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Abstract

Image blending aims to combine multiple images seam-

lessly. It remains challenging for existing 2D-based methods,

especially when input images are misaligned due to differ-

ences in 3D camera poses and object shapes. To tackle these

issues, we propose a 3D-aware blending method using gen-

erative Neural Radiance Fields (NeRF), including two key

components: 3D-aware alignment and 3D-aware blending.

For 3D-aware alignment, we first estimate the camera pose

of the reference image with respect to generative NeRFs and

then perform pose alignment for objects. To further lever-

age 3D information of the generative NeRF, we propose

3D-aware blending that utilizes volume density and blends

on the NeRF’s latent space, rather than raw pixel space.

Collectively, our method outperforms existing 2D baselines,

as validated by extensive quantitative and qualitative evalu-

ations with FFHQ and AFHQ-Cat.

1. Introduction

Image blending aims at combining elements from mul-

tiple images naturally, enabling a wide range of applica-

tions in content creation, and virtual and augmented reali-

ties [95, 96]. However, blending images seamlessly requires

delicate adjustment of color, texture, and shape, often re-

quiring users’ expertise and tedious manual processes. To

reduce human efforts, researchers have proposed various au-

tomatic image blending algorithms, including classic meth-

ods [62, 49, 7, 76] and deep neural networks [93, 79, 54].

Despite significant progress, blending two unaligned im-

ages remains a challenge. Current 2D-based methods often

assume that object shapes and camera poses have been accu-

rately aligned. As shown in Figure 1c, even slight misalign-

ment can produce unnatural results, as it is obvious to human

eyes that foreground and background objects were captured

using different cameras. Several methods [34, 52, 12, 66, 86]

warp an image via 2D affine transformation. However, these

approaches do not account for 3D geometric differences,

such as out-of-plane rotation and 3D shape differences. 3D

alignment is much more difficult for users and algorithms,

as it requires inferring the 3D structure from a single view.
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Figure 1: Image blending is challenging for unaligned original

and reference images. Existing 2D-based methods [42] struggle to

synthesize realistic results due to the 3D object pose differences

between foreground and background. In contrast, we propose a

3D-aware blending method that aligns and composes unaligned

images without manual effort.

Additionally, even though previous methods get aligned im-

ages, they blend images in 2D space. Blending images using

only 2D signals, such as pixel values (RGB) or 2D feature

maps, doesn’t account for the 3D structure of objects.

To address the above issues, we propose a 3D-aware

image blending method based on generative Neural Radiance

Fields (NeRFs) [9, 33, 10, 59, 67, 91]. Generative NeRFs

learn to synthesize images in 3D using only collections of

single-view images. Our method projects the input images

to the latent space of generative NeRFs and performs 3D-

aware alignment by novel view synthesis. We then perform

blending on NeRFs’ latent space. Concretely, we formulate

an optimization problem in which a latent code is optimized

to synthesize an image and volume density of the foreground
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Figure 2: Comparison with the existing blending methods. Red lines denote target blending parts. (a) 2D blending. 2D blending methods

compose two images without any 3D-aware alignment. (b) 2D blending with 3D-aware alignment. To address misalignment, we apply our

3D-aware alignment method to existing 2D blending methods. (c) Proposed method. We propose 3D-aware blending after applying our

3D-aware alignment. Note that all methods do not use 3D labels or 3D morphable models.

close to the reference while preserving the background of

the original.

Figure 2 shows critical differences between our approach

and previous methods. Figure 2a shows a classic 2D blending

method composing two 2D images without alignment. We

then show the performance of the 2D blending method can

be improved using our 3D-aware alignment with generative

NeRFs as shown in Figure 2b. To further exploit 3D infor-

mation, we propose to compose two images in the NeRFs’

latent space instead of 2D pixel space. Figure 2c shows our

final method.

