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Our method enables semantic video editing by converting StyleGAN [27] prior into unsupervised segmentation prior.

Abstract
High-fidelity virtual human avatar applications create

a need for photorealistic video face synthesis with control-
lable semantic editing over facial features. While recent
generative neural methods have shown significant progress
in portrait video synthesis, intuitive facial control, e.g., of
mouth interior and gaze at different levels of details, remains
a challenge. In this work, we present a novel face editing
framework that combines a 3D face model with StyleGAN
vector-quantization to learn multi-level semantic facial con-
trol. We show that vector quantization of StyleGAN features
unveils richer semantic facial representations, e.g., teeth and
pupils, which are difficult to model with 3D tracking priors.
Such representations along with 3D tracking can be used as
self-supervision to train a generator with control over coarse
expressions and finer facial attributes. Learned represen-
tations can be combined with user-defined masks to create
semantic segmentations that act as custom detail handles for
semantic-aware video editing. Our formulation allows video
face manipulation with precise local control over facial at-
tributes, such as eyes and teeth, opening up a number of face
reenactment and visual expression articulation applications.

1. Introduction
High-resolution editing and rendering of photorealistic

facial portrait videos are in high demand due to virtual hu-

man applications, such as actor performance editing, multi-
language telepresence, and video conferencing.

In the area of high-resolution video face editing, state-
of-the-art methods [41, 36, 56, 1, 42, 57] use pre-trained
generative neural networks, such as StyleGAN [25, 27] that,
when trained on large face datasets [25, 32], leads to learning
a face prior that can be exploited for video editing. In the
literature, various formulations leverage such a pre-trained
GAN as input in an attempt to disentangle style spaces for
semantic face image editing [44, 8]. Here, editing is lim-
ited by the training dataset distribution as well as attributes
such as pose range, expression, ethnicity, and gender. The
edits are often not explicit and can be unintuitive since it
involves finding directions or discriminating features in a
high-dimensional feature space to achieve the desired ef-
fects [44].

Several generative neural face synthesis methods have
been proposed [51]. They take 2D videos frames and a
tracked 3D face, often parameterized via a 3D morphable
model (3DMM) [11], as supervised inputs and learn to neu-
rally render the video. Once the neural network is learned,
faces can be edited by modifying the tracked 3D face (or the
3DMM parameters) and rendering new subject videos. The
tracked 3D face can be altered using audio input [53, 67], tar-
get reenactment videos [55], or artist-based modifications of
the 3D face morphable model [49, 50]. Such 3DMM-aware
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methods allow global 3D head pose control and mouth shape
articulation. Photorealism is handled implicitly by genera-
tive neural networks that act as a black-box renderer [31, 54].
However, these approaches lack local control, e.g., of mouth
interior or gaze. The main reason is that such local details
can not trivially be tracked via standard 3D tracking methods.

On the other hand, 3DMM-free methods, where no 3D
face tracking is given, learn to transfer the mouth and
facial motion of a driving actor video to that of a tar-
get video via deep learning and 2D computer vision tech-
niques [46, 39, 10]. Such methods warp the input (original)
face frames into the target space while preserving the target
face appearance and semantics. Unfortunately, their success
is somewhat limited since topological changes, e.g., mouth
opening, can not be explained by simple 2D image warping
transformations [67].

Thus, we desire an approach that learns conditional (rig-
like) control automatically for intuitive video editing appli-
cations. To this end, we use vector quantization (VQ) to
discover meaningful segmentations in (pre-trained) Style-
GAN feature-space. VQ has been used for generative model-
ing [40] and recently adopted in GAN frameworks and vision
transformers [13]. Unlike existing methods, we use VQ to
learn spatial segmentations automatically from a pre-trained
StyleGAN for a given input video. It provides not only dense
input to the generator, but also an effective mechanism to
manipulate local facial details. Our approach is divided into
two stages, as shown in Fig. 1. Stage-I establishes a map
between an input (tracked) video sequence and a pretrained
StyleGAN. Stage-II utilizes the learned VQ-representations,
represented as a semantic segmentation mask, from Stage-I
as input to a generator network that acts as the final renderer.

