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Figure 1. From raw 3D scans of the “source human” in casual clothing with additional outwear or objects (left), our method automatically
decomposes objects from the source human and builds a compositional generative model that enables 3D avatar creations of novel human
identities with variety of outwear and objects (right) in an unsupervised manner.

Abstract

Deep generative models have been recently extended
to synthesizing 3D digital humans. However, previous ap-
proaches treat clothed humans as a single chunk of geometry
without considering the compositionality of clothing and
accessories. As a result, individual items cannot be naturally
composed into novel identities, leading to limited expres-
siveness and controllability of generative 3D avatars. While
several methods attempt to address this by leveraging syn-
thetic data, the interaction between humans and objects
is not authentic due to the domain gap, and manual asset
creation is difficult to scale for a wide variety of objects.
In this work, we present a novel framework for learning
a compositional generative model of humans and objects
(backpacks, coats, scarves, and more) from real-world 3D
scans. Our compositional model is interaction-aware, mean-
ing the spatial relationship between humans and objects, and
the mutual shape change by physical contact is fully incor-
porated. The key challenge is that, since humans and objects

are in contact, their 3D scans are merged into a single piece.
To decompose them without manual annotations, we propose
to leverage two sets of 3D scans of a single person with and
without objects. Our approach learns to decompose objects
and naturally compose them back into a generative human
model in an unsupervised manner. Despite our simple setup
requiring only the capture of a single subject with objects,
our experiments demonstrate the strong generalization of
our model by enabling the natural composition of objects
to diverse identities in various poses and the composition
of multiple objects, which is unseen in training data. The
project page is available at https://taeksuu.github.io/ncho.

1. Introduction

Generative modeling of 3D humans from real-world data
has shown promise to represent and synthesize diverse hu-
man shapes, poses, and motions. Especially, the ability to
create realistic humans with diverse clothing and accessories
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(e.g., backpacks, scarves, and hats) is indispensable for a
myriad of applications including AR/VR, entertainment, and
virtual try-on. The early work [4, 28, 36, 50, 71] has demon-
strated success in modeling “undressed” human bodies from
real-world scans. More recently, the research community
has been increasingly focused on the generative modeling of
clothed humans [13, 16, 38], to better represent humans in
everyday life.

Recent advancements in shape representations such as
Neural Fields [69] mitigate the need for pre-defining topol-
ogy or template of clothing, enabling to build animatable
clothed humans from raw 3D scans [14, 56]. Along with its
advantage in strong expressive power for avatar modeling,
this approach also allows the models to learn faithful physi-
cal interactions between objects and humans. However, since
raw 3D scans do not provide a clear separation of different
components, existing approaches typically treat human bod-
ies, clothing, and accessories as an entangled block of geom-
etry [13]. In this paper, we argue that this leads to suboptimal
expressiveness and composability of the generative avatars.
Many applications require more intuitive control to add, re-
place, or modify objects while maintaining human identity.
To make avatars explicitly compositable with objects, several
works propose to leverage synthetic data [6, 16, 27]. How-
ever, the manual creation of 3D assets remains a challenge
and is extremely difficult to scale. Moreover, the physical
interaction of bodies, clothing, and accessories in synthetic
data tends to be less faithful due to the domain gap.

In contrast to prior methods, our goal is to build a com-
positional generative model of objects and humans from
real-world observations. The core challenge lies in the dif-
ficulty of learning the composition and decomposition of
objects in contact from raw 3D scans. Capturing objects in
isolation does not lead to faithful composition due to the
lack of realistic deformations induced by physical contact.
Thus, while it is essential to collect 3D scan data on objects
and humans in contact, the joint scanning of humans with
objects only provides an entangled block of 3D geometry as
mentioned, and accurately segmenting different components
requires non-trivial 3D annotation efforts.

Upon these challenges, our contributions are: scalable
data capture protocol, unsupervised decomposition of objects
and humans, and generalizable neural object composition.
Scalable Data Capture. Capturing multiple identities with
various poses and objects requires prohibitively large time
and storage. To overcome this issue, we propose to collect
human-object interactions with diverse poses only from a
single subject, referred to as the ”source human”. To enable
decomposition of objects, we also capture the same person
without any objects, where the deviation between two sets
defines “objects” in our setup. Examples are shown in Fig. 2.
This capture protocol offers sufficient diversity in poses and
object types within a reasonable capture time.

