
Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning

Hanjae Kim1 Jiyoung Lee2 Seongheon Park1 Kwanghoon Sohn1,3,*

1Yonsei University 2NAVER AI Lab 3Korea Institute of Science and Technology (KIST)

{incohjk,sam121796,khsohn}@yonsei.ac.kr lee.j@navercorp.com

Abstract

Compositional zero-shot learning (CZSL) aims to recog-
nize unseen compositions with prior knowledge of known
primitives (attribute and object). Previous works for CZSL
often suffer from grasping the contextuality between at-
tribute and object, as well as the discriminability of vi-
sual features, and the long-tailed distribution of real-world
compositional data. We propose a simple and scalable
framework called Composition Transformer (CoT) to ad-
dress these issues. CoT employs object and attribute experts
in distinctive manners to generate representative embed-
dings, using the visual network hierarchically. The object
expert extracts representative object embeddings from the
final layer in a bottom-up manner, while the attribute expert
makes attribute embeddings in a top-down manner with a
proposed object-guided attention module that models con-
textuality explicitly. To remedy biased prediction caused by
imbalanced data distribution, we develop a simple minor-
ity attribute augmentation (MAA) that synthesizes virtual
samples by mixing two images and oversampling minority
attribute classes. Our method achieves SoTA performance
on several benchmarks, including MIT-States, C-GQA, and
VAW-CZSL. We also demonstrate the effectiveness of CoT in
improving visual discrimination and addressing the model
bias from the imbalanced data distribution. The code is
available at https://github.com/HanjaeKim98/
CoT.

1. Introduction

Humans perceive entities as hierarchies of parts; for ex-

ample, we recognize ‘Cute Cat’ by composing the meaning

of ‘Cute’ and ‘Cat’. People can even perceive new con-

cepts by composing the primitive meanings they already
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Figure 1: Visual feature distribution of previous state-of-the-art

approach (OADis) [53] and CoT (Ours). The features are gath-

ered with respect to attribute ‘Blue -’ (Top) and object ‘- Wall’

(Bottom). Notably, the previous method suffers from degraded vi-

sual discrimination such as (‘Blue, Jeans’ vs. ‘Blue, Shirt’), or all

attributes composed into object ‘Wall’.

knew. Such compositionality is a fundamental ability of hu-

mans for all cognition. For this reason, compositional zero-

shot learning (CZSL), recognizing a novel composition of

known components (i.e., object and attribute), has been re-

garded as a crucial problem in the research community.

A naive approach for CZSL is to combine attribute and

object scores estimated from individually trained classi-

fiers [39, 21]. However, it is hard for these independent pre-

dictions to consider the interactions that result from a com-

bination of different primitives, which is contextuality (e.g.

different meaning of ‘Old’ in ‘Old Car’ and ‘Old Cat’) in the

composition [39]. Previous approaches [42, 76, 36, 41, 53,

80] have solved the problem by modeling the compositional

label (text) embedding for each class. They leverage exter-

nal knowledge bases like Glove [37, 47] to extract attribute

and object semantic vectors, and concatenate them with a

few layers into the composition label embedding. The em-

beddings are then aligned with visual features in the shared

embedding space, where the recognition of unseen image
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query becomes the nearest neighbor search problem [36].

Nevertheless, the extent to which contextuality is taken into

account in the visual domain has still been restricted.

Prior works [52, 53] have also pointed out the impor-

tance of discriminability in visual features, which is related

to generalization performance towards unseen composition

recognition [62, 38]. A popular solution is disentangle-

ment [52, 53, 27, 80], in which independent layers are al-

located to extract intermediate visual representations of at-

tribute and object. However, as shown in Fig. 1, it may

be challenging to extract their unique characteristics to un-

derstand the heterogeneous interaction. We carefully argue

that this problem arises from how the visual backbone (e.g.

ResNet18 [16]) is used. This is because attribute and ob-

ject features, which require completely different character-

istics [30, 22], are based on the same visual representation

from the deep layer of the backbone.

Another challenge in CZSL is the long-tailed distribution

of real-world compositional data [2, 63, 3]. Few attribute

classes are dominantly associated with objects, which may

cause a hubness problem [10, 12] among visual features.

The visual features from the head (frequent) composition

become a hub, which aggravates the visual features to be

indistinguishable in the embedding space [12], and induces

a biased prediction towards dominant composition [61, 81].