We demonstrate the effectiveness of our 3D-aware align-

ment and 3D-aware blending (volume density) on unaligned

images. Extensive experiments show that our method out-

performs both classic and learning-based methods regarding

both photorealism and faithfulness to the input images. Ad-

ditionally, our method can disentangle color and geometric

changes during blending, and create multi-view consistent

results. To our knowledge, our method is the first general-

purpose 3D-aware image blending method capable of blend-

ing a diverse set of unaligned images.

2. Related Work

Image blending aims to compose different visual elements

into a single image. Seminal works tackle this problem

using various low-level visual cues, such as image gradi-

ents [62, 36, 75, 28, 74], frequency bands [7, 6], color and

noise transfer [82, 72], and segmentation [49, 65, 1, 51].

Later, researchers developed data-driven systems to com-

pose objects with similar lighting conditions, camera poses,

and scene contexts [50, 15, 34].

Recently, various learning-based methods have been pro-

posed, including blending deep features instead of pix-

els [73, 20, 31] or designing loss functions based on deep

features [88, 87]. Generative Adversarial Networks (GAN)

have also been used for image blending [79, 92, 21, 42,

8, 95, 68]. For example, In-DomainGAN [92] exploits

GAN inversion to achieve seamless blending, and StyleMap-

GAN [42] blends images in the spatial latent space. Recently,

SDEdit [54] proposes a blending method via diffusion mod-

els. The above learning-based methods tend to be more ro-

bust than pixel-based methods. But given two images with

large pose differences, both may struggle to preserve identity

or generate unnatural effects.

In specific domains like faces [83, 22, 56, 81] or hair [95,

96, 19, 44], multiple methods can swap and blend unaligned

images. However, these methods are limited to faces or hair,

and they often need 3D face morphable models [5, 30], or

multi-view images [55, 45] to provide 3D information. Our

method offers a general-purpose solution that can handle a

diverse set of objects without 3D data.

3D-aware generative models. Generative image models

learn to synthesize realistic 2D images [32, 70, 26, 77, 14].

However, the original formulations do not account for the

3D nature of our visual world, making 3D manipulation

difficult. Recently, several methods have integrated implicit

scene representation, volumetric rendering, and GANs into

generative NeRFs [67, 10, 57, 25]. Given a sampled view-

point, an image is rendered via volumetric rendering and

fed to a discriminator. For example, EG3D [9] uses an effi-

cient 3D representation called tri-planes, and StyleSDF [58]

merges the style-based architecture and the SDF-based vol-

ume renderer. Multiple works [9, 58, 91, 33] have developed

a two-stage model to generate high-resolution images. With

GAN inversion methods [94, 64, 29, 60, 23, 97, 27, 2], we

can utilize these 3D-aware generative models to align and

blend images and produce multi-view consistent 3D effects.
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Figure 3: 3D-aware alignment: we first use a CNN encoder to

infer the camera pose of each input image. Step 1. Given the cam-

era pose c, we estimate the latent code w for each input using a

reconstruction loss Lrec. Step 2. Given the estimated camera pose

cori and latent code wref, we align the reference image to match the

pose of the original image.

3D-aware image editing. Classic 3D-aware image editing

methods can create 3D effects given 2D photographs [40,

16, 41]. However, they often require manual efforts to recon-

struct the input’s geometry and texture. Recently, to reduce

manual efforts, researchers have employed generative NeRFs

for 3D-aware editing. For example, EditNeRF [53] uses sepa-

rate latent codes to edit the shape and color of a NeRF object.

NeRF-Editing [85] proposes to reflect geometric edits in im-

plicit neural representations. CLIP-NeRF [78] uses a CLIP

loss [63] to ensure that the edited result corresponds to the

input condition. In SURF-GAN [48], they discover control-

lable attributes using NeRFs for training a 3D-controllable

GAN. Kobayashi et al. [47] enable editing via semantic

scene decomposition. While the above works tackle various

image editing tasks, we focus on a different task – image

blending, which requires both alignment and harmonization.