Unsupervised Decomposition of Objects. To separate ob-
jects from the source human, we leverage the expressiveness
of the generative human model based on implicit surface rep-
resentation [13]. We train a human module without objects,
and then jointly optimize the latent codes of the avatar and a
generative model for objects to best explain the 3D scans of
the person with objects. While the human module accounts
for state differences in pose and clothing, the object-only
module learns to synthesize the residual geometry as an ob-
ject layer in an unsupervised manner. Notably, objects in
our work are defined as residual geometry that cannot be
explained by the trained human-only module.
Neural Object Composition. While the unsupervised de-
composition successfully separates objects from the source
human, we observe that naively composing it to novel identi-
ties from other datasets [52, 75] leads to undesired artifacts
and misalignment in the contact regions. To address this, we
propose a neural composition method by introducing another
composition MLP that takes latent features from both human
and object modules to make a final shape prediction. Due to
the local nature of MLPs, our approach plausibly composes
objects to novel identities without retraining as in Fig. 1.

Our experiments show that our compositional generative
model is superior to existing approaches without explicit
disentanglement of objects and humans [13]. In addition, we
show that our model can be used for fine-grained controls
including object removal from 3D scans and multiple object
compositions on a human, demonstrating the utility and
expressiveness of our approach beyond our training data.

2. Related Work
3D Human Models. Representing plausible 3D human bod-
ies while handling diverse variations in shapes and poses is a
long-standing problem. Due to the challenge in modeling di-
verse shape variation, the early work [4,28,36,50,71] mainly
focuses on the undressed 3D human body by learning mesh-
based statistical models deformed from a template mesh.
To model dressed 3D humans, follow-up work [1, 2, 37]
adds 3D offsets on top of the parametric undressed human
body models to represent clothing. Yet, the topological con-
straints and the resolution of the template model restrict
these methods from modeling arbitrary shapes of clothing
with high-frequency details. Recently emerging deep im-
plicit shape representation [15, 39, 42, 49] provides a break-
through in expressing 3D humans by leveraging neural net-
works for representing continuous 3D shape space, where
its efficacy is demonstrated in reconstructing clothed hu-
mans with high-fidelity from images [54, 55, 70]. There also
has been an actively growing field to represent animatable
3D human avatars using 3D scans, depth maps, or point-
clouds [13, 14, 17, 19, 25, 40, 41, 56, 62, 65]. However, prior
3D human models have paid little attention to the joint mod-
eling of humans and objects in close contact.
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2D/3D Generative Models Generative models intend to
express the plausible variations over the latent space, which
can be used to create diverse realistic samples. There have
been extensive studies in 2D generative modeling to create
realistic photos [29–31] via generative adversarial networks
(GANs) [21, 22], variational autoencoders (VAEs) [33], and
more recently, diffusion models [18, 24, 53, 60]. Generative
3D modeling has also been actively explored. By leveraging
the availability of a large-scale 3D object scans [12], many
approaches present generative models for 3D objects [11,
15, 39, 44, 45, 49, 57]. Relatively few approaches have been
presented for generative 3D human modeling, due to the
lack of available diverse 3D datasets for people [3, 13, 16,
37, 71]. We show that our scalable data capture protocol and
compositional generative model enable the synthesis of 3D
humans with diverse objects in novel poses.

Compositional Models. Compositional generative models
via neural networks have been explored to represent different
components as independent models, representing a whole
scene by compositing them together. These approaches pur-
sue controlling or sampling one component without affecting
the rest. The early approaches focus on building such mod-
els in 2D for creating realistic 2D images via generative
models [5, 35, 63, 77]. More recent approaches explore the
compositional reasoning for 3D [9, 34, 45, 47, 66, 67, 73, 74].
Most approaches in this direction aim at synthesizing realis-
tic novel views by compositing NeRFs [42] for 3D objects
and scenes [45, 67, 73] and for human faces [9, 45, 72]. How-
ever, these approaches do not consider mutual shape defor-
mations between objects. Human bodies are also treated as a
composition of multiple body parts. These approaches attain
final composition output by either max-pooling the outputs
of individual components [17,40] or by using another neural
network [3,7,46,61]. While a recent work shows interaction-
aware 3D composition reasoning is possible for faces and
eyeglasses with extensive annotations and data preprocess-
ing [34], our approach supports diverse object categories
without requiring any manual annotations.