Our method provides a configurable interface for seman-
tic edits thanks to the dense segmentations produced in Stage-
I. Given the segmentation masks discovered in Stage-I, artists
can label the spatial layout to add human interpretability and
combine the segmented regions to create editing priors that
act as artist handles for semantic-aware editing. As a result,
several applications are feasible, such as semantic editing –
gaze, nose, mouth interior, edits such as teeth removal, blink-
ing, and nose and eyebrow shape change. To the best of our
knowledge, we are the first to adopt VQ for unsupervised
segmentation of a pre-trained StyleGAN given a video and
use the learned segmentation features for localized semantic
video editing. Our key novelties include:

1. A novel formulation that uses vector quantization of
a pre-trained StyleGAN for automatic unsupervised
video segmentation.

2. A VQ-aware decoder that converts automatically dis-
covered VQ segmentation into decoder’s SPADE fea-
ture blocks for high-resolution image synthesis.

3. User-guided semantic segmentation masks that act as
editing handles for intuitive facial video editing.

4. Video editing applications that enable users to control
semantic facial attributes not seen before (see Teaser).

2. Related Work
This section reviews neural portrait synthesis and Style-

GAN inversion methods, applied to semantic image and
video face editing. Please refer to Tewari et al. [51] for an
extensive overview on neural synthesis and Bermano et al.
[5] for in-depth review of GAN inversion.

Model-based Neural Portrait Synthesis. A major line of
work attempts facial portraits synthesis using GAN-based
approaches with semantic control, driven either via sparse
keypoints [69, 62, 34], 3DMM priors [31, 30, 53, 35], or
multi-modal input [64, 73]. Another research trend models
view-consistent animatable 3D talking heads from 2D videos
using neural implicit representations [4, 72, 48, 21, 19, 16,
17, 6]. These approaches synthesize detailed portraits, often
controlled via 3DMM parameters to enable intuitive editing.

While these methods can achieve semantic control, they
can only do global facial feature manipulations, thus limiting
the range of editing applications. Besides, 3DMM-aware
neural approaches often lack input conditioning inside the
mouth interior, eyes, and regions beyond the inner face, re-
sulting in poor or inconsistent synthesis thereof [49]. To over-
come these issues, some approaches leverage GAN-based
priors, such as StyleGAN [26, 28, 24], conditioned with
3DMM parameters to synthesize non-controllable regions in
ways consistent with the underlying prior data distribution
[49, 50, 7, 67] and to generate high-resolution face images.
We also use a StyleGAN prior to render detailed facial fea-
tures even for non 3DMM-driven regions. However, our ap-
proach also learns a semantic facial layout from StyleGAN
features in an unsupervised fashion that, when combined
with an artist prior, allows semantic video editing, e.g., of the
mouth interior and eyes, with finer control not seen before.

StyleGAN Inversion for Image and Video Editing.
There has been a large interest in designing StyleGAN-based
inversion methods [5] for style-based manipulations in im-
ages [14, 42, 1, 41, 3, 36] and videos [2, 57, 15, 65, 66].
After inversion, semantic edits are conducted via style-space
arithmetic and latent-space traversal with precomputed latent
directions from projective subspaces [44, 22, 15] or classi-
fiers [65, 2]. While inversion is a primer for style-based
manipulations, it suffers a trade-off between editing capabil-
ity and identity distortion, especially when edited features lie
outside StyleGAN distributions. Tov et al. [56] address this
problem using an encoder-for-editing (e4e) approach that
restricts the distributions of inverted images to their original
space. We use e4e for stable inversion as well.
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Figure 1. (Left) First, our method learns a video segmentation prior using vector-quantization (VQ) over StyleGAN features. Once trained,
VQ generates segmentation maps without any extra effort. Then, we train a personalized generator conditioned on these maps, which acts as
our final renderer. When combined with 3DMM inputs Θ, our full method achieves semantic control at different levels of details over the
frames of a given video. (Right) The learned video prior allows artists to define a custom semantic segmentation mask based on their needs.
In a clockwise fashion, starting from top-left, we show the learned video prior and three different user definitions.

From an inversion point of view, most approaches focus
on finding optimal maps between images and style features
that offer control over global attributes. Still, little effort has
been invested into the spatial properties of StyleGAN latent-
spaces. Yin et al. [67] show that there is an equivariant
relationship between style-induced feature maps and the
generator outputs under 2D image transformations, revealing
that facial motion information, e.g., via 3DMM, can be used
for detailed talking head editing. Based on these insights, we
employ VQ to discover spatial semantics of style features at
different levels of details in an unsupervised fashion, thus
enabling semantic editing control.

