Laboy-Nieves,
E.N. Environmental Management, Sustainable Development
and Human Health. CRC Press, 2008. 2

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 6

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 8

[27] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 6, 8

[28] David Mouillot, Nicholas A.J. Graham, Sébastien Villéger,
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