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Abstract

In this paper, we present StyleLipSync, a style-based per-
sonalized lip-sync video generative model that can generate
identity-agnostic lip-synchronizing video from arbitrary au-
dio. To generate a video of arbitrary identities, we leverage
expressive lip prior from the semantically rich latent space
of a pre-trained StyleGAN, where we can also design a
video consistency with a linear transformation. In contrast
to the previous lip-sync methods, we introduce pose-aware
masking that dynamically locates the mask to improve the
naturalness over frames by utilizing a 3D parametric mesh
predictor frame by frame. Moreover, we propose a few-shot
lip-sync adaptation method for an arbitrary person by in-
troducing a sync regularizer that preserves lip-sync gener-
alization while enhancing the person-specific visual infor-
mation. Extensive experiments demonstrate that our model
can generate accurate lip-sync videos even with the zero-
shot setting and enhance characteristics of an unseen face
using a few seconds of target video through the proposed
adaptation method.

1. Introduction

In the past few years, advances in deep learning have al-
tered the dynamics of video creation. Now, users can easily
make and edit videos with the help of deep learning. In
particular, the task of generating a talking head video has
received great interest due to its various practical uses. It
can be applied in many applications such as film dubbing
into a different language, face-to-face live chats, and vir-
tual avatars in games and videos. Thus, a lot of prior works
[21, 34, 28, 46, 45, 27] have been studied to generate a talk-
ing head video that has accurate lip shapes according to ar-
bitrary audio inputs.

Most of the prior works mainly focus on enhancing syn-
chronization between lip shapes and audio input. Some of
the previous methods [46, 9, 34] use intermediate structural

⋆Equal contribution.

representations such as landmarks and 3D models. They
predicted the representations from the audio input and syn-
thesized a talking head video of a target person. How-
ever, they suffered from inaccurate lip-sync results since
such representations are too sparse to produce fine-grained
details in lip-syncing. Recently, another line of methods
[28, 27] mapped input audio to latent space and leveraged
it to construct the mouth region of the target identity. While
it achieves satisfactory results in lip-syncing, it generated
blurry lower faces which are visually implausible. Further-
more, most methods only consider synthesizing frame-by-
frame, lacking temporal consistency at the video level.

In this paper, we propose StyleLipSync, a style-based
lip-sync video generative model that can generate identity-
agnostic lip-synchronizing video from the arbitrary au-
dio input. Our model consists of the following compo-
nents. First, different from a previous masking method
[21, 28, 27, 6] which masks the entire lower half face, we
propose Pose-aware Masking. We analyze that the previous
masking method cause unpleasant artifacts and unnatural
jaw moving in the generated videos. To circumvent this,
we utilize a 3D face mesh predictor [11, 23] and generate
lip masks with consideration of pose information and fa-
cial semantics such as jaw shape. Second, our image de-
coder is based on a style-based generator, namely Style-
GAN [18, 19, 17]. StyleGANs have demonstrated their
effectiveness in various facial generative tasks, including
face editing[1, 2], face enhancement [42], and video gen-
eration [35, 24]. As a pre-trained StyleGAN already con-
tains expressive and diverse face priors in style latent space
[1], we leverage it to synthesize the high-fidelity lip region
of the target person. Furthermore, thanks to the continu-
ous and linear nature of the latent space [18, 13, 32], we
linearly manipulate the style codes using the audio input
to generate lip-synced video frames. Additionally, we pro-
pose Style-aware Masked Fusion to effectively adopt a skip-
connection to our decoder, which helps to preserve the 2D
structure of the image and improves lip fidelity. Finally, we
propose a Moving-average based Latent Smoothing module
that makes the latent trajectory smoother for enhancing the
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temporal consistency in the synthesized talking head video.
While our model can synthesize a talking head video of

the target person, there is a slight identity gap between a
generated video and the target person. The gap can be no-
ticeable, for example, in racial faces, which are relatively
scarce in the training data. One approach to addressing
this issue is to fine-tune the generator on a few seconds of
video of the target person to create a personalized model.
Several fine-tuning methods [30, 25, 37] have already been
demonstrated and widely adopted by the industry to achieve
product-level quality. However, we analyze that simply
fine-tuning the generator loses its ability to generalize to ar-
bitrary audio inputs, which is critical for generating talking
head videos. Therefore, to minimize the side effect, we pro-
pose a sync regularizer enforcing the audio generalization
performance. The key idea is to leverage the audio from the
training data, not from the target video. Specifically, we not
only optimize the generator to reconstruct the target video
but also synthesize the video corresponding to the randomly
sampled audio from the training data and maintain a sync
correlation between the synthesized video and the audio. As
a result, we obtain a personalized lip-sync generative model
that can synthesize a video of the target person for arbitrary
audio. Our contributions are summarized as follows:

• We present StyleLipSync, a lip-sync video generative
model which generates lip-synchronizing video in-the-
wild of 256× 256 resolution with accurate and natural
lip movement from a given masked video frames, au-
dio segment, and single reference image.

• We additionally propose a few-shot adaptation method
for entirely unseen faces, which uses only a few sec-
onds of video by introducing a sync regularizer to
maintain audio generalization.

• Experimental results demonstrate that StyleLipSync
achieves state-of-the-art performance in terms of lip-
sync and visual quality, even with the zero-shot setting.

2. Related Works
2.1. Lip-sync Video Generation

Lip-sync video generation aims to generate a talking face
video with lip motion synchronized with the given input
audio. Early works [21, 28] generate lip from the lower
half masked face image corresponding to the input audio.
Specifically, Wav2Lip [28] uses a pre-trained SyncNet [8]
as a lip-sync expert which maximizes the correlation be-
tween the generated lip and the input audio. Similarly,
we use lip-sync expert for audio-visual alignment, which
is trained with a contrastive manner proposed in [24]. Vide-
oRetalking [6] improves Wav2Lip [28] a two-stage man-
ner, where it first generates low-resolution (96 × 96) video
and then increases the resolution by using a single identity
specific super-resolution network. In contrast, we propose

a zero-shot model that directly generates lip-sync video of
256×256 resolution and also propose a unseen face adapta-
tion method then enhances the personal characteristics from
a few-shot target video. SyncTalkFace [27] introduces a lip
memory network, which encodes lip motion features into a
discrete space in the training phase and retrieves a lip fea-
ture from query audio at the inference phase. In contrast
to [27], we utilize continuous and linear latent space from a
pre-trained style-based generator [19] to generate lip images
with high fidelity and take video consistency into account in
the latent space.

2.2. GAN Prior

Style-based generators [18, 19, 17] demonstrate the
power of their semantic latent spaces, namely W , in im-
age generation, image editing [13, 32], and video gener-
ation [35]. GAN-inversion [12, 1, 2, 29, 36] utilizes the
pre-trained GANs to invert an image into corresponding la-
tent code so one can manipulate the attributes of the im-
age only within the latent space. Extended W+ have been
shown its much expressive power. For instance, pSp [29]
adopts the feature pyramid networks (FPNs) [22] to use
W+, which follow the nature of the progressive genera-
tion [15] of StyleGAN [18] and achieves state-of-the-art
performance in image-to-image translation (e.g., face in-
painting). Similarly, we utilize W+ for diverse and strong
lip prior since we aim to build a lip-sync video generative
model of arbitrary identity.

Recent works [42, 38, 41] not only adopt pre-trained
GAN prior as their decoder but also introduce a skip-
connection that concatenates the encoded and generated
features, which helps the model preserve 2D spatial in-
formation. Specifically, GPEN [42] uses skip-connection
that concatenates the encoded and generated features and
achieves state-of-the-art performance in blind face restora-
tion. StyleSwap [41] adopts it to face swap and introduces
the ToMask branch that predicts the target facial attribute
regions for swapping in a supervised manner. In contrast to
those methods, we use an additive skip connection more ef-
ficient than the concatenation, along with the unsupervised
predicted masked sum, which helps the decoder distinguish
the target lip region from the whole face and therefore in-
creases the lip image fidelity.