StyleGAN Spatial Semantics. Recent studies of Style-
GAN priors have shown an emergent semantic disentangle-
ment property in spatial dimensions [12, 9, 37, 45, 33, 29].
Lee et al. [32] learn a style mapping between semantic masks
and images via an annotated dataset. Endo et al. [12] im-
prove upon it and learn a mapping between StyleGAN latent
space and a few semantic user-defined masks to generate
pseudo-semantic labels that can be used to train image gener-
ators with semantic editing control. In [9, 37], fixed semantic
regions are discovered via k-means clustering of StyleGAN
features. Such semantic regions can be used for transferring
coarse facial attributes between images [9, 18] or text-driven
global face manipulation with user-defined queries [37, 8].
Liu et al. [33] integrate a mask prediction branch into Style-
GAN and model joint distribution of semantic masks and
images, and learn to retain spatial context for semantic image
translation. Unlike previous methods, we discover spatial se-
mantics in an unsupervised manner, without semantic labels,
spatial priors, or complex architecture modifications.

Since most StyleGAN-based edits affect global styles,
there have been improvements to achieve more fine-grained
control [29, 45]. These methods alter the StyleGAN ar-
chitecture to include explicit semantic style injection via

segmentation masks to factorize semantic regions [45] or
modulate style feature transfer [29, 38]. Our approach also
achieves fine-grained semantic control but needs no explicit
spatial semantics. Instead, we discover them in a fully un-
supervised fashion via VQ. Furthermore, we allow artists to
create intuitive semantic handles for editing.

VQ Generators. Recently, vector quantization has shown
great promise as discrete compact representations for mod-
eling salient spatial features in generative image synthesis
[60, 40, 13]. Oord et al. [60] introduce a VQ autoencoder to
learn context-rich visual parts and model their distributions
with an autoregressive convolutional network. Razavi et al.
[40] extend it using a hierarchical multi-scale representation
of codebooks. Esser et al. [13] show that a convolutional
VQ-GAN combined with an autoregressive transformer can
learn rich representations with global context to enable high-
definition image synthesis. While these methods leverage
VQ to encode efficient spatial representations for large-scale
image synthesis, we utilize it as a means to reveal a detailed
spatial layout of StyleGAN features in a video without su-
pervision. The resulting learned semantic layout enables
localized semantic video editing, e.g., eyes and mouth inte-
rior, with finer local control not seen before.

3. Method
We propose a video editing system that unifies explicit
model-based synthesis with StyleGAN’s powerful prior. Our
system synthesizes video frames with control over expres-
sions and local facial details, such as eyes (pupils) and mouth
interior. At its core, we employ VQ to convert StyleGAN
into a video segmentation prior in an unsupervised fashion.
The learned segmentation prior consists of a set of feature
vectors, represented as a semantic spatial layout (semantic
regions) over the face, e.g., upper teeth and pupils, see Fig. 3.

Unlike other StyleGAN-based editing methods, we defer
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Figure 2. Our video editing system comprises two stages. Stage-I (middle): We learn to invert 3DMM-augmented images into pretrained
StyleGAN’s latent space. In this step, a vector-quantization (VQ) module learns a codebook of semantic segments over multi-scale StyleGAN
feature maps with exponential moving average (EMA) updates in an unsupervised fashion. This stage achieves inversion and 3DMM
expression control along with a set of codebook feature vectors corresponding to the centroids of learned segments. The learned codebook
can then label the input easily. Stage-II (right): A GAN generator translates the automatically obtained semantic layouts into photorealistic
video frames. Our generator uses SPADE [38] and upsampling layers, and it is directly driven by the semantic layout.

synthesis to another network. Thus, in a consecutive stage,
we train a generator with learned segmentation information
as a driving signal. This formulation not only allows for in-
dependent control at the rendering stage but also overcomes
some limitations of inversion methods, such as identity drift,
which is unacceptable for video editing applications.

