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Figure 2. Our video editing system comprises two stages. Stage-I (middle): We learn to invert 3DMM-augmented images into pretrained
StyleGAN’s latent space. In this step, a vector-quantization (VQ) module learns a codebook of semantic segments over multi-scale StyleGAN
feature maps with exponential moving average (EMA) updates in an unsupervised fashion. This stage achieves inversion and 3DMM
expression control along with a set of codebook feature vectors corresponding to the centroids of learned segments. The learned codebook
can then label the input easily. Stage-II (right): A GAN generator translates the automatically obtained semantic layouts into photorealistic
video frames. Our generator uses SPADE [38] and upsampling layers, and it is directly driven by the semantic layout.

synthesis to another network. Thus, in a consecutive stage,
we train a generator with learned segmentation information
as a driving signal. This formulation not only allows for in-
dependent control at the rendering stage but also overcomes
some limitations of inversion methods, such as identity drift,
which is unacceptable for video editing applications.

3.1. Preprocessing

Given a source video with N frames X = {xi}Ni=1, we
crop and align frames following the procedure used in
[57], and denote the resulting sequence (ground-truth) with
C = {ci}Ni=1. Next, we track the sequence C with our reim-
plementation of [52] adapted to video sequences. From the
tracked face model, we render local face masks per frame,
H = {hi}Ni=1, to be overlayed over C. We denote the over-
laid frames (input) as Ĉ = {ĉi}Ni=1. We employ the semantic
face segmentation algorithm by Yu et al. [68] to generate a
foreground mask Mbg = {mbg

i }Ni=1 to remove background,
hair, and clothing. We then apply Mbg to generate masked
input frames Ĉ = {(1 − mbg

i ) ⊙ ĉi}Ni=1 and ground truth
frames C = {(1 − mbg

i ) ⊙ ci}Ni=1
1. From the semantic

segmentation mask, we also extract the mouth, lips, and
eyes regions and combine them into a single mask Mroi =
{mroi

i }Ni=1. We utilize Mroi to increase the influence of the
aforementioned facial features during inversion (see 3.2).

3.2. Stage-I. Inversion & Vector-quantization (VQ)

Fig. 2 illustrates the preprocessing steps and inversion
schemes, including vector quantization.

Inversion. To exploit StyleGAN prior, we first create an
inversion mapping between the locally-masked frames and

1Unless otherwise stated, C and Ĉ refer to foreground-segmented se-
quences in the rest of the paper.

the style codes. We define inversion as

f : ĉi 7→ wi ∈ W+ , (1)

where W+ is the extended style space. We denote the in-
verted frame as ri = G(f(ĉi); Θ) = G(wi; Θ) where G
is the pretrained StyleGAN generator parameterized by Θ.
While our framework supports any inversion technique, we
adopt an encoder-based model that is more robust to chang-
ing mask conditioning and provides faster inference time
than an optimization-based method. Specifically, we opt
for the encoder-based inversion scheme e4e [56]. Instead of
training the encoder from scratch on our data distribution, we
fine-tune an e4e encoder pretrained on FFHQ [25]. Although
augmented frames impose an additional domain adaptation
challenge to the pretrained e4e, we found that it is still a fast
and effective way to establish f .

To fine-tune the pretrained e4e encoder, we adopt the loss
functions and hyperparameters from [56] but with LPIPS
[71] loss, factorized to weigh more the mouth and eye re-
gions. Below we show the overall (modified) objective func-
tion for completeness. Please refer to [56] for details:

Le4e
inversion = λl2 · L2(ci, ri)+

λroi
lpips · Llpips(ci ⊙mroi

i , ri ⊙mroi
i )+

λnonroi
lpips · Llpips(ci ⊙ (1−mroi

i ), ri ⊙ (1−mroi
i ))+

λsim · Lsim(ci, ri) + λd−reg · Ld−reg(wi) + λadv · Ladv

Here, L2, Llpips and Lsim are reconstruction and identity
losses, whereas Ld−reg and Ladv are losses to ensure wi

stays close to the original W space. As we defer synthesis
to Stage-II, our goal is to achieve geometric alignment, espe-
cially in the eye and mouth region, between ground truth ci
and StyleGAN inversion ri (and in turn the learned video seg-
mentation) during Stage-I. Thus, we use λroi

lpips > λnonroi
lpips

to minimize the alignment errors in regions of interest.
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