Compared to previous image blending methods, our method

addresses blending in a 3D-aware manner.

3. Method

We aim to perform 3D-aware image blending using only

2D images, with target masks from users for both original

and reference images. Our method consists of two stages:

3D-aware alignment and 3D-aware blending. Before we

blend, we first align the pair of images regarding the pose.

In Section 3.1, we describe pose alignment for entire objects

and local alignment for target regions. Then, we apply the

3D-aware blending method in the generative NeRF’s latent

space in Section 3.2. A variation of our blending method

is illustrated in Section 3.3. We combine Poisson blending

with our method to achieve near-perfect background preser-

vation. We use EG3D [9] as our backbone, although other

3D-aware generative models, such as StyleSDF [58], can

also be applied; see Section E in the supplement.

3.1. 3Daware alignment

Pose alignment is a requisite process of our blending

method, as slight pose misalignment of two images can

severely degrade blending quality as shown in Figure 1. To

match the reference image Iref to the pose of the original

image Iori, we use a generative NeRF G to estimate the

camera pose c and the latent code w of each image. In Step

1 in Figure 3, we first train and freeze a CNN encoder (i.e.,

pose estimation network) to predict the camera poses of input

images. During training, we can generate a large number of

pairs of camera poses and images using generative NeRF

and train the encoder E using a pose reconstruction loss

Lpose as follows:

Lpose = Ew,c∥c − E(GRGB(w, c))∥
1
, (1)

where GRGB is an image rendering function with the genera-

tive NeRF G, and ∥·∥
1

is the L1 distance. The latent code w

and camera pose c are randomly drawn.

With our trained encoder, we estimate the camera poses

cori and cref (defined as Euler angles c ∈ SO3) of the origi-

nal and reference images, respectively. Given the estimated

camera poses, we project input images Iori and Iref to the

latent codes wori and wref using Pivotal Tuning Inversion

(PTI) [64]. We optimize the latent code w using the recon-

struction loss Lrec as follows:

Lrec = ∥I −GRGB(w, c)∥
1
+ LLPIPS(I, GRGB(w, c)), (2)

where LLPIPS is a learned perceptual image patch similarity

(LPIPS) [89] loss. For more accurate inversion, we fine-tune

the generator G. Inversion details are described in Section B

in the supplement. Finally, as shown in Step 2 of Figure 3,

we can align the reference image as follows:

IR
ref = GRGB(wref, cori). (3)

While pose alignment can align two entire objects, further

alignment in editing regions may still be necessary due to

variations in scale and translation between object instances.

To align target editing regions such as the face, eyes, and

ears, we can further employ local alignment in the loosely

aligned dataset (AFHQv2). The Iterative Closest Point (ICP)

algorithm [3, 17] is applied to meshes, which can adjust

their scale and translation. For further details, please refer to

Section C in the supplement.
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Figure 4: Our 3D-aware blending pipeline. We employ density-blending loss (Ldensity) in the volume density of 3D NeRF space, as well as

the image-blending loss (Limage) in 2D image space. Green rays pass through the interior of the mask (m) and red rays pass through the

exterior of the mask (1−m). Limage and Ldensity are used to optimize the latent code wedit to generate the well-blended image Iedit.

3.2. 3Daware blending

We aim to find the best latent code wedit to synthesize

a seamless and natural output. To achieve this goal, we ex-

ploit both 2D pixel constraints (RGB value) and 3D geomet-

ric constraints (volume density). With the proposed image-

blending and density-blending losses, we optimize the latent

code wedit, by matching the foreground with the reference

and the background with the original.