3.1. Preprocessing

Given a source video with N frames X = {xi}Ni=1, we
crop and align frames following the procedure used in
[57], and denote the resulting sequence (ground-truth) with
C = {ci}Ni=1. Next, we track the sequence C with our reim-
plementation of [52] adapted to video sequences. From the
tracked face model, we render local face masks per frame,
H = {hi}Ni=1, to be overlayed over C. We denote the over-
laid frames (input) as Ĉ = {ĉi}Ni=1. We employ the semantic
face segmentation algorithm by Yu et al. [68] to generate a
foreground mask Mbg = {mbg

i }Ni=1 to remove background,
hair, and clothing. We then apply Mbg to generate masked
input frames Ĉ = {(1 − mbg

i ) ⊙ ĉi}Ni=1 and ground truth
frames C = {(1 − mbg

i ) ⊙ ci}Ni=1
1. From the semantic

segmentation mask, we also extract the mouth, lips, and
eyes regions and combine them into a single mask Mroi =
{mroi

i }Ni=1. We utilize Mroi to increase the influence of the
aforementioned facial features during inversion (see 3.2).

3.2. Stage-I. Inversion & Vector-quantization (VQ)

Fig. 2 illustrates the preprocessing steps and inversion
schemes, including vector quantization.

Inversion. To exploit StyleGAN prior, we first create an
inversion mapping between the locally-masked frames and

1Unless otherwise stated, C and Ĉ refer to foreground-segmented se-
quences in the rest of the paper.

the style codes. We define inversion as

f : ĉi 7→ wi ∈ W+ , (1)

where W+ is the extended style space. We denote the in-
verted frame as ri = G(f(ĉi); Θ) = G(wi; Θ) where G
is the pretrained StyleGAN generator parameterized by Θ.
While our framework supports any inversion technique, we
adopt an encoder-based model that is more robust to chang-
ing mask conditioning and provides faster inference time
than an optimization-based method. Specifically, we opt
for the encoder-based inversion scheme e4e [56]. Instead of
training the encoder from scratch on our data distribution, we
fine-tune an e4e encoder pretrained on FFHQ [25]. Although
augmented frames impose an additional domain adaptation
challenge to the pretrained e4e, we found that it is still a fast
and effective way to establish f .

To fine-tune the pretrained e4e encoder, we adopt the loss
functions and hyperparameters from [56] but with LPIPS
[71] loss, factorized to weigh more the mouth and eye re-
gions. Below we show the overall (modified) objective func-
tion for completeness. Please refer to [56] for details:

Le4e
inversion = λl2 · L2(ci, ri)+

λroi
lpips · Llpips(ci ⊙mroi

i , ri ⊙mroi
i )+

λnonroi
lpips · Llpips(ci ⊙ (1−mroi

i ), ri ⊙ (1−mroi
i ))+

λsim · Lsim(ci, ri) + λd−reg · Ld−reg(wi) + λadv · Ladv

Here, L2, Llpips and Lsim are reconstruction and identity
losses, whereas Ld−reg and Ladv are losses to ensure wi

stays close to the original W space. As we defer synthesis
to Stage-II, our goal is to achieve geometric alignment, espe-
cially in the eye and mouth region, between ground truth ci
and StyleGAN inversion ri (and in turn the learned video seg-
mentation) during Stage-I. Thus, we use λroi

lpips > λnonroi
lpips

to minimize the alignment errors in regions of interest.
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Vector Quantization (VQ). During (inversion) finetun-
ing, we simultaneously deploy a VQ module that serves as
a passive (online) clustering mechanism to learn a video
segmentation prior. VQ module consists of a learnable code-
book and a codebook update mechanism. In practice, the
codebook Zd

K ∈ RK×d is implemented as a tensor, where
d and K are the feature dimensionality and the number of
entries, respectively. Once the entries zj = Z[j, :] ∈ Rd

have converged to representative vectors, i.e., centroids, for
the classes discovered over the face, we can use them to
generate semantic video face segmentation at inference time.