Garment Modeling. Due to the deformable nature of gar-
ments, capturing and modeling 3D clothing is challenging.
Only a few 3D garment datasets have been presented [6, 76],
where laborious segmentation and post-processing are re-
quired to separate the garments from dummies or human
bodies. While most methods reconstruct a clothed 3D hu-
man as a single chunk of geometry [54, 55, 70], there exist
methods reconstructing the 3D clothing as a separate layer
on top of parametric mesh model (e.g., SMPL) using seg-
mentation [20] or synthetic 3D assets [16, 27]. Virtual try-
on has also been actively explored in graphics via physics
simulation [68] and or synthetic data [64]. In contrast, our
approach learns a generative clothing and accessory model
from real-world observations in an unsupervised fashion.

Figure 2. Examples of Our Datasets. Top row: sample scans of
Ssh. Bottom row: sample scans of Ssh+o.

3. Preliminaries
Data Acquisition. To model humans and objects in con-
tact, we capture two sets of datasets, Ssh and Ssh+o. Ssh

consists of 3D scans of a single identity, denoted as “source
human” with various poses. Ssh+o consists of 3D scans of
the source human with a variety of objects or additional out-
wear as shown in Fig. 2. In this work, we choose coats, vests,
backpacks, scarves, and hats to demonstrate the generality
of our approach for outwear and everyday accessories. To
support the generative modeling of objects, we capture mul-
tiple objects in each category. In addition to Ssh and Ssh+o,
we also use another 3D human dataset [75] to train a target
generative human model for composition, denoted Sth.

We collect 3D scans, Ssh and Ssh+o, with a capture sys-
tem of 8 synchronized and calibrated Azure Kinects (see
supp. mat. for details). We apply KinectFusion [43] to fuse
the depth maps, and then reconstruct watertight meshes with
screened-poisson surface reconstruction [32]. We also detect
2D keypoints using OpenPose [10] and apply the multi-view
extension of SMPLify [8] to obtain SMPL parameters [36]
for each scan.

Generative Articulated Models. We adopt the generative
human model [13] which extends forward skinning with root
finding [14] for cross-identity modeling. We briefly discuss
the framework and highlight our key modifications. The key
idea in gDNA [13] is to represent occupancy fields condi-
tioned by identity-specific latent codes z in a canonical space,
and transform them into a posed space using forward linear
blend skinning (LBS). The occupancy fields of a person in
the canonical space can be represented as follows:

o = O(xc, G(z)), (1)
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Figure 3. Overview. From captured scans of the source human with and without objects, our method successfully decomposes objects from
humans without any supervision, allowing a generative model to learn the shapes of various objects. These objects are then added to novel
identities via neural composition, resulting in the creation of diverse human avatars with controllable objects.

where G(·) is a spatially varying feature generator taking
the latent code. While the original work [13] uses 3D feature
voxels for the output of G, we use a tri-plane feature represen-
tation [11], which achieves better performance with higher
memory efficiency. The generated feature map is conditioned
on the latent code z via adaptive instance normalization [26].

To query the occupancy of a point xd in a posed space,
we transform the canonical coordinate xc as follows:

xd =

nb∑
i=1

Wi(N(xc, β), z) ·Bi(β, θ) · xc, (2)

where nb is the number of bones, Wi is the skinning weight
of bone i, predicted from the identity conditioned skinning
network W , and N is the warping network for neutraliz-
ing the body size variation given SMPL shape parameters
β ∈ R10. Bi(β, θ) is the transformation of bone i in SMPL
model given β and pose θ ∈ R24×3. To jointly learn the
occupancy and deformation networks, we solve for xc in
Eq. 2 given xd using iterative root finding [14]. We also
discard the surface normal prediction networks used in [13].
Instead of hallucinating details via adversarial learning, we
model detailed geometry by jointly representing shapes as
SDF together with the occupancy fields as in [58]. As we can
directly supervise SDF on surface normals [23], we model
detailed geometry as true surface. However, we find that
directly replacing the occupancy with SDF leads to unstable
training. To mitigate instability, we propose a hybrid model-
ing of occupancy and SDF, and disable the backpropagation
of gradients from SDF to the deformation networks so that
it is only supervised by the occupancy head. See supp. mat.
for details.