Image-blending algorithms are often designed to match

the color and details of the original image (i.e., background)

while preserving the structure of the reference image (i.e.,

foreground) [62]. As shown in Figure 4, our image-blending

loss matches the color and perceptual similarity of the origi-

nal image using a combination of L1 and LPIPS [89], while

matching the reference image’s details using LPIPS loss

alone. L1 loss in the reference can lead to overfitting to the

pixel space. Let Iedit be the rendered image from the latent

code wedit. We define the image-blending loss as follows:

Limage = ∥(1−m) ◦ Iedit − (1−m) ◦ Iori∥1
+ λ1LLPIPS((1−m) ◦ Iedit, (1−m) ◦ Iori)

+ λ2LLPIPS(m ◦ Iedit,m ◦ Iref), (4)

where ◦ denotes element-wise multiplication. Here, λ1 and

λ2 balance each loss term.

Density-blending is our key component in 3D-aware im-

age blending. If we use only image-blending loss, the blend-

ing result easily falls blurry and may not reflect the reference

object correctly. Especially, a highly structured object such

as hair is hard to be blended in the 3D NeRF space without

volume density, as shown in Figure 8. By representing each

image as a NeRF instance, we can calculate the density σ

of a given 3D location x ∈ R
3. Let Rref and Rori be the

set of rays r passing through the interior and exterior of the

target mask m, respectively. For the 3D sample points along

the rays Rref, we aim to match the density field between

the reference and our output result, as shown as the sample

points in a green ray in Figure 4. For 3D sample points in

Rori, we also match the density field between the original

and the result, as shown as the sample points in a red ray in

Figure 4. Let Gσ(w;x) be the density of a given 3D point

x with a given latent code w. Our density-blending loss can

be formulated as follows:

Ldensity =
∑

r∈Rref

∑

x∈r

∥Gσ(wedit;x)−Gσ(wref;x)∥1

+
∑

r∈Rori

∑

x∈r

∥Gσ(wedit;x)−Gσ(wori;x)∥1.

(5)

Our final objective function includes both image-blending

loss and density-blending loss:

L = λLimage + Ldensity, (6)

where λ is the hyperparameter that controls the contribution

of the image-blending loss. If our user wants to blend the

shape together without reflecting the color of reference, λ2

in Eqn. 4 is set to 0. Otherwise, we can set λ2 to a positive

number to reflect the reference image’s color and geometry

as shown in Figure 9.

3.3. Combining with Poisson blending

While our method produces high-quality blending results,

incorporating Poisson blending [62] further improves the

preservation of the original image details. Figure 5 shows

the effect of Poisson blending with our method. We perform

22909
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Figure 5: Ours with Poisson blending [62]. Ours shows satisfying

blending results but a lack of preservation in details. In the first

row, the earring is missing in our method. The high-frequency

details such as hair and fur are less pronounced in our method alone

compared to when it is combined with Poisson blending.

Poisson blending between the original image and the blended

image generated by our 3D-aware blending method. Our

blending method is modified in two ways. 1) In the initial

blending stage, we only preserve the area around the border

of the mask instead of all parts of the original image, as we

can directly use the original image in the Poisson blending

stage. We can reduce the number of iterations from 200 to

100, as improved faithfulness scores are easily achieved; see

mL2 and LPIPSm in Tables 1 and 2. 2) Instead of using the

latent code of the original image wori as the initial value

of wedit, we use the latent code of the reference image wref.

This allows us to instantly reflect the identity of the reference

image and only optimize wedit to reconstruct a small region

near the mask boundary of the original image. Note that this

is an optional choice, as our method without Poisson blend-

ing has already outperformed all the baselines, as shown in

Tables 3 and 4.

4. Experiments

In this section, we show the advantage of our full method

over several existing methods and ablated baselines. In Sec-

tion 4.1, we describe our experimental settings, including

baselines, datasets, and evaluation metrics. In Section 4.2,

we show both quantitative and qualitative comparisons. In

addition to the automatic quantitative metrics, our user study

shows that our method is preferred over baselines regard-

ing photorealism. In Section 4.3, we analyze the effective-

ness of each module via ablation studies. Lastly, Section 4.4

shows useful by-products of our method, such as generating

multi-view images and controlling the color and geometry

disentanglement. Please see the supplement for experimental

details, video results on the webpage, additional results, etc.