2.3. Personalization

Although GAN prior has been successful in various tasks
[29, 36], it is still challenging to faithfully recover person-
specific information that lies in the out-of-distribution [1, 2,
29, 36, 42]. Recently, a few-shot personalization has be-
come an alternative to solving the problem [25]. Pivotal-
tuning-inversion (PTI) [30] fine-tunes the image generator
while freezing a single latent code, namely pivot, to com-
pensate the person-specific information in the generative
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Figure 1. A framework of StyleLipSync. We leverage a 3D parametric mesh predictor [11, 23] to obtain pose-aware masked frames X1:T ,
which inherits the facial pose of input frames. Face encoder Eface maps X1:T into 2D spatial features and then fed into the decoder
G through style-aware masked fusion (SaMF). Single reference image Xref and audio segments A1:T are mapped into latent space,
followed by Moving-average based Latent Smoothing (MaLS). This module outputs smooth video latent codes w̃1:T ⊆ W+ that represent
temporally consistent lip movement. With the guidance of SaMFs and the smooth video latent codes w̃1:T , StyleLipSync can generate
temporally consistent lip-synced videos.

process, not in the encoding process. MyStyle [25] adopts
PTI [30] to image inpainting and semantic editing, by re-
stricting the latent space to a subspace spanned by the mul-
tiple pivots from the few photos (roughly 100) of the tar-
get person. Stitch-it-in-time [37] adopts the pivotal-tuning
to the video editing in a multi-stage manner, which lever-
ages an off-the-shelf latent manipulation [31] to manipulate
video in the latent space and then stitch it to the source
video. Inspired by them, we propose a few-shot unseen
face adaptation method that slightly fine-tunes the image
decoder for a given latent code trajectory of a target iden-
tity and maintains the audio generalization by introducing a
sync-regularizer.

3. Method
Given lip masked video frames X1:T = (Xt)

T
t=1 and au-

dio segments A1:T = (At)
T
t=1, a lip-sync method generates

video frames
X̂1:T = (X̂t)

T
t=1, (1)

where X̂1:T has a lip movement synchronized with the au-
dio segments A1:T . In contrast to the previous lip-sync
methods [21, 28, 27, 6], we leverage 3D parametric facial
mesh predictor [11, 23] to compute lip mask so that the gen-
erator can be aware of semantically meaningful facial pose
information (Section 3.1). We utilize a pre-trained Style-
GAN [19] as our decoder G. When audio encoder Eaud

and reference encoder Eref map their inputs into the la-
tent space W+ (Section 3.3), the decoder G generates lip-
synced video frames X̂1:T from these latent codes (Section
3.2) guided by the proposed style-aware masked fusion. For

enhancing the temporal consistency, we propose a Moving-
average based Latent Smoothing module, which learns lo-
cal motion between the latent codes, and makes video la-
tent trajectory smoother. Finally, sync loss [8, 24] is used
for the audio-lip synchronization. The overall framework of
our model is described in Figure 1.

3.1. Pose-aware Masking

Dynamic head motion is an important factor in the natu-
ral talking style. However, existing methods [21, 28, 27, 6]
employ the rectangular lower-half mouth masking method
without consideration of the pose information. It often fails
to detect appropriate masking regions when the head moves
dynamically, which leads to unpleasant artifacts and unnat-
ural jaw movement in the generated videos (see the first row
in Figure 5 for examples). To address this limitation, we
use the face meshes by leveraging a 3D face mesh predictor
[11], which captures 3D parameters and predicts dense face
geometry. We predict the 3D parameters [4] and the mesh
from given video frames. Then, the predicted expression
parameter δ ∈ R64 is used to adjust the mesh to obtain nat-
urally opened and closed mouth meshes. We normalize the
mesh vertices using the predicted pose parameters τ ∈ R3

(translation), γ ∈ SO(3) (rotation) and leave only the lower
frontal vertices. These meshes are combined and projected
onto the original 2D plane to finally get our pose-aware lip
masks. Figure 2 illustrates the framework of the pose-aware
masking. This masking not only captures the pose informa-
tion but also inherits facial semantics such as jaw shape.
Ablation studies in Section 5.4 show that the pose-aware
masking helps the model to increase visual quality along
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Figure 2. Illustration of pose-aware masking. The expression pa-
rameter δ ∈ R64 and the pose parameter τ ∈ R3, γ ∈ SO(3) are
used to compute the natural mask.

with dynamic pose.