In this paper, based on the discussions above, we propose

Composition Transformer (CoT) to enlarge the visual dis-

crimination for robust CZSL. Motivated by bottom-up and

top-down attention [31, 32, 28], the COT presents object

and attribute experts, each forming its feature in different

layers of the visual network. Specifically, the object ex-

pert generates a representative object embedding from the

last layer (i.e., bottom-up pathway) that is most robust to

identify object category with high-level semantics [72, 44].

Then we explicitly model contextuality through an object-

guided attention module that explores intermediate layers

of the backbone network and builds attribute-related fea-

tures associated with the object (i.e., top-down pathway).

Based on this module, the attribute expert generates a dis-

tinctive attribute embedding in conjunction with the object

embedding. By utilizing all the features of each layer ex-

hibiting different characteristics, our method comprehen-

sively leverages a visual network to diversify the compo-

nents’ features in the shared embedding space.

Finally, we further develop a simple minority attribute

augmentation (MAA) methodology tailored for CZSL to

address the biased prediction caused by imbalanced data

distribution [61]. Unlike GAN-based augmentations [56,

27] that lead to overwhelming computation during training,

our method simplifies the synthesis process of the virtual

sample by blending two images while oversampling minor-

ity attribute classes [7, 45]. Thanks to the label smooth-

ing effect of the balanced data distribution by augmenta-

tion [79, 59], the COT is well generalized with minimal

computational costs, resolving the bias problem induced by

the majority classes.

Our contributions are summarized in three-folds:

• To enhance visual discrimination and contextuality, we

propose a Composition Transformer (COT). In this

framework, object and attribute experts hierarchically

estimate primitive embeddings by fully utilizing inter-

mediate outputs of the visual network.

• We introduce a simple yet robust MAA that alleviates

dominant prediction on head compositions with major-

ity attributes.

• The remarkable experimental results demonstrate that

our COT and MAA are harmonized to improve the

performance on several CZSL benchmarks, showing

state-of-the-art performance.

2. Related Work
Given a set of objects and their associated attributes,

compositional zero-shot learning (CZSL) aims to recog-

nize unseen compositions using primitive knowledge. Con-

trary to conventional methods [34] that recognize the object

and attribute independently, recent approaches [39, 42, 29]

have regarded contextuality as a crucial standpoint for un-

derstanding the interpretation of the attribute depending on

the object class. For example, AttrOps [42] represented

the attribute as a linear transformation of the object’s state,

and SymNets [29] regularized visual features to satisfy the

group axioms with auxiliary losses. Some works [41, 75]

have leveraged graph networks to model the global depen-

dencies among primitives and their compositions.

However, those methods have often suffered in distin-

guishing visual composition features. Meta-learning [13]

has been utilized for CZSL frameworks [49, 67] to enhance

the discriminative power of visual features but induce high

training costs. Other works [52, 27, 53] have disentan-

gled representations of objects and attributes for modeling

visual composition. Those methods have shown promis-

ing generalization performance than conventional methods.

However, the aforementioned approaches have often failed

to discriminate the minority classes in object and attribute,

which is caused by severe model bias toward seen compo-

sitions [61, 81]. They have used the mostly-shared visual

backbone for attribute and object representations, which

needs more deep concern to be extracted differently accord-

ing to its characteristics. In specific, the attribute feature is

changed in a wide variety of aspects as the property of the

object changes, and the object feature must be perceived as

semantically the same despite changing the attribute.

Our method is also closely related to visual attribute

prediction [46, 26], where the goal is to recognize visual

attributes describing states or properties within an object.
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Figure 2: The overall architecture of composition transformer. Object and attribute experts produce object- and attribute-specific features

at different layers. An object-guided attention module is attached to each attribute experts to highlight attribute-specific features. Object-

attribute embeddings are composed, and then projected to a joint embedding space with label embedding for optimization.

Since the fine-grained local information (e.g. color, shape,

and style) is required to the task, several approaches [55,

60, 20, 58, 48] utilize low-level features in backbone net-

work, which contain textual details and objects’ contour in-

formation [74, 69]. Meanwhile, with a similar motivation,

some methods for CZSL have integrated low-level features

with a multi-scale fusion approach to acquire robust visual

features [70, 75]. Although a simple integrated feature can

recover spatial details slightly, it is hard to localize the RoI

of the attribute that varies with the object for compositional

recognition; for example, a puddle in an object ‘Street’ for

a composition class ‘Wet Street’.