4. Method
Fig. 3 shows an overview of our pipeline. Our goal is to

decompose and compose generative objects on target humans
from raw 3D scans. To this end, we introduce a generative
human module and an object module.

The Human Module Mh = (Gh, Oh, Dh) represents the
human part and it is composed of a feature generator Gh,
a decoder Oh, and deformation networks Dh = (Wh, Nh).
As an output, Mh produces an occupancy value oh, SDF
dh, and a feature vector fh, which is the intermediate latent
feature before the last layer, in the canonical space:

(oh, dh, fh) = Oh(x
c, Gh(zh)), (3)

where zh is a learnable latent code for the human part. Note
that the hybrid modeling of occupancy and SDF is applied
only to the human module as our unsupervised decomposi-
tion losses require occupancy. We leave extending the hybrid
model to the remaining modules for future work.

The Object Module Mo = (Go, Oo) is responsible for
modeling the geometry of the object part. Because the object
module and the human module share the same canonical
space, the object module does not require separate defor-
mation networks. Mo returns an occupancy value oo, and
a feature vector fo, which is the intermediate latent feature
before the last layer, in the canonical space:

(oo, fo) = Oo(x
c, Go(zo)), (4)

where zo is a learnable latent code for the object part.

4.1. Neural Object Composition

While compositing the occupancy of the human and ob-
ject modules in a closed-form [17,40] is possible, we observe
that this leads to misalignment in the contact regions and
floating artifacts. To address these issues, we introduce a
neural composition module parameterized by MLPs.

The composition module Mcomp = (Ocomp, Dcomp) is
used to integrate humans and objects in the canonical space.
We directly feed the feature vectors fh and fo from the human
module and object module respectively as inputs. Mcomp

outputs the final occupancy value ocomp, after composition
in the canonical space:

ocomp = Ocomp(x
c, fh, fo) (5)
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Figure 4. Model. Given latent code zh, Mh predicts the occupancy
fields and SDFs for humans in canonical space. Similarly, with
latent code zo, Mo predicts the occupancy fields for objects. The
features fh and fo from each network are passed to Mcomp to
predict the occupancy fields for final compositional outputs of
humans and objects in the same canonical space.

Similar to the human module, the deformation networks
Dcomp = (Wcomp, Ncomp) provide the mapping from the
canonical space to the posed space. The entire model is
illustrated in Fig. 4.

4.2. Unsupervised Object Decomposition

To achieve the decomposition of object layers from raw
3D scans in an unsupervised manner, our key idea is to rep-
resent objects as the residual of human geometry. To this
end, we first train the human module Mh using Ssh with
the learnable shape code zsh for each scan. This allows the
human module to account for slight shape variations of the
source human. In the next step, using Ssh+o, we jointly op-
timize the per-scan latent code zsh together with the object
module Mo while freezing Mh. Given the composed oc-
cupancy ocomp in Eq. 5 and the predicted occupancy of the
human module oh, the target occupancy of the object module
can be computed as

(1− oh) · ocomp. (6)

This formulation encourages the object module to exclu-
sively model the residual geometry, which the human mod-
ule is not able to represent, enabling disentangled control
over humans and objects. Moreover, it simultaneously encap-
sulates the spatial information between humans and objects,
allowing the model to be interaction-aware.

We jointly optimize the neural composition module and
the object module Mo in an end-to-end manner using the
loss functions discussed in Sec. 4.3.