3.2. Decoder

Lip Prior from Style-based Generator. Generating the
lip-sync videos from scratch for an arbitrary person is very
hard since the mapping from audio to lip is basically one-
to-many. In this paper, we leverage a style-based genera-
tor as our image decoder G for the following two reasons.
First, a pre-trained StyleGAN already contains expressive
and diverse face priors [18, 19, 17] in the form of latent
code, namely style code in the latent space W+ [2]. Those
latent spaces enable us to better synthesize the lip region
of the target person with the diverse lip prior. Second, the
style codes form the continuous and linear [18, 13, 32] la-
tent spaces, which enables us to design a high-level visual
transformation, such as natural motion, only with a linear
transformation of latent code [39]. Hence, we can generate
a talking head video with smooth lip motion by simply ma-
nipulating the style codes using audio, which the previous
lip-sync methods never take into account.
Style-aware Masked Fusion (SaMF). Recently, it has
been explored that adopting skip-connections based on the
concatenation to GAN-inversion helps to preserve the 2D
spatial information of the input [41, 14, 42]. Similarly,
we adopt an additive skip-connection to our model for ef-
fectively preserving the non-masked region of X1:T while
faithfully utilizing the latent space.

Specifically, we propose style-aware masked fusion
(SaMF) for efficiently preserving the 2D spatial feature and
relieving the information gap between masked and non-
masked regions. SaMFs are introduced at the beginning of
the decoder blocks. The decoder G consists of L decoder
blocks, each of which takes 2 style codes to modulate 3 con-
volution weights, as illustrated in Figure 3. The first style
code in each decoder block modulates 2 different convolu-
tion weights, one for the convolution in the original block
and the other for the SaMF. SaMF learns to predict a 1-
channel mask Sl

t of the current resolution from the encoded
feature through the newly modulated convolution followed
by the sigmoid, which is used for spatial weighted fusion of
the encoded feature and the generated feature.

Formally, given encoded feature El
face(Xt) and gen-
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Figure 3. Illustration of the decoder block. The encoded feature
El

face(Xt) is injected into l-th decoder block through Style-aware
Masked Fusion (SaMF). Note that only the convolutions in SaMF
are trainable, while the others are frozen during the training phase.

erated feature Gl−1(Xt) of same dimension Rh×w×c,
SaMF firstly predicts a spatial mask Sl

t ∈ Rh×w×1 from
El

face(Xt) and then output fused feature as follows:

Sl
t ⊗El

face(Xt) + (1− Sl
t)⊗Gl−1(Xt). (2)

Ablation studies (Section 5.4) show that SaMFs improve the
fidelity of the mouth since they separate masked and non-
masked regions.

3.3. Encoders

Our model has three different encoders: face encoder
Eface, reference encoder Eref , and audio encoder Eaud.

Face encoder Eface takes masked video frames X1:T as
input and then outputs l 2D spatial features El

face(Xt) =

{El
face(Xt) | l ∈ [1, 2, · · · , L]} for each t. These features

are injected into the decoder G through the style-aware
masked fusion to efficiently preserve 2D spatial structure,
as described in Section 3.2.

Reference Encoder Eref maps a reference Xref into
2L reference style codes, each of which has 512 dimen-
sions. We simply denote the reference style code as wref =
[w1

ref |w2
ref | · · · |w2L

ref ] ∈ R512×2L.
Similar to Eref , audio encoder Eaud maps a single audio

segment into 2L audio style codes, each of which has 512
dimensions. As we use T consecutive audio segments A1:T ,
Eaud independently maps At into at = [a1t |a2t | · · · |a2Lt ] ∈
R512×2L. We simply denote a1:T = (at)

T
t=1 for T audio

style codes. Please refer to our supplementary materials for
the detailed encoder architectures.