4.1. Experimental setup

Baselines. We compare our method with various image

blending methods using only 2D input images. For clas-

sic methods, we run Poisson blending [62], a widely-used

gradient-domain editing method. We also compare with sev-

eral recent learning-based methods [8, 42, 38, 54]. Latent

Composition [8] utilizes the compositionality in GANs by

finding the latent code of the roughly collaged inputs on the

manifold of the generator. StyleMapGAN [42] proposes the

spatial latent space for GANs to enable local parts blending

by mixing the spatial latent codes. Recently, Karras et al. [38]

proposed StyleGAN3, which provides rotation equivariance.

Therefore, we additionally show their blending results by

finding the latent code of the composited inputs on the

StyleGAN3-R manifold. Both W and W+ of StyleGAN3-R

latent spaces are tested. SDEdit [54] is a diffusion-based

blending method that produces a natural-looking result by

denoising the corrupted image of a composite image.

Datasets. We use FFHQ [39] and AFHQv2-Cat

datasets [18] for model training. We use pose alignment

for both datasets and apply further local alignment to the

loosely aligned dataset (AFHQ).

To test blending performance, we use CelebA-HQ [37]

for the FFHQ-trained models and AFHQv2-Cat test sets for

the AFHQ-trained models. We randomly select 250 pairs of

images from each dataset for an original and reference image.

We also create a target mask for each pair to automatically

simulate a user input using pretrained semantic segmentation

networks [84, 90, 13]. We blend 5 and 3 semantic parts in

each pair of images for CelebA-HQ and AFHQ, respectively.

The total number of blended images in each method is 1,250

(CelebA-HQ) and 750 (AFHQv2-Cat). We also include re-

sults on ShapeNet-Car dataset [11] to show that our method

works well for non-facial data.

Evaluation metrics. For evaluation metrics, we use

masked L2, masked LPIPS [89] and Kernel Inception Score

(KID) [4]. Masked L2 (mL2) is the L2 distance between the

original image and the blended image on the exterior of the

mask, measuring the preservation of non-target areas of the

original image. Unlike background regions, a pixel-wise loss

is too strict for the target area changed during blending. We

measure the perceptual similarity metric (LPIPS) [89] for the

blended regions, which are called masked LPIPS (LPIPSm)

used in previous methods [35, 54]. Kernel Inception Score

(KID) [4] is widely used to quantify the realism of the gener-

ated images regarding the real data distribution. We compute

KID between blended images and the training dataset using

the clean-fid library [61].
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Original Reference Poisson LC StyleGAN3 W StyleMapGAN SDEdit Ours + PB

w
/o

al
ig

n

N/A

w
/

al
ig

n

Method
w/o align (baseline only) w/ 3D-aware align

KID ↓ LPIPSm ↓ mL2 ↓ KID ↓ LPIPSm ↓ mL2 ↓

Poisson Blending [62] 0.006 0.4203 0.0069 0.005 0.2355 0.0051

Latent Composition [8] 0.012 0.4735 0.0388 0.012 0.4487 0.0321

StyleGAN3 W [38] 0.016 0.4379 0.0353 0.017 0.3921 0.0307

StyleGAN3 W+ [38] 0.025 0.4634 0.0462 0.023 0.4086 0.0391

StyleMapGAN (32× 32) [42] 0.007 0.3792 0.0118 0.006 0.1989 0.0045

SDEdit [54] 0.011 0.3857 0.0076 0.008 0.3427 0.0003

Ours 0.013 0.2046 0.0050 0.013 0.2046 0.0050

Ours + Poisson Blending 0.002 0.1883 0.0007 0.002 0.1883 0.0007

Table 1: Comparison with baselines in the CelebA-HQ test set. The first and second rows of the figure show the blending results without

and with our 3D-aware alignment, respectively. Metric scores on the left side of the table show the results without alignment. We apply our

3D-aware alignment to the baselines on the right side of the table. Lower scores denote better performance in all metrics. The best and

second-best scores are bold and underlined. Our method outperforms baselines in all metrics. LC and PB stand for Latent Composition [8]

and Poisson Blending [62], respectively. Note that our method always operates 3D-aware alignment, as it is an integral part of our algorithm.