Moreover, attributes in generic objects are long-tailed

distributed in nature [55, 48]. The imbalance issue oc-

curs as a biased recognition problem, because deep net-

works tend to be over-confident in head composition classes

[54, 65]. This phenomenon is also known as a hubness

problem [10, 12], where few visual features from head com-

position classes become indistinguishable from many tail

composition samples. One major solution for the data im-

balance problem is the resampling [15, 57, 14, 35] by flat-

tening the long-tailed dataset by over-sampling of minor-

ity classes or under-sampling of majority classes. However,

directly applying such sampling strategies in CZSL could

intensify the overfitting problem on over-sampled classes,

and discard valuable samples for learning the alignment be-

tween visual and semantic (linguistic) features in the joint

embedding space [81]. Another line of work is generation

methods [68, 66] that hallucinate a new sample from rare

classes but they require complicated training strategies for

data generation. In this work, we are inspired by recent

data augmentation techniques [77, 7, 45, 79, 8], and com-

bine both resampling and generation approaches to tailor

for CZSL, which facilitates the regularization of robust em-

bedding space even in the minority classes via augmented

virtual samples.

3. Composition Transformer (COT)
In compositional zero-shot learning (CZSL), given an

object set O and an attribute set A, object-attribute

pairs comprise a composition set Y=A×O. The net-

work is trained with an observable (seen) composition set

Dtr={Xs,Ys}, where Xs is an image set corresponding to a

composition label set Ys. Following the generalized zero-

shot setting [49, 5, 73], a test set Dte={Xte,Yte} consists

of samples drawn from both seen and unseen composition

classes, i.e. Yte=Ys∪Yu and Ys∩Yu=∅. For this task, a pow-

erful visual network is required to extract distinct features

of objects and attributes respectively, in order to recognize

both seen and unseen compositions well.

To this end, we propose a novel composition transformer

(COT) that includes object and attribute expert modules as

illustrated in Fig. 2. Our COT is basically built on the vision

transformer (i.e. ViT [11]) and fully utilizes intermediate

blocks to capture the attribute and object representations.

These representations are projected into the joint embed-

ding space to calculate the similarity between given com-

positional labels and images. We also introduce a minority

attribute sampling method for data augmentation such that

the biased recognition with head composition class is alle-

viated by label-smoothing regularization effect [40]. Next,

we describe in detail the configurations of COT.

3.1. Object expert

The COT is composed of a sequence of transformer

blocks including multi-head self-attention and MLP layers.

Generally, as the block becomes deeper, class discrimina-

tion capability is increased while being invariant from the

attribute deformation [78, 43]. Therefore, we select the fi-

nal output from the last block to an input of the object expert

in a bottom-up manner [31, 1].

Formally, let us denote {zn}Nn=1 as the output features of

the blocks in COT. The feature of n-th transformer blocks,

zn, consists of a class token (i.e., [CLS]) znc ∈ R
1×D and

a set of patch tokens znp ∈ R
HW×D. The object expert Eo

encodes the last feature to present an object embedding:

po = Eo(z
N
c ), (1)

where Eo consists of a fully-connected (FC) layer. To op-

timize the parameters in the object expert, we compute a
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cross-entropy loss with an object classifier whose weights

are initialized from object word-embeddings as follows:

Lobj = − log
exp{cos(po, w(oi))/τo}∑

ok∈O exp{cos(po, w(ok))/τo} , (2)

where τ is a temperature parameter, w(o) denotes the word-

embedding [47] corresponding to the object o ∈ O.

3.2. Attribute expert

Capturing both attribute and object in the same deeply

condensed feature is nontrivial as they require pretty dif-

ferent visual representations [30, 22]. The straightforward

solution is to design two-stream networks without any pa-

rameter sharing. However, such individual training could

not capture the contextuality [39]. Hence, we build an at-

tribute expert which utilizes semantics estimated from the

object expert as a condition, and extracts attribute-related

features on intermediate layers of visual backbone in a top-

down fashion [31, 1]. We devise an object-guided atten-

tion module that leverages convolution kernel-based atten-

tion [71, 6, 24], which excels at capturing fine-grained local

information required for attribute recognition [18].

Specifically, we first reshape znp to Zn
p with output res-

olution of H×W×D. Following [51], we tile po to match

the spatial dimension with Zn
p and concatenate them to

obtain an object-contextualized feature {Un=[po,Z
n
p ]} ∈

R
H×W×2D. As shown in Fig. 2, we generate a channel

attention map An
c ∈ R

1×1×D from the averaged feature

across the spatial axis:

An
c = σ(conv1×1(avgpoolspatial(U

n))), (3)

where σ denotes a sigmoid function. We also generate a

spatial attention map An
s ∈ R

H×W×1 from the averaged

feature across the channel axis:

An
s = σ(conv3×3(avgpoolchannel(U

n))). (4)

Finally, we aggregate two attention maps into a unified at-

tention map An ∈ R
H×W×D as follows:

An = An
s ×An

c . (5)

The output of our object-guided attention module is defined

as attribute features with estimated attention maps, followed

by the residual connection:

Z̃n
p = Zn

p +An � Zn
p , (6)

where � is an operation for element-wise multiplication.