From these style codes wref and a1:T , we compute target
video’s style codes over frames w1:T by

w1:T = (w1, w2, · · · , wT ), (3)

where wt = wref +at ∈ W+. We compute the style codes
by simply adding these two different codes based on the
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linearity [13, 32] of the latent space W+. The style codes
w1:T are then fed into the decoder G through the learned
affine transformations to generate synced lip motion.
Temporal Consistency. Thanks to the semantically rich
latent space W+, our model can generate an accurate lip-
sync video frame by frame. However, this frame-wisely
independent encoding of style codes turns out to lead in-
consistent mouth movements in the final results. To remedy
this, we assume that the generated style codes w1:T form
a trajectory of the target video [40] in W+ and enforce
the smooth local transition of the motion [24, 33, 39] into
the trajectory. Toward this, we introduce Moving-average
based Latent Smoothing (MaLS), each of which consists of
a stack of the weighted moving-average [3] and 1D convolu-
tions operating on the style codes along the time-axis. More
precisely, we employ 2L MaLS for L resolutions, each of
which takes the l-th component of wt−1, wt, and wt+1 as
its inputs to learn the local difference between them, and
then we inject the local motions into wref to compute the
smooth style code w̃t:

w̃l
t = wl

ref + MaLSl(wl
t−1:t+1),

= wl
ref + Conv1Ds

(
t+1∑

τ=t−1

ατ · wl
τ

)
, (4)

where MaLSl denotes the l-th MaLS, and ατ is the weight
of the moving-average.

With this smooth latent codes w̃1:T , we compute the
video frames:

X̂1:T = (G(w̃t,Eface(Xt)))
T
t=1 . (5)

For better initialization [29], we add the average code wavg

of the pre-trained generator to each w̃t in (4).

3.4. Training Objective

We train StyleLipSync to reconstruct target video frames
from corresponding audio. We randomly choose T = 5
consequent frames with corresponding audio segments and
1 single reference frame. Image perceptual loss [43] is used
to minimize perceptual image distance between generated
frames X̂ and ground-truth frames Y :

Llpips =

N∑
i=1

∥∥∥ϕi(X̂)− ϕi(Y )
∥∥∥
2
, (6)

where N is the number of feature extractor, ϕi(·) is the i th
feature extractor, and ∥ · ∥2 is the ℓ2 loss. Similar to [33],
we use the multi-scale perceptual loss with 3 levels.

For audio-visual alignment, we utilize SyncNet trained
in a contrastive manner [24] that minimizes the cosine dis-
tance between generated frames X̂ and corresponding audio
segment A:

Lsync = 1− cos(fv(X̂), fa(A)), (7)
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Figure 4. Adaptation for Unseen Face. We slightly tune the de-
coder Gθ with the proposed sync regularizer Rsync, while freez-
ing all encoders’ weight. Face encoder Eface and SaMFs are
omitted here for simplicity.

where cos(·, ·) denotes the cosine similarity. fv(·) and fa(·)
are the frame and audio feature extractor, respectively. The
final objective Ltrain is computed as:

Ltrain = λ1Llpips + λ2Lsync, (8)

where λ1 and λ2 are the balancing coefficients.

4. Unseen Face Adaptation
Although StyleLipSync successfully generates accu-

rately lip-synced videos with high fidelity, the model would
fail to exactly synthesize unseen faces lying in the out-of-
distribution. This problem refers to the failure of id preser-
vation. Therefore, to handle this, we fine-tune our decoder
G on a target person video to make a personal model that is
better able to synthesize toward the target person.

Let X1:T be masked video frames of unseen face,
which corresponds to the audio segments A1:T , and Xref

be a reference frame. The frozen encoders convert
each input into the intermediate representations, w̃1:T and
Eface(Xt)))

T
t=1. Then we fine-tune the decoder Gθ, now

parameterized by θ, by minimizing the distance between
(Gθ(w̃t,Eface(Xt)))

T
t=1 and target frames, as same as (8).

However, fine-tuning the decoder on a short video of a sin-
gle identity leads to over-fitting and losing the lip-sync gen-
erality as the generator can memorize the target video [26].
To prevent the model from this scenario, we introduce a
sync regularizer Rsync to enforce audio generality to the de-
coder Gθ by leveraging the audio from the training dataset,
not from the target video. Formally, given audio segments
A′

1:T randomly chosen from the training data (Voxceleb2
[7]) and wref , we compute smooth style codes w̃′

1:T , and
then decode them to a synced video X ′

1:T . The sync regu-
larizer Rsync is defined as

Rsync = 1− cos(fv(X̂
′), fa(A

′)), (9)

which enforces Gθ to generate X̂ ′
1:T aligning with A′

1:T .
The final object for a single person adaptation is given as
follows:

θ∗ = argmin
θ

Ltrain + λRRsync, (10)
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Figure 5. Comparison with state-of-the-art methods. The different field of view comes from the pre-processing strategy of each model.

where λR is the regularizer coefficient. Ablation studies in
Section 5.4 show that Rsync regularizes the audio general-
ity even if we use the audio from the training set.