4.3. Training

Our system is trained using Sth, Ssh and Ssh+o with
their SMPL shape and pose parameters. Following the auto-

decoding framework of [49], we jointly optimize the latent
code z assigned for each scan along with the network weights
during training. Every scan in each dataset is assigned its
own latent code, denoted zth ∈ RLth for scans in Sth, zsh ∈
RLsh for scans in Ssh and zo ∈ RLo for scans in Ssh+o.
Note that all latent codes except zo are initialized with zero.
For zo, we use one-hot encoding for each object category
using the first 5 bits to enable random sampling from a
specific category and initialize the remaining bits with zero.
We denote the human module for generating target human
shapes, Mth, and the human module for modeling shapes
of the source human, Msh.

Training consists of three stages: We first train Mth and
zth with Sth which consists 3D scans of general humans.
This is to leverage the wide variation of shapes and poses of
samples in Sth for training the multi-subject forward skin-
ning module, Dth. For later stages, Dth is used to initialize
other deformation networks with its warping network Nth

frozen, to let all samples share the same canonical space.
Next, we train Msh and zsh with Ssh which consists 3D
scans of the source human without any object. For the last
stage, using all the samples, we train Mo, Mcomp, zsh, and
zo with the pre-trained Mth, Msh and zth frozen. Note that
zsh for the last stage are re-initialized as the mean of zsh
after the second stage, denoted zsh.

Mcomp models all training samples using the feature
vector from either Mth or Msh for the human part, and
from Mo for the object part. In the case of Sth and Ssh

where scans are with no objects, we introduce a new latent
code zemp as an input to Mo for no objects. See supp. mat.
for the detailed training procedure.
Losses: For the first stage, we use losses following [13]. We
use the binary cross entropy loss Lth between the predicted
occupancy of Mth and the ground truth occupancy. Note
that Od(·) and F d(·) denote the occupancy field and SDF
in posed space, respectively. We also use guidance losses
Lbone, Ljoint and Lwarp to aid training. Lbone encourages
the occupancy of xbone to be one, where xbone are randomly
selected points along the SMPL bones in canonical space.
Ljoint encourages the skinning weights of SMPL joints to
be 0.5 for connected two bones and 0 for all other bones.
Lwarp encourages deformation network N to change body
size consistently, by enforcing vertices of a fitted SMPL
to warp to vertices of the mean SMPL shape, achieved by
having shape parameter β as zero. Lastly, we use Lreg th to
regularize the latent code zth to be close to zero.

Lth = BCE((Od
th(x

c, Gth(zth)), ogt) (7)
Lbone = BCE((Oth(xbone, Gth(zth)), 1) (8)

Ljoint = ∥W (xjoint, zth)−wgt∥ (9)
Lwarp = ∥N(v(β), β)− v(β0)∥ (10)

Lreg th = ∥zth∥ (11)
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For training the SDF network, we use L1 loss Lsdf be-
tween the predicted and the ground truth signed distance and
L2 loss Lnml between the gradients of SDF and the ground
truth normals of points on the surface. We additionally use
Ligr for SDF to satisfy the Eikonal equation [23] and Lbbox

to prevent SDF values of off-surface points from being the
zero-level surface as in [59].

Lsdf = |F d
th(x

c, Gth(zth))− dgt| (12)

Lnml = ∥∇F d
th(x

c, Gth(zth))− ngt∥ (13)

Ligr = (∥∇Fth(x
c, Gth(zth))∥ − 1)2 (14)

Lbbox = exp(−α · |Fth(x
c, Gth(zth))|), α ≫ 1 (15)

For the second stage, we use the binary cross entropy
loss Lsh between the predicted occupancy of Msh and the
ground truth occupancy, and Lreg sh to regularize the latent
code zsh to be close to zero. Since we initialize Dsh with
pre-trained Dth, additional guidance losses are not required.

Lsh = BCE((Od
sh(x

c, Gsh(zsh)), ogt) (16)
Lreg sh = ∥zsh∥ (17)

For the last stage, we use the binary cross entropy loss
Lcomp between the predicted occupancy of Mcomp and the
ground truth occupancy. We also use Lo between the pre-
dicted occupancy of Mo and the residual part of Ssh+o

where Mh cannot explain. Moreover, we optimize zsh by
using the binary cross entropy loss Lfit between the out-
put of Msh and the ground truth occupancy. Finally, we
regularize zsh to be close to zsh and zo to be close to zero.