Given Z̃n
p from each intermediate layer, we ensemble the

features from different blocks by taking advantage of the

hierarchical architecture [33, 43]. It is required for recog-

nizing heterogeneous types of attributes such as colors or

shapes [48]. Especially, we choose low-, middle-, and high-

level features from the backbone, denoted as {Z̃l
p, Z̃

m
p , Z̃h

p},

and ensemble those triplets with global average pooling

(GAP) followed by concatenation. The attribute expert Ea

then generates an attribute embedding with the triplets as

pa = Ea([GAP(Z̃
l
p),GAP(Z̃

m
p ),GAP(Z̃h

p)]), (7)

where Ea consist of a FC layer. Similar to the object expert,

we optimize the attribute expert with the cross-entropy loss:

Latt = − log
exp{cos(pa, w(ai))/τa}∑

ak∈A exp{cos(pa, w(ak))/τa} . (8)

3.3. Mapping visual-semantic space

The visual compositional embedding px of the input im-

age x is calculated from object and attribute experts, formu-

lated as

px = Ec([po,pa])). (9)

The embedding function Ec includes an FC layer, project-

ing the visual features into the joint embedding space that

aligns visual and semantic representations. Following pre-

vious works [42, 36], we estimate semantic label embed-

ding py of each seen composition label y ∈ Ys by project-

ing the concatenated word vectors into the joint space:

sy = g([w(o), w(a)]), (10)

where g(·) is a label embedding network that consists of

3 FC layers and ReLU activation function. During training,

we minimize the cosine distance of visual and semantic em-

beddings with cross-entropy loss as follows:

Lcomp = − log
exp{cos(px, sy)/τc}∑

yk∈Ys
exp{cos(px, syk

))/τc} , (11)

where τc is a temperature parameter for the composition

loss Lcomp. Finally, the total objectives of COT is then for-

mulated as follows:

Ltotal = Lcomp + αLatt + βLobj, (12)

where α and β are balance weights.

During inference, we measure the cosine similarity be-

tween a visual embeddings and all label embeddings from

Yte and regard it as a feasibility score of the image and com-

position labels [36]. Following [80], we also use the clas-

sification scores from object and attribute experts as a form

of cosine similarity. Therefore, a final feasibility score of

label y = (a, o) is derived by adding the above three scores,

formulated as:

c(y) = cos(px, sy) + cos(po, w(o)) + cos(pa, w(a)),
(13)

where we predict the label with the highest score as the final

composition label.
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Figure 3: Attribute class distributions on VAW-CZSL. Every at-

tributes in each plot are composed into a fixed object; (a) Grass

and (b) Player.

3.4. Minority attribute augmentation

With a carefully designed architecture, our COT can gen-

erate distinctive visual features for CZSL. Nevertheless, the

imbalanced composition samples in the training dataset re-

strict the performance since attributes often co-occur with

certain objects in the real world [30]. For example in Fig.

3, ‘Green Grass’ is naturally more common than ‘White

Grass’. Such long-tailed data makes the deep models be

over-confident in the composition with head attributes [81],

and thus hurts the generalization on unseen compositions.

To this end, we present a minority attribute augmentation

(MAA) for training, which diversifies the minority compo-

sition. First, two compositional embeddings from COT are

selected as inputs to the augmentation, where pxA
and pxB

share the same object class. Especially, to balance the ma-

jor and minor attributes, we assign higher sampling weights

on minority attributes with the weighted sampler [14]. For-

mally, let ζoi denote the number of attribute samples in the

i-th attribute class composed on an object class o. The sam-

pling weight of the attribute-object pair κ(ai, o) is formu-

lated by an inverse attribute class frequency according to:

κ(ai, o) =
1/ζoi∑
i 1/ζoi

. (14)

Inspired by Mixup [79, 64], we generate a virtual sample

pxM
with alpha compositing and its attribute semantic em-

bedding w(aM ) by linear combination:

pxM
= λpxA

+ (1− λ)pxB
,

w(aM ) = λw(aA) + (1− λ)w(aB). (15)

The mixing factor λ is sampled from a uniform distribution.