We denote a StyleGAN feature map of resolution q and
dimensionality d as a set of vectors Gq

d = {gi ∈ Rd : i =
1, . . . , q2}. VQ assigns each feature vector g ∈ Gq

d the
nearest codebook entry zj measured with cosine distance.
For codebook learning, we adopt the exponential moving
average (EMA) update mechanism from [40] as follows:

N
(t)
j := N

(t−1)
j ∗ γ + n

(t)
j (1− γ)

m
(t)
j := m

(t−1)
j ∗ γ + Σin

(t)
j g

(t)
i (1− γ)

z
(t)
j :=

m
(t)
j

N
(t)
j

, (2)

where n
(t)
j is the number of features that are assigned to

cluster j at time step t.
StyleGAN representations, from coarse to fine, encode

different levels of semantic information. We discover
empirically that coarser layers, i.e., 162 and 322, embed
contours and rough pose, whereas feature maps in larger
scales carry finer semantics, such as texture and facial parts,
as shown in 3. Therefore, we combine activations from
multiple scales to learn a segmentation prior, which benefits
from both lower and higher semantic levels. Specifically,
in every forward call during inversion training, we gather
layer activations G64

512, G128
256 and G256

128, i.e., the output of
the last style-convolution for each layer. Before feeding in
the activations to VQ module, we pass each activation map
through instance normalization [58] layers and upsample
to 2562 using bilinear interpolation. Finally, we concatenate
each activation along the channel dimension, resulting in
a tensor XV Q ∈ R996×256×256. Although we segment out
the background, hair and clothing in the input, we find it
beneficial to apply the same segmentation mask over this
tensor, i.e., XV Q := XV Q ⊙ (1−mbg). This way, we make
sure the codebook capacity is primarily focused on the face
region. This mipmap-style input is then fed to VQ to update.

In learning the codebook, we ensure quantization does not
interfere with the pretrained StyleGAN generator; otherwise,
the training stability is degraded. As such, we neither use the
quantized features in the generator nor allow the inversion
objective to influence quantization. By the end of Stage-I

K = 16 K = 32 K = 64 K = 128 K = 256

q = {64, 128, 256}q = {128, 256}q = {256}
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Figure 3. We show ablation results w.r.t (top) codebook size K
and (bottom) input resolutions of the stacked StyleGAN layers. In-
creasing the codebook size yields finer partitioning of the subject’s
face into temporally consistent regions given hierarchical features
as input (64x64, 128x128, 256x256).

training, we accomplish a mapping from augmented input
frames to one-hot encoding of K unsupervised semantic
classes ĉi 7→ xseg ∈ RK×256×256 for driving the synthesis
network in Stage-II.

3.3. Stage-II. VQ-driven Frame Synthesis

To guarantee identity fidelity and enable local seman-
tic edits, our approach defers synthesis to a dedicated (or
personalized) generator driven by video segmentations ob-
tained from Stage-I. This way, we can also overwrite subject-
specific videos without retraining, which is an important
aspect for applications where repeated edits with varying
conditions are needed, e.g., changing the scripts.

Unlike image-to-image translation models [23] mostly
using variants of U-Net [43] architectures, we opt for an
encoder-free generator design to reduce model size and to
render frames cs = Gs(xseg) at 1024x1024. Thus, our gen-
erator Gs is a fully-convolutional decoder admitting seman-
tic masks via spatial normalization layers. As normalization
layers, we use SPADE [38]. To achieve a better personal-
ization prior for a given subject and remove stochasticity
at inference time, our design also utilizes a constant tensor,
akin to unconditional generative models [26].

We train Gs in an adversarial fashion with a patch dis-
criminator Ds. As adversarial loss, we adopt binary cross-
entropy with gradient penalty regularization on discriminator
weights. To ensure framewise quality, we use a weighted
combination of smooth L1 reconstruction and factorized, i.e.,
roi, perceptual (LPIPS) losses. Our final objective then reads
as follows:

Lsynth
D = − logDs(c)− log (1−Ds(cs))+

λgp∥∇xseg
Ds(cs)∥22

Lsynth
G = − log (Ds(cs)) + λl1Ll1(c, cs)

+ λroi
lpipsLlpips(cs ⊙mroi, c⊙mroi)+

λnonroi
lpips Llpips(cs ⊙ (1−mroi), c⊙ (1−mroi))
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3.4. Implementation Details

We use the PyTorch implementation1 of StyleGAN2 [27]
with the original network parameters from the official im-
plementation. In Stage-I, we set λl2 = 5.0, λnonroi

lpips = 1.0,
λroi
lpips = 5.0, λsims = 0.1, λd−reg = 2e−4 and λadv = 0.1.

During inversion, we set the learning rates to 5e−6 and 1e−6
for e4e encoder and discriminator, respectively. In Stage-II,
we set λl1 = 0.5, λadv = 0.01, λnonroi

lpips = 0.2, λroi
lpips = 1.0

and λgp = 10.0. We utilize Adam optimizer and a learning
rate of 5e− 4 to train the generator and discriminator.