User study. To further examine the effectiveness of our

3D-aware blending method, we conduct a user study for

photorealism. Our target goal is to edit the original image, so

we exclude baselines that show highly flawed preservation of

the original image. Human evaluates pairwise comparison of

blended images between our method and one of the baselines.

The user selects more real-looking images. We collect 5,000

comparison results via Amazon Mechanical Turk (MTurk).

4.2. Comparison with baselines

Here we compare our method with baselines in two varia-

tions. In the w/o align setting, we do not apply our 3D-aware

alignment to baselines. In the w/ align setting, we align the

reference image with our 3D-aware alignment. This experi-

ment demonstrates the effectiveness of our proposed method.

1) Our alignment method consistently improves all baselines

in all evaluation metrics: KID, LPIPSm, and masked L2. 2)

Our 3D-aware blending method outperforms all baselines,

including those that use our alignment method. We also re-

port the combination of our method and Poisson blending

to achieve better background preservation, as the perfect

inversion is still hard to be achieved in GAN-based methods.

Table 1 shows comparison results in CelebA-HQ. The left

side of the table includes all the baselines without our 3D-

aware alignment. All metrics are worse than the right side of

the table (w/ alignment). This result reveals that alignment

between the original and reference image affects overall

editing performance. Table 2 shows comparison results in

AFHQv2-Cat. It shows the same tendency as Table 1.

Our method performs well regarding all metrics. Com-

bined with Poisson blending, our method outperforms all

baselines. Poisson blending and StyleMapGAN (16 × 16,

32 × 32) show great faithfulness to the input images but

suffer from artifacts. Latent Composition, StyleMapGAN

(8× 8), and StyleGAN3 W produce realistic results but far

from the input images. The identities of the original and ref-

erence images have changed, which is reflected by a worse

LPIPSm and mL2. SDEdit fails to reflect the reference im-

age and shows worse LPIPSm. StyleGAN3 W+ often shows

entirely collapsed images. Our method preserves the identity

of the original image and reflects the reference image well

while producing realistic outputs.

User study. We note that KID has a high correlation with

background preservation. Unfortunately, it fails to capture

the boundary artifacts and foreground image quality, espe-
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Original Reference Poisson StyleGAN3 W StyleGAN3 W+ StyleMap8×8 StyleMap16×16 Ours + PB

w
/o

al
ig

n

N/A

w
/

al
ig

n

Method
w/o align (baseline only) w/ 3D-aware align

KID ↓ LPIPSm ↓ mL2 ↓ KID ↓ LPIPSm ↓ mL2 ↓

Poisson Blending [62] 0.002 0.4956 0.0024 0.002 0.2656 0.0004

StyleGAN3 W [38] 0.006 0.4588 0.0316 0.006 0.3802 0.0268

StyleGAN3 W+ [38] 0.014 0.4941 0.0298 0.013 0.3903 0.0236

StyleMapGAN (8× 8) [42] 0.013 0.4840 0.0574 0.013 0.3221 0.0526

StyleMapGAN (16× 16) [42] 0.006 0.4746 0.0225 0.004 0.2707 0.0160

Ours 0.005 0.2739 0.0073 0.005 0.2739 0.0073

Ours + Poisson Blending 0.002 0.2229 0.0013 0.002 0.2229 0.0013

Table 2: Comparison with baselines in the AFHQv2-Cat test set. Formats of the figure and table are the same as Table 1.