We notice that there are two significant differences from

Mixup: (1) Compared to Mixup sampling arbitrary im-

ages, MAA constructs a composition pair fastening an ob-

ject with the minority aware sampling to address the imbal-

anced data issue in CZSL. (2) Mixup mixes one-hot vector

labels [79, 77] for classification, while MAA generates a

virtual label in word vector space, to jointly regularize vi-

sual and linguistic (label) embedding functions against the

majority attribute classes with Eq. (12).

3.5. Extension to other backbones

Our idea of COT is generic and scalable, so we can sim-

ply extend to other backbones such as ResNet-18 (R18) [16]

by selecting specific layers from the backbone composed of

multiple layers or blocks. For a fair comparison to prior

arts [41, 53, 23], we study the impact of our contribution on

the ResNet backbone based on the convolutional operation.

In specific, the object expert generates the object embedding

from the last fifth convolution block. The classification to-

ken is replaced by a global average pooled feature. Similar

to using ViT [11], we concatenate the intermediate layers

into a feature vector for the attribute expert. The remained

settings such as the architecture of Ecomp and g(·) are the

same as ViT.

4. Experiments
4.1. Experimental setup

Datasets. MIT-States [19] dataset is a common dataset in

CZSL that most previous methods adopted, containing 115

states , 245 object, and 1962 compositions. C-GQA [41]

and VAW-CZSL [53] are two brand-new and large-scale

benchmarks collected from in-the-wild images with more

general compositions, such as ‘Stained Wall’ and ‘Hazy

Mountain’. Detailed data statistics including long-tailed

distribution can be found in Appendix A.

Metrics. We follow common CZSL setting [49], testing

performance on both seen and unseen pairs [5]. Under the

setting, we report area under the curve (AUC) (%) between

seen and unseen accuracies at different bias term in vali-

dation and test splits. We also compute the best seen and

unseen accuracies in the curve, and calculate the best har-

monic mean to measure the trade-off between the two val-

ues. Lastly, we follow [41] and report the attribute and ob-

ject accuracies on unseen labels to measure the discrimina-

tion power of each representation.

Baselines. We compare our COT with 9 recent CZSL ap-

proaches: AoP [42], LE+ [39], TMN [49], Symnet [29],

CompCos [36], CGE [41], SCEN [27], OADis [53],

CAPE [23]. All baselines were built on pretrained ResNet-

18 (R18) [16], with pre-trained word embedding such as

GloVe [47], FastText [4], and Word2Vec [37]. To show

the contribution of our proposed elements, we carry on

the most recent methods including CGE and OADis with

a transformer-based backbone (ViT-B) [11]. We also clar-

ify that CGE and OADis utilize the knowledge of un-

seen composition labels at training for building a relation

graph and hallucinating virtual samples respectively, while

other methods do not assess the unseen composition label

sets. The results of other baselines were obtained from

[41, 27, 23, 53] or re-implemented from their official code.
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Methods Backbone
MIT-States C-GQA VAW-CZSL

V@1 T@1 HM S U V@1 T@1 HM S U V@3 T@3 HM S U

With frozen R18
AoP [42] R18 2.5 2.0 10.7 16.6 18.4 0.9 0.3 2.9 11.8 3.9 1.4 1.4 9.1 16.4 11.7

LE+ [39] R18 3.5 2.3 11.5 16.2 21.2 1.2 0.6 5.3 16.1 5.0 1.5 1.6 9.8 16.2 13.2

TMN [49] R18 3.3 2.6 11.8 22.7 17.1 2.2 1.1 7.7 21.6 6.3 2.2 2.3 11.9 19.9 15.4

Symnet [29] R18 4.5 3.4 13.8 24.8 20.0 3.3 1.8 9.8 25.2 9.2 2.3 2.3 12.2 19.1 15.8

CompCos [36] R18 6.9 4.8 16.9 26.9 24.5 3.5 2.6 12.1 28.1 11.8 3.1 3.2 14.2 23.9 18.0

CGE* [41] R18 7.2 5.3 18.1 28.9 25.0 3.6 2.5 11.9 27.5 11.7 2.7 2.9 13.0 23.4 16.8

SCEN [27] R18 7.2 5.3 18.4 29.9 25.2 4.0 2.9 12.4 28.9 12.1 - - - - -

OADis* [53] R18 7.6 5.9 18.9 31.1 25.6 - - - - - 3.5 3.6 15.2 24.9 18.7

CAPE [23] R18 - 5.8 19.1 30.5 26.2 - 4.2 16.3 32.9 15.6 - - - - -

COT R18 7.7 6.2 19.6 30.8 26.8 4.9 4.5 16.6 33.1 16.6 3.6 3.8 15.7 24.6 19.1

With frozen ViT-B
CGE* [41] ViT-B 8.7 7.3 21.3 33.5 28.6 4.5 3.8 15.6 31.3 14.4 3.7 3.9 15.7 26.3 19.7