As local face masks, we choose albedo maps to make
vector-quantization illumination invariant. Note that our
approach is agnostic to the kind of masks used, e.g., dif-
fuse texture, provided that the desired mouth articulation is
represented clearly.

Temporal Stability Measure. When training Gs, we en-
force temporal consistency via an extended temporal win-
dow scheme. Specifically, for a given batch, a target frame
is padded with the leading and subsequent frame’s semantic
masks. We find that this simple extension suffices in prevent-
ing temporal flickering artifacts in the synthesized videos.

4. Experiments
Datasets & Training Details. In our experiments, we
use MEAD dataset [61] and an Obama video downloaded
from the internet2. We choose three different subjects from
MEAD and use nearly 210 videos with neutral, happy and
angry emotions in frontal, left/right 30-degree head orienta-
tion per subject. Each subject has approximately 20k frames
in total. For Obama video, we use a 6-minute sequence,
totaling around 10k frames. In Stage-I, we train the encoder
and vector-quantizer for 6k iterations with a batch size of
4. In Stage-II, we train the generator for 60k iterations with
a batch size of 2. We use the same training scheme for all
datasets and train on a single A10 GPU.

As for quantization, we set K = 128 to reveal smaller de-
tails, such as pupils and teeth, in the learned segmentations.
We warm-start the codebook Z996

128 by running k-means algo-
rithm for 100 iterations on the first batch. During training,
we set decay factor γ = 10−3. To maximize the codebook’s
usage, we apply a dead-code replacement routine with a
threshold of 2, akin to [70].
In the following, we provide quantitative and qualitative
analysis and show different applications of our method.

4.1. Quantitative Results.

Metrics. We adopt both perceptual and pixel accuracy met-
rics to measure image quality and a video-based metric to
judge temporal quality. As for image-based metrics, we

1github.com/rosinality/stylegan2-pytorch
2www.youtube.com/watch?v=NGEvASSaPyg&t=471s

(i) Full Prior (ii) Mouth Interior and Lips

(iii) Thicken Nose (iv) Close Right Eye

(v) Modify Right Eyebrow (vi) Remove Left Eyebrow

Figure 4. Examplar visualization & user-defined masks. (Left)
Exemplar frame visualization. (Right) Consecutive local semantic
edits via user-defined (CelebA-like) masks.

compute MSE, SSIM [63], LPIPS [71], and FID scores [20].
To measure temporal consistency and quality of rendered
frames, we compute Fréchet Video Distance (FVD) [59].
FVD is a sampling-based metric that computes a score us-
ing random temporal windows of varying lengths. As such,
every run varies significantly depending on what frames are
used as anchors, thus requiring multiple runs. To generate
statistically meaningful results, we perform 50 runs on each
video sequence and report the mean and standard deviations.
We use two variants of FVD that use 16 and 128 frame win-
dows and denote them as FVD16 and FVD128, respectively.
We also provide a third variant, FVDsub

128, which uses a 128
frame window but samples every 8th frame when computing
fake and real data statistics, as suggested in [59]. We remark
that we run all three FVD metric variants on Obama se-
quence, whereas we only employ FVD16 on MEAD videos
as they are only a few seconds long. Please refer to [47] for
an in-depth explanation of FVD.

Analysis. We compare our approach against baselines PTI
[42], FOMM [46] and DVP [31] in Tab. 1. Please refer to
the supplementary document for details about the different
baselines and evaluation settings. Our method consistently
outperforms FOMM and PTI on almost all image-based
and video-based metrics, except for FID metric where our
method has a worse score on M013. Such a decrease in
performance stems from mild artifacts around face bound-
aries and eyebrows, especially for non-frontal views. See
supplementary video for details. Tab. 1 also shows that our
method achieves the best scores on MSE, SSIM, LPIPS met-
rics. DVP attains better FVD scores even though our method
produces results of similar visual quality (see supplemen-
tary video). We attribute the relatively large FVD values
to a global color flicker in the temporal domain, which is
barely perceivable to the human eye. We believe these resid-
ual temporal artifacts can be resolved with more advanced
spatio-temporal architectures, which is an interesting avenue
for future advances in the field.
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Video-based Metrics Image-based Metrics

(MEAD) FVD16 ↓
(M013 | M027 | W009)