5. Experiments
5.1. Dataset

We train our model on Voxceleb2 [7], which consists of
in-the-wild talking face videos collected from YouTube. It
contains more than 145,000 videos of about 6,100 identities
in the train set and more than 4,900 videos of more than
110 identities in the test set. We convert all videos into
frames with 25 fps and then crop and resize those frames
into 256 × 256 resolution, following the method of [33].
For more semantically rich face priors, we only use videos
where the detected face bounding boxes’ height (and width)
is longer than 256. After pre-processing, the remaining
11051 videos and 340 videos are used as the training set
and the test set, respectively. All audios are re-sampled to
16kHz and converted into a mel-spectrogram to be used as
our audio representation similar to the method in [45, 24].
We also use HDTF [44] to further test our model for cross-
id experiments. It is widely used to evaluate high-resolution
talking face generative models, where the head pose dynam-
ics are not as significant as the Voxceleb2.

5.2. Implementation Details

We pre-train StyleGAN2 [19] on the Voxceleb2 [7] fol-
lowing the implementation of [16]. For training StyleLip-
Sync and SyncNet, we set the frame length T = 5, and em-
ploy Adam [20] optimizer with learning rate 10−4 through-
out the training phase in both cases. All experiments are
performed on 2 TITAN RTX GPUs. We set λ1 = 10, λ2 =
0.1, λR = 0.1 for the objective (10), and αt−1 = 0.25,
αt = 0.5, αt+1 = 0.25 for MaLS (4). For all inference, we
use the first frame as the reference image.

For image quality metric, we use PSNR, and SSIM. We
also calculate CSIM [10] in the cross-id experiment that
measures the face similarity between the images in the pre-
trained face embedding space. For lip-sync quality metric,
we use LMD, LSE-D, and LSE-C. LMD [5] is the absolute
distance of facial landmarks between the target and gener-
ated frames. LSE-D and LSE-C are proposed in [28], where
LSE-D measures the distance between the lip and audio rep-
resentations, and LSE-C measures the lip-sync confidence,
respectively.

5.3. Evaluation

Reconstruction Results. We compare the other state-of-
the-art methods in the lip-sync (Wav2Lip [28]) and talking

22846



face generation (ATVG [5], MakeItTalk [46], and PC-AVS
[45]) on reconstruction results of Voxceleb2 test dataset.
Table 1 shows that StyleLipSync outperforms all metrics
except the LSE-C score. Wav2Lip [28] achieves the high-
est LSE-C score, however, it achieves low image quality
metrics since it generates 96 × 96 low-resolution videos.
PC-AVS [45] achieves comparable lip-sync scores with
StyleLipSync, however, achieves low image quality met-
rics than our model since it highly relies on its specific pre-
processing and fails to generate in many cases. We also
illustrate the qualitative results in Figure 4. Wav2Lip [28]
produces a lip-synchronized video with considerable visual
artifacts since it cannot adapt to the video of dynamic head
pose. MakeItTalk [46] generates low lip-sync video since it
uses sparse facial landmarks. PC-AVS [45] generates an
accurate lip-synchronized video following the input head
pose. However, it struggles to preserve the unseen iden-
tity involving visual artifacts. StyleLipSync generates the
natural lip motion with high fidelity and preserves the input
identity, which is comparable to the ground truth video.
Cross Identity Results. To evaluate lip-sync general-
ization, we conduct cross-id experiments settings using un-
seen videos and audio. We randomly sample 10 videos of
different identities and 150 audio without duplication from
HDTF [44]. We use the first 10 seconds of videos and
audio. For each video, we generate 15 lip-synced videos
from 15 different audios, where those face-audio pairs are
not from the same source. In Table 2, we report the LSE-
D and LSE-C for lip-sync quality and the CSIM for face
similarity. Wav2Lip [28] achieves a higher LSE-C score
than StyleLipSync, however, it achieves a low CSIM score
since it produces a low-resolution video with visual arti-
facts. MakeItTalk [46] achieves the best CSIM score, while
the lip-sync quality is the worst since it uses sparse fa-
cial landmarks. PC-AVS [45] outperforms LSE-C while
achieving the lowest CSIM since it can’t preserve an un-
seen face’s identity. StyleLipSync achieves the best LSE-D
score and comparable CSIM score to MakeItTalk [46]. We
show qualitative results of cross-id experiments with target
lip references in Figure 4. PC-AVS [45] can generate ac-
curate lip-synchronizing video compared to the target lip,
while it fails to preserve facial details of the unseen face.
MakeItTalk [46] produces a high-resolution and identity-
preserving video, however, it is out-of-sync compared to the
target. StyleLipSync generates a high-resolution lip syn-
chronizing video compared to the target lip, without any
visual artifacts.