OADis* [53] ViT-B 9.0 7.5 21.9 34.2 29.3 5.9 4.6 16.2 32.5 15.3 4.1 4.3 16.6 26.9 20.8

COT ViT-B 9.2 7.8 23.2 34.8 31.5 6.7 5.1 17.5 34.0 18.8 4.4 4.7 17.7 26.9 22.2

With finetuning ViT-B
CGE* [41] ViT-B 11.4 9.7 24.8 39.7 31.6 7.3 5.4 18.5 38.0 17.1 5.9 6.2 20.1 30.1 25.7

OADis* [53] ViT-B 11.8 10.1 25.2 39.2 32.1 8.1 7.0 20.1 38.3 19.8 6.2 6.5 20.4 31.3 26.1

COT ViT-B 12.1 10.5 25.8 39.5 33.0 8.7 7.4 22.1 39.2 22.7 6.6 7.2 21.7 32.9 28.2

Table 1: Quantitative comparison with prior arts. Following [41, 53], we measure AUC values on validation (V) and test (T) datasets, at

top-1 (@1) on C-GQA and top-3 (@3) on VAW-CZSL, respectively. In addition, we report harmonic mean (HM), seen (S), unseen (US),

attribute (A), and object (O) accuracies. ∗ denotes the models accessing unseen composition labels at training. The best result and the

second best result are boldfaced and underlined, respectively.

4.2. Implementation details

Models. We use ViT-B [11] and ResNet18 [16] pre-trained

on ImageNet [9] as a visual backbone. In ViT-B backbone,

Each patch size is 16 × 16, and the number of patch to-

kens in each layer is 14 × 14, having 768 channels per to-

ken. The label embedding network g is composed of 3 FC

layers, two dropout layers with ReLU activation functions,

where hidden dimensions are 900. We use one FC layer for

Eo and Ea to produce 300-dimensional prototypical vectors

that are matched with GloVe [47] embedding vectors from

composition labels. Therefore, both Ec and g(·) produce

300-dimensional embedding vectors, with l2 normalization.

In the attribute expert, we use the outputs of the 3rd, 6th and

9th blocks (denoted zl, zm, zh respectively) for multi-level

feature fusion. For ResNet18, we use the 2nd, 3rd and 4th

blocks as zl, zm, zh, resulting in a 438-dimensional feature

vector.

Training setup. We train COT with Adam optimizer [25].

The input images are augmented with random crop and hor-

izontal flip, and finally resized into 224×224. In ViT, learn-

ing rate is initialized to 1e-4 for all three datasets, and de-

cayed by a factor of 0.1 for 10 epochs. In R18, the initial

learning rate is 5e-5 with the same decay parameter of the

ViT setting. Note that we freeze the GloVe [47] word em-

bedding w for fair comparisons. For all datasets, we use

the same temperature parameters [36, 53, 27] of each cross-

entropy loss, τc, τo, and τa as 0.05, 0.01 and 0.01 respec-

Methods
MIT-States C-GQA VAW-CZSL

Attr. Obj. Attr. Obj. Attr. Obj.

CGE [41] 35.7 44.4 17.5 34.6 24.5 51.6

OADis [53] 35.2 45.2 14.7 42.0 22.3 53.8

COT 37.3 46.0 19.8 40.2 27.3 54.2

Table 2: Comparison of unseen attribute (Attr.) and object (Obj.)

occuracies with the latest CZSL methods [41, 53]. All results are

reported on fine-tuned ViT backbone.

tively. We use the loss balance weights α and β as (0.5, 0.5)

on C-GQA, and (0.4, 0.6) on VAW-CZSL and MIT-States.

We note that to prevent overfitting of COT we apply MAA

from 15 and 30 epochs to ViT and R18, respectively.

4.3. Main evaluation

Table 1 compares generalization performance between

our methods and the baselines with ResNet18 [16] (R18)

and ViT-B [11] backbone setting. To further compare visual

discrimination, we also compare unseen attribute and object

accuracies of our methods and the latest CZSL methods [41,

53] in Table 2. In the following, we analyze the results from

the three datasets.