Method
Ours Ours + Poisson Blending

w/o w/ align w/o w/ align

Poisson [62] 79.9% 59.9% 80.9% (+1.0) 67.5% (+7.6)

StyleMap [42] 72.3% 62.0% 75.4% (+3.1) 66.3% (+4.3)

SDEdit [54] 61.0% 55.7% 61.1% (+0.1) 50.2% (-5.5)

Table 3: User study in CelebA-HQ regarding the photorealism

of the blended image. The percentage denotes how often MTurk

workers prefer our method to each baseline in pairwise comparison.

Values larger than 50% mean ours outperforms the baseline. Our

method, both with and without Poisson blending, outperforms all

baselines even if we improve the baselines using our 3D-aware

alignment. Incorporating Poisson blending further enhances the

realism score of our method as shown in green numbers.

Method
Ours Ours + Poisson Blending

w/o w/ align w/o w/ align

Poisson [62] 91.2% 76.2% 87.6% (-3.6) 82.8% (+6.6)

StyleMap [42] 91.0% 82.3% 91.6% (+0.6) 83.6% (+1.3)

Table 4: User study in AFHQv2-Cat regarding the photorealism

of the blended image. All details are the same as in Table 3. Our

approach surpasses all baselines, and the incorporation of Poisson

blending further improves the realism score.

(a) Original (d) Reference (e) Blend(b) Reference (c) Blend

w/ alignw/o align

Figure 6: The effect of our 3D-aware alignment. Aligned refer-

ence images (d) have the same pose as the original images (a). With

our alignment, blending results (e) look more realistic and reflect

the reference well than those without alignment (c).

cially for small foregrounds. To further evaluate the realism

score of results, we conduct a human perception study for our

method and other baselines, which shows great preservation

scores mL2. As shown in Tables 3 and 4, MTurk participants

prefer our method to other baselines regarding the photoreal-

ism of the results. Our method, as well as the combination

of ours with Poisson blending, outperforms the baselines.

SDEdit with our 3D-aware alignment shows a comparable

realism score with ours, but it can not reflect the reference

well, as reflected in worse LPIPSm score in Table 1. Similar

to Tables 1 and 2, Mturk participants prefer baselines with

alignment to their unaligned counterparts.
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Figure 7: Ablation study of Poisson blending (PB) in baselines. Despite combining Poisson blending with the baselines, StyleMapGAN still

generates artifacts, and other baselines fail to preserve the identity of the reference. Our method with Poisson blending keeps the original

image intact while accurately reflecting the reference image.

w/ ℒ!"#$%&' (Ours)

Original ReferenceMesh Mesh

w/o ℒ!"#$%&'

Figure 8: The effect of our density-blending loss. Without the loss,

3D information is not considered, resulting in inaccurate blending

in 3D space. In the bottom left figure, the hair mesh is not properly

reflected without the density-blending loss, resulting in inaccurate

blending and missing fine details.

4.3. Ablation study

3D-aware alignment is an essential part of image blend-

ing. As discussed in Section 4.2, our alignment provides

consistent improvements in all baseline methods. Moreover,

it plays a crucial role in our blending approach. Figure 6

shows the importance of 3D-aware alignment, where the

lack of alignment in the reference images result in degraded

blending results (Figure 6c). Specifically, the woman’s hair

appears blurry, and the size of the cat’s eyes looks different.

Aligned reference images can generate realistic blending

results (Figure 6e) in our 3D-aware blending method.

Density-blending loss gives rich 3D signals in the blend-

ing procedure. Section 3.2 explains how we can exploit vol-

ume density fields in blending. Delicate geometric structures,

such as hair, can not be easily blended without awareness

of 3D information. Figure 8 shows an ablation study of

our density-blending loss. In the bottom left, the hair looks

Original Reference w/ ℒ𝑖𝑚𝑎𝑔𝑒 w/o ℒ𝑖𝑚𝑎𝑔𝑒

Figure 9: Color-geometry disentanglement with our model. We

can adjust the reflection of the reference image’s color by adjusting

the weight λ2 in the image-blending loss. Without image blending

loss on reference, we can focus on object shapes, as shown in the

rightmost column.

blurry in the blended image, and the mesh of the result shows

shorter hair than that in the reference image. In the bottom

right, the well-blended image and corresponding mesh show

that our density-blending loss contributes to capturing the

highly structured object in blending.