5.4. Ablation Studies

Ablation Studies on Zero-shot Model. Figure 6 and
Table 3 summarize the ablation studies on our zero-shot
method of reconstruction on Voxceleb2 test data. If we
replace the pose-aware masking with standard rectangular

Table 1. Quantitative comparison of reconstruction on Voxceleb2
test data. The best score for each metric is in bold.

Voxceleb2 (Reconstruction)
Method Image Lip-Sync

SSIM ↑ PSNR ↑ LMD ↓ LSE-D ↓ LSE-C ↑
Wav2Lip96×96 [28] 0.448 13.534 6.422 6.999 8.329
ATVG128×128 [5] 0.461 13.349 7.165 8.821 5.421
MakeItTalk256×256 [46] 0.419 12.868 3.649 10.895 3.624
PC-AVS224×224 [45] 0.369 13.210 2.812 7.278 7.699
Ours256×256 0.631 19.607 2.696 6.628 8.056

Table 2. Quantitative comparison of cross-identity results for un-
seen face. We report CSIM [10] as the image quality metric since
there is no ground truth frames for the cross-id experiments. The
best score for each metric is in bold.

HDTF (Cross-id)
Method Image Lip-Sync

CSIM ↑ LSE-D ↓ LSE-C ↑
Wav2Lip96×96 [28] 0.656 7.047 8.576
ATVG128×128 [5] 0.287 8.668 6.040
MakeItTalk256×256 [46] 0.770 10.641 4.725
PC-AVS224×224 [45] 0.238 6.921 8.858
Ours256×256 0.737 6.825 8.209

Table 3. Ablation study on zero-shot model. The best score for
each metric is in bold.

Voxceleb2 (Reconstruction)
Method (ours) Image Lip-Sync

SSIM ↑ PSNR ↑ LMD ↓ LSE-D ↓ LSE-C
w/o Pose Mask 0.602 18.867 3.057 6.771 7.748
w/o MaLS 0.593 18.186 2.740 6.994 7.577
w/o SaMF 0.591 18.181 2.764 6.838 7.780
Full 0.631 19.607 2.696 6.628 8.056

masking (w/o Pose Mask) in [28, 6, 27], considerable vi-
sual artifacts occur around the masked region since it is in-
sufficient to capture the pose difference between the refer-
ence and the target. To validate SaMF, we replace the mod-
ulated convolutions in SaMFs with the standard convolu-
tions. Figure 6(c) shows that SaMFs significantly improve
lip region’s fidelity since the modulated convolution helps
to be aware of the lip style. As shown in Table 3, MaLS
significantly improves lip-sync quality, which cannot be re-
flected in a single image. Please refers to our project page
for ablation studies on MaLS.
Ablation Studies on Unseen Face Adaptation. We
conduct ablation studies on the proposed unseen face adap-
tation following the same setting in Table 2. Additionally,
we use 60 seconds of video for each 10 personalized mod-
els and 15 audios of 10 seconds from different identities for
inference. Figure 7(b) shows the lip-sync metrics according
to the adaptation step. In the cases without the sync regular-
izer, the models lose the lip-sync generality, in other words,
it memorizes the short target video as the adaptation phase
proceeds. Introducing the sync regularizer with the sync
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(a) Reference (b) w/o Pose mask (c) w/o SaMF (d) Full

Figure 6. Qualitative comparison of zero-shot model.