MIT-States. From Table 1, the COT achieves the best

AUC values (V@1 and H@1) and harmonic mean (HM)

with both R18 and ViT backbone. These results sufficiently

demonstrate our experts’ applicability on the CNN-based
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CoT MAA AUC HM

5.81 18.1

� 6.05 19.0

� 6.93 20.8

� � 7.20 21.7

(a) Component analysis.

Loss component AUC HM

Lcomp 5.94 18.9

Lcomp+Lobj 6.22 19.6

Lcomp+Lattr 6.91 21.4

Lcomp+Lattr+Lobj 7.20 21.7

(b) Impact of loss functions.

Augmentation AUC HM

Manifold Mixup [64] 5.93 18.8

CutMix [77] 6.95 20.7

Mixup [79] 7.04 21.0

MAA 7.20 21.7

(c) Impact of data augmentation.

Guidance AUC HM S U A O

w/o guidance 6.7 20.5 30.7 25.8 22.5 53.4

Attribute guidance 6.9 21.0 31.5 26.4 25.7 53.9

Object guidance 7.2 21.7 32.9 28.2 27.3 54.2

(d) Impact of object guidance.

Ensemble zl zm zh AUC HM S U A O

Low 2 3 4 6.6 20.7 30.3 28.7 25.8 52.3

Mid 5 6 7 6.9 21.2 31.9 29.7 25.2 55.9
High 9 10 11 6.8 21.4 33.4 26.6 24.1 54.5

Mixture 3 6 9 7.2 21.7 32.9 28.2 27.3 54.2

(e) Different configurations of intermediate blocks in attribute experts.

Table 3: Ablation experiments on VAW-CZSL dataset. Note that all results are reported on COT (ViT-B), with a fine-tuning setting.

backbone. With a finetuned ViT-B, the COT obtains the

best validation AUC of 12.1% and test AUC of 10.5%, sur-

passing previous CZSL methods with a large margin. Our

method also improves attribute (Attr.) and object (Obj.) ac-

curacies as in Table 2, showing the effectiveness of COT for

visual discrimination.

C-GQA. Similar trends can be observed in the C-GQA

dataset. In the frozen R18 setting, the COT achieves the

best test AUC (T@1) of 4.5%, comparable with previous

state-of-the-art CAPE. Although the T@1 scroes from CGE

and OADis are also increased upon replacing the back-

bone from R18 to ViT-B, our COT with ViT-B outperforms

OADis with larger margins in all metrics, as compared to

the performance with R18. It is noticeable that our pro-

posed augmentation technique contributes the unbiased pre-

diction, improving unseen accuracies into 18.8% with a

minority-aware sampling. The performance regarding AUC

is improved with end-to-end training with backbone, 2.0%
in V@1 and 2.3% in T@1. Of note, OADis and CGE ac-

cess unseen composition labels at training, so it is unfair to

directly compare with other methods including COT. Nev-

ertheless, more surprisingly, our COT shows comparable

and superior performance to OADis. Finally, in Table 2,

our model also improves the attribute accuracy by achiev-

ing 19.8%, having comparable 40.2% object accuracy com-

pared to OADis and CGE.

VAW-CZSL. We also achieve SoTA performance on VAW-

CZSL, the most challenging benchmark having almost 10K

composition labels for evaluation. Even if we do not use

additional unseen composition information like OADis, our

method achieves the highest T@1 of 7.2% with the best

unseen label accuracy of 28.2%. We also obtain both the

highest attribute and object score (Table 2), especially with

a significant improvement in attribute prediction by 2.8%
compared to CGE. It proves that the careful modeling of the

visual network in COT is essential to substantially improve

the generalization capability. In addition, the results sug-

gest that finetuning the visual backbone to suit composition

recognition improves the performance in all benchmarks.

4.4. Ablation study

We ablate our CoT and MAA with different design

choices on Table 3. We use the VAW-CZSL dataset and

fine-tuned ViT-B backbone as our main ablation setting.

Component analysis. We report ablation results of COT

and MAA in Table 3a. In ‘without CoT’ case, we use

CompCos [36] baseline. CoT boosts the AUC and HM

significantly about 1.1% and 2.3% compared to the base-

line. MAA offers better results to both COT and baseline,

showing scalability to other methods. Notably, employing

MAA on CoT gives higher gains of 0.3% AUC and 2.3%
HM compared to the baseline, demonstrating that the two

components create a synergy effect.

Impact of loss functions. Table 3b shows the impact of

each loss function. Compared to the case using Lcomp only,

Lobj and Lattr bring a gain on both AUC and HM. Using

both loses to Lcomp improves AUC and HM significantly by

1.26% and 2.8% respectively, showing the importance of

object and attribute losses to learn each expert.