FID ↓
(M013 | M027 | W009)

LPIPS ↓
(M013 | M027 | W009)

MSE ↓
(M013 | M027 | W009)

SSIM ↑
(M013 | M027 | W009)

FOMM (148.0; 9.1) | (147.7; 14.7) | (189.2; 12.9) 43.4 | 39.8 | 53.5 0.08 | 0.13 | 0.13 0.0024 | 0.0095 | 0.0072 0.97 | 0.86 | 0.88
PTI (162.4; 10.3) | (177.4; 27.8) | (277.1; 23.3) 12.3 | 11.7 | 16.1 0.05 | 0.05 | 0.06 0.0039 | 0.0052 | 0.0102 0.97 | 0.89 | 0.87
Ours (142.4; 14.0) | (136.7; 23.2) | (168.5; 13.9) 22.5 | 11.3 | 11.1 0.04 | 0.05 | 0.05 0.0009 | 0.0011 | 0.0018 0.98 | 0.94 | 0.93
(Obama) FVD16 ↓ | FVD128 ↓ | FVDsub

128 ↓ FID ↓ LPIPS ↓ MSE ↓ SSIM ↑
DVP (371.3; 143.6) | (160.0; 65.4) | (229.3; 62.5) 3.84 0.025 0.0026 0.95
Ours (382.1; 182.2) | (215.9; 87.6) | (260.1; 104.8) 4.99 0.019 0.0009 0.96

Table 1. Our method performs favorably against FOMM and PTI on MEAD dataset when evaluating both image-based and video-based
metrics. It also outperforms DVP for most image-based metrics on a held-out set of Obama dataset. DVP achieves better temporal scores.
Note that FVD⋆ scores are the mean and standard deviation computed over 50 runs. Bold text highlights the best result.

4.2. Qualitative Results.

Ablation Study. Vector-quantization involves a few hyper-
parameters requiring experimental tuning. Fig. 3 provides ab-
lation results w.r.t. varying codebook sizes. We specifically
ablate over the feature map stacks used in VQ. The results
demonstrate that the proposed StyleGAN activations provide
more locally-consistent segments and overall reduce mask jit-
ter. Please see our supplementary video for examples. While
features at resolution 322 provide a good basis for this stabil-
ity, Fig. 3 shows that higher resolution representations, e.g.,
2562 accommodate more semantic groups within the mouth.
For instance, we can see individual teeth. This result implies
a tradeoff between stability and details of the learned prior.

Qualitative Comparisons. Fig. 7 compares visually our
method with FOMM [46] and PTI [42]. Overall, FOMM
cannot reproduce results faithfully and our method fairs com-
parably to PTI. However, we capture better high-frequency
details, such as freckles and moles. Please refer to the sup-
plementary material for a better temporal appreciation of the
synthesized results and for a comparison with DVP [31].

4.3. Applications.

Performance Preserving Reanimation. In many artistic
applications, it is crucial to retain the original performance
while performing local visual edits. Our approach makes
possible to modify a subject-specific video in a localized
fashion thanks to local face masks. Fig. 5 illustrates how
we can reanimate a person’s lower face via 3DMM-based
expression transfer. Our method preserves the actor’s eye
gaze and facial details (unless instructed otherwise) via se-
mantic maps. We further demonstrate cross-shot expression
transfer using VoxCeleb2HQ subjects in Fig. 6. Please refer
to the supplementary material for more details and results.
As our approach, in essence, inpaints the mask region, we
find that naive alpha-blending of the segmented foreground
into the original footage suffices for compositing purposes.
Therefore, it is not required to pass the final renders through
refinement networks, e.g., as in Tzaban et al. [57].

Original Frame Condition Overwritten Frame

Figure 5. Performance editing via 3DMM. Our method can over-
write input video frames (left) with given expressions via 3DMM
(middle), allowing applications such as local mouth expression re-
placement. The overwritten video frames can be further enhanced
with semantic editing touches.