Table 4. Mean Opinion score (MOS) user study results with 95%
confidence interval on cross-id setting. The score ranges in 1 to 5.
The best score for each metric is in bold.

User Study (MOS)
Method Lip-sync Face Visual

Accuracy Similarity Quality
Wav2Lip [28] 3.76± 0.20 2.98± 0.25 2.03± 0.21
ATVG [5] 2.19± 0.21 2.45± 0.25 1.54± 0.17
MakeItTalk [46] 2.32± 0.24 3.47± 0.23 2.95± 0.24
PC-AVS [45] 3.28± 0.21 2.55± 0.22 2.51± 0.22
Ours 4.01 ± 0.16 3.42± 0.22 3.55± 0.20
Ours (Personalized) 3.52± 0.21 4.03 ± 0.17 3.64 ± 0.19

loss stabilizes the lip-sync metrics and even improves them
compared to the zero-shot results. If we use the sync regu-
larizer without the sync loss, lip-sync quality is stabilized,
however slightly lower than the zero-shot results due to the
lack of ground-truth audio-visual correlation. Audio gener-
alization for unseen face data is maintained even though we
used audio from the learning data. Figure 7(a) supports the
validity of the adaptation method. It shows that visual dif-
ference between the zero-shot results and the adaptation re-
sults. The zero-shot model can generate an accurate lip mo-
tion for the target audio, while it shows a slight difference
in person-specific details compared to the reference images.
Through the proposed adaptation method, personal-specific
lip shape, teeth, and wrinkles are faithfully recovered while
maintaining the lip motion of the zero-shot results.

5.5. User Study

We further conduct a user study based on MOS (Mean
opinion score) to compare the perceptual quality of each
model, including our zero-shot and personalized model. 5
videos generated by each model in cross-id setting are used
for this study. 20 participants scored lip-sync accuracy, face
similarity, and visual quality of each video in the range of 1
to 5. As shown in Table 4, our models outperform all met-
rics. Specifically, our zero-shot model achieves the highest
lip-sync accuracy, and our adaptation model achieves the
highest score in face similarity and visual quality with com-
petitive lip-sync accuracy.
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(a) Comparison of cross-id results of zero-shot and adaptation.
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(b) Ablation study on the proposed sync regularizer.

Figure 7. Experimental results of the proposed adaptation method
using the cross-id setting. It improves the person specific visuals
while maintaining the lip-sync generality.

6. Conclusion

We proposed StyleLipSync, a lip-sync video generative
model for arbitrary identity, which leverages expressive lip
priors from a pre-trained style-based generator. In contrast
to existing lip-sync generative models, we introduce pose-
aware masking for lip region by utilizing a 3D parametric
mesh predictor, which inherits the pose information in the
mask itself. Designing a smooth lip motion by using the
moving-average based latent smoothing in the continuous
and linear latent space, StyleLipSync can generate tempo-
rally consistent lip motion. Furthermore, we propose a few-
shot lip-sync adaptation method for a single person who lies
in the out-of-distribution, which uses a few seconds of the
target person’s video. Experimental results show that our
StyleLipSync can generate realistic lip-sync video from ar-
bitrary audio even with the zero-shot setting, and the pro-
posed adaptation method enhances the person-specific vi-
sual information without losing the lip-sync generality.
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Limitation and Future Works. Since learning audio-
visual representation requires a large number of different
identities (e.g., Voxceleb2 [7]), extending our method to
higher resolution (512 × 512 ↑) is very challenging. We
consider it our future work to develop an effective encoding
system for a limited number of identities using a style-based
generator [18, 19, 17]. Designing an effective reference en-
coder to improve lip identity preservation in a zero-shot set-
ting can be another future work.
Ethical Considerations. Since our method can generate
a video of a specific person talking specific words only with
a few seconds of video source, it has the potential for mis-
use. As discussed in [6], attaching visual watermarks on the
generated videos can be a solution to it.
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