Different data augmentations. In Table 3c, we compare

MAA with various data mixing methodologies including

Manifold Mixup [64], CutMix [77] and Mixup [79]. To

apply Manifold Mixup in COT, we select 3,6,9 and the last

layer as a mixup layer, and mix these intermediate features.

MAA achieves the highest score on both AUC and HM, out-

performing other augmentation methods including standard

Mixup. This demonstrates the effectiveness of MAA which

balances the data distribution with a composition pair. Inter-

estingly, we found that Manifold Mixup performs at worst,

even degrading pure CoT performance (AUC: 6.93, HM:

20.4) in Table 3a. We speculate that the mixed representa-

tion at intermediate layers can lead to significant underfit-
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Figure 4: Distribution of k-occurrence counts with k=20 of C-

GQA and VAW-CZSL test set. All results are reported with ViT-

B backbone. x-axis stands for composition class ids which are

ordered by decreasing count numbers. For better visualization, we

show the top 10% head composition classes where the hubness

is predominant. Circles at start points indicate the most frequent

hubs. The result on MIT-States is in the Appendix C.1.

ting of the attention module.

Impact of object guidance. As shown in Table 3d, the

object guidance significantly boosts the performance. We

found that reversing the guidance (attribute guidance) de-

creases the performance of AUC by 0.3% and HM by 0.7%.

The results validate the usage of object guidance for contex-

tualized attribute prediction.

Design choice of feature emsemble. Table 3e shows

the ablations with different configurations of intermediate

blocks used in the attribute expert. We evaluate four types

of block feature ensembles: low, mid, high, and mixture.

Among them, the mixture type achieves the best perfor-

mance on AUC, harmonic mean, and attribute accuracy. We

therefore choose this mixture ensemble as a default setting.

Another finding is low-level feature is more adequate for

attribute and unseen composition recognition, while high-

level feature is robust to object and seen composition accu-

racy.

4.5. Discussion

Mitigating hubness problem. We illustrate the hubness

effect of a baseline [36] and our method on C-GQA and

VAW-CZSL datasets in Fig. 4. Concretely, we count k-

occurrences (Nk), the number of times that a sample ap-

pears in the k nearest neighbors of other points [50] for all

class ids, and calculate the skewness of Nk distribution for

hubness measurement. We observe that CoT significantly

alleviates the hubness problem of baseline across datasets,

enlarging the visual discrimination in the embedding space.

MAA further reduces the skewness of the distribution by

mitigating biased prediction on head composition classes.

Object-guided attention visualization. Qualitatively, we

visualize attention maps from the object-guided attention

module in Fig. 5. We observe that the attention module

could capture the contextualized meaning of attributes in

composition, e.g., wet skin of horse vs. puddle in street. It

Figure 5: Visualization of object-guided attention on VAW-CZSL

dataset. Each row represents the attended regions in image pairs,

which are related to different attributes contextualized with a spe-

cific object. More results in the Appendix C.5.
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Figure 6: Ground-truth composition labels and top-3 prediction

results on MIT-States, C-GQA and VAW-CZSL datasets. More

results in the Appendix C.6.

validates that the attention module assists COT to extract

distinctive attribute embedding for composition by localiz-

ing specific RoI.

Qualitative results. Fig. 6 illustrates the qualitative results

of COT. Even though some predictions do not correspond to

annotated image labels, they explain the composition in an-

other view; e.g., ‘Furry Dog’ and ‘Shaggy Dog’ in Fig. 6 (i).

Moreover, in-the-wild images usually have multiple objects

with their own attributes; e.g., ‘White Wall’ and ‘Reading

Man’ in Fig. 6 (h). To recognize such compositions in the

real world, it is necessary to handle the multi-label nature of

composition, while distinguishing each attribute-object in-

teraction [17] in an image. It encourages us to construct a

new CZSL benchmark along with a novel evaluation metric

handling both multi-label prediction and multiple composi-

tions in the image. We leave it as a future work.
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5. Conclusion
In this paper, we propose Composition Transformer

(CoT) with simple minority attribute augmentation (MAA),

a contextual, discriminative, and unbiased CZSL frame-

work. The proposed object and attribute experts hierarchi-

cally utilize the entire powerful visual backbone to gen-

erate a composition embedding. The simple but effective

MAA balances the long-tail distributed composition labels.

Extensive studies with comprehensive analysis demonstrate

the effectiveness of each component, and show that CoT

surpasses existing methods across several benchmarks.
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