Combination with Poisson blending. In Tables 1 and

2, we report the combination of our method and Poisson

blending. It shows Poisson blending further enhances the

performance of our method in all automatic metrics: KID,

mL2, and LPIPSm. In the realism score of human perception,

ours with Poisson blending enhance the score, as shown in

green numbers of Tables 3 and 4. However, combining Pois-

son blending with each baseline does not have meaningful

benefits, as shown in Figure 7. Baselines still show artifacts

or fail to reflect the identity of the reference.
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Figure 10: Multi-view blending results in various datasets:

CelebA-HQ, AFHQv2-Cat, and ShapeNet-Car. Since we optimize

the latent code of the generative NeRF, we can synthesis images of

the blended object in different poses through the generative NeRF.

4.4. Additional advantages of NeRFbased blending

In addition to increasing blending quality, our 3D-aware

method enables additional capacity: color-geometry disen-

tanglement and multi-view consistent blending. As shown in

Figure 9, we can control the influence of color in blending.

The results with Limage have a redder color than the results

without the loss. If we remove or assign a lower weight to the

image-blending loss on reference (λ2 in Eqn. 4), we can re-

flect the geometry of the reference object more than the color.

In contrast, we can reflect colors better if we give a larger

weight to λ2. Note that we always use the image-blending

loss on the original image to preserve it better.

A key component of generative NeRFs is multi-view

consistent generation. After applying the blending proce-

dure described in Section 3.2, we have an optimized latent

code wedit. Generative NeRF can synthesize a novel view

blended image using wedit and a target camera pose. Fig-

ure 10 shows the multi-view consistent blending results in

CelebA-HQ, AFHQv2-Cat, and ShapeNet-Car [11]. In Sec-

tion I in the supplement and the attached website, we provide

more multi-view blending results and videos for EG3D and

StyleSDF [58].

Original MeshInversion Initial (𝐰!"#)

Figure 11: Failure cases of inversion. If an input image has a large

variance in scale relative to the mean face or the estimated pose

from the encoder is not valid, inversion sometimes fails. The first

row shows a failure to reconstruct eyeglasses, and the second row

shows a crushed face of a cat in the reconstructed image and mesh.

5. Discussion and Limitations

Our method exploits the capability of NeRFs to align and

blend images in a 3D-aware manner only with a collection

of 2D images. Our 3D-aware alignment boosts the quality of

existing 2D baselines. 3D-aware blending exceeds improved

2D baselines with our alignment method and shows addi-

tional advantages such as color-geometry disentanglement

and multi-view consistent blending. We hope our approach

paves the road to 3D-aware blending. Recently, 3DGP [69]

presents a 3D-aware GAN, handling non-alignable scenes

captured from arbitrary camera poses in real-world envi-

ronments. Since our approach relies solely on a pre-trained

generator, it can be readily extended to blend unaligned

multi-category datasets such as ImageNet [24].

Despite improvements over existing blending baselines,

our method depends on GAN inversion, which is a bottle-

neck of the overall performance regarding quality and speed.

Figure 11 shows the inversion process can sometimes fail to

accurately reconstruct the input image. We cannot obtain an

acceptable inversion result if an input image is far from the

average face generated from the mean latent code wavg. We

also note the camera pose inferred by our encoder should

not be overly inaccurate. Currently, the problem is being

addressed by combining our method with Poisson blending.

However, more effective solutions may be available with re-

cent advances in 3D GAN inversion techniques [80, 46]. In

the future, to enable real-time editing, we could explore train-

ing an encoder [27, 42] to blend images using our proposed

loss functions.
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