Local Semantic Edits in Video Frames. Fig. 8 shows
editing results for two subjects, where eye-gaze and mouth
interior are seamlessly changed by modifying the segmenta-
tion masks. In particular, we demonstrate that fine touches
in semantic layouts allow for subtle yet photorealistic edits
in the final render. Since our video prior discovers mouth
interior segments, e.g., tongue and upper/lower teeth, we can
change the appearance of teeth or even remove them com-
pletely. In addition, our method can also perform topological
modifications, such as opening and closing of eyes with the
detailed segmentation prior, whereas model-based methods
often fall short. As vector-quantization is unsupervised, the
learned priors may vary semantically depending on input
video’s dynamics. For instance, the eyelid segment is better
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Source DriverOurs Source DriverOurs

Figure 6. Cross-shot expression transfer on VoxCeleb2HQ subjects. We use non-overlapping shots from the original video as a driver
sequence and only transfer the driver’s 3DMM expression parameters to that of the source. Note that our method robustly transfers
expressions even when the driver’s and source’s head pose differ. Please see the supplementary video for more examples.

FOMMPTIOURSGT

Figure 7. Our method and PTI achieve similar qualitative results
[42, 57]. However, our formulation captures better some local
details. In addition, our method allows explicit visual manipulation,
which is not doable with PTI or FOMM.

recovered if the subject blinks often.

Local Editing w/ User Priors. In increasing K, it is pos-
sible to obtain finer, albeit over-segmented, semantic details.
With this feature, artists can easily design personalized se-
mantic priors in a bottom-up manner for differing purposes,
as shown in Fig. 1. This opens up doors for novel inter-
facing applications since the defined priors propagate in a
temporally-consistent manner at no labeling cost. Please re-
fer to the supplementary video. An artist prior can simply be
defined by grouping indices k from codebook ZK into new
segments after Stage-I. In defining artist-specific priors, we
can train Stage-II with more intuitive local editing control.
Fig. 4 (right) illustrates a prior inspired by CelebA-HQ’s
label definition derived from the learned segmentations. In
Stage-II, we can train the generator using this semantic prior.

Fig. 4 shows that our method can generate plausible visual
edits, e.g., eyebrow removal and nose thickening, using a
more human-friendly interface. Fig. 9 shows that, with user-
defined priors, our method can deliver localized edits as
illustrated in the activated heatmaps.

Examplar-frame Visualization. As the video segmenta-
tion prior is learned in an unsupervised manner, the corre-
spondence between codebook entries and visual segments
is not known beforehand. For local editing and user-defined
segmentation masks, we rely on a single exemplar frame
visualization, as shown in Fig. 4. It thus acts as a visual
guide to defining user-priors since over-fragmentation can
be overwhelming for users without a reference at this stage.

5. Limitations and Future Work

As with various StyleGAN-based editing approaches, the
representation power of our method is limited by the training
data distribution of StyleGAN. Although our personalized
generator can learn to cope with deficiencies in texture and
identity representation induced by inversion, it might still
obtain suboptimal reconstructions, especially in presence
of larger head poses and harsh lighting conditions. In this
work, we focus on unveiling a pretrained StyleGAN’s se-
mantic prior with unprecedented detail using vector quantiza-
tion. Further research directions will investigate architectural
spatio-temporal modeling for improved performance.
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Input Frame Original Seg. Reconstruction Edited Seg. Reconstruction Edited Seg. Reconstruction Input Frame Original Seg. Reconstruction Edited Seg. Reconstruction Edited Seg. Reconstruction
Eye Edits Mouth Edits Eye Edits Mouth Edits

Figure 8. Local editing. Our method allows for fine-grained local semantic edits for mouth interior and gaze. The learned semantics further
allow mouth opening/closing and eye opening.
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Figure 9. User-defined priors can be tailored to the artists’ needs and provide intuitive semantics for laborious editing tasks. We show two
different priors with which localized modifications can be applied. We highlight the affected image regions in the middle rows through
photometric error maps. Note that local edits leave untouched areas unchanged, as shown in the maps.

6. Conclusion
We present a face editing framework that allows intuitive

facial attribute control in portrait videos. Our system stands
on the base of StyleGAN, and unifies explicit model-based
generative synthesis with a novel StyleGAN based spatial
prior. Expression editing control is achieved via 3DMM,
while semantic editing control is realized through an induced

StyleGAN spatial layout learned via vector quantization in
an unsupervised fashion. Our system easily integrates user
input to define semantic spatial regions that act as custom
handles for intuitive local editing. We show the flexibility
and effectiveness of our framework on several face editing
tasks: reenactment, attribute manipulation (eye, gaze, mouth
interior), and enhancements.
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