Lcomp = BCE((Od
comp(x

c, fh, fo), ogt) (18)

Lo = BCE((Oo(x
c, Go(zo)), (1− oh) · ocomp) (19)

Lfit = BCE((Od
sh(x

c, Gsh(zsh)), ogt) (20)
Lreg sh = ∥zsh − zsh∥ (21)

Lreg o = ∥zo∥ (22)

5. Experiments
We evaluate our generative composition model across

various scenarios. We first demonstrate the quality of the
random 3D avatar creations from our model and the disen-
tangled natures of human and object controls. Quantitative
and qualitative comparisons against the previous SOTA [13]
are performed, incorporating a user study via CloudResearch
Connect. We also conduct ablation studies to validate our
design choices.

5.1. Dataset

Our 3D Scans: As described in Sec. 3, we use our multi-
Kinect system to capture the source human with and without

Figure 5. Random Generation. Top row: randomly sampled out-
puts of the human module before composition. Bottom row: com-
position outputs of target humans on top with specific objects.

objects, Ssh (180 samples) and Ssh+o (342 samples). For
Ssh+o, we consider 4 categories of objects: 5 backpacks (77
samples in total), 6 outwear (94 samples), 8 scarves (89 sam-
ples), and 6 hats (82 samples). We run quantitative evaluation
by focusing on backpacks as other objects such as outwear
are already incorporated in Sth. We use another set with 300
samples of the source human with backpacks only, denoted
as Ssh+bp. To build a testing set for FID computation in this
quantitative evaluation, we further capture 343 samples of 3
different unseen identities who wear unseen backpacks. We
denote this test dataset, Sunseen+bp.
THuman2.0 [75]: THuman2.01 provides high-quality 3D
dataset for dressed humans. We use 526 samples for Sth.

5.2. Qualitative Evaluation

We demonstrate the expressive power and controllability
of our composition model via inferences in various scenarios
by controlling latent codes for humans zh and object zo.
Random Generation. The 3D avatars created by attaching
specific object latent codes zo to random sampled human
codes zh are shown in Fig. 5 (bottom). The outputs of the
human module Mh are also shown on the top of Fig. 5 for
reference. Our model enables the creation of diverse 3D
avatars with controllable objects.
Disentangled Controls over Human and Objects. To fur-
ther test the disentangled nature of our composition model,
we create 3D humans with objects by changing either hu-
man latent code or object latent code, as shown in Fig. 6.
The examples on the top vary the human part by keeping
the same object code that represents a scarf. On the bottom
examples, we vary object codes for a fixed identity shown
on the leftmost side. These results show the core advantage
of our composition model in individual controls.

1The THuman2.0 dataset was downloaded, accessed, and used in this re-
search exclusively at SNU.
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Figure 6. Disentangled Human and Object. Top row: composition
outputs of the same object (a scarf), added to different human
identities. Bottom row: composition outputs of different objects
added to the single human identity shown in the leftmost column.

Figure 7. Interpolation. Top row: human module interpolation.
Bottom row: object module interpolation. Notice that interpolating
one module doesn’t deteriorate the geometry of the other.

Target
Human

Scarf, 
Backpack

Scarf,
Coat

Backpack,
Coat All All

(Back)

Figure 8. Composition of Multiple Objects. Two or more objects
are added to the leftmost human. Note that our train data contain
no scans of the source human with multiple objects.

Interpolation. Fig. 7 demonstrates smooth interpolation of
each module without deteriorating the other module.
Composition of Multiple Objects. Fig. 8 shows that our
system allows the composition of multiple objects. To add

Method FID User Preference

gDNA (w/ object) 41.71 43.6%
Arith. gDNA (w/ object) 73.81 13.6%
Ours (Naive composition) 55.29 22.4%
Ours 51.03 100% - (above)

Table 1. Quantitative evaluation of the importance of compositional
modeling. User preference score reflects the frequency with which
participants of our perceptual study favored each method over ours.
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Figure 9. Qualitative Comparison on Compositional Modeling.
Compared to our method, baselines suffer from generating outputs
of diverse humans with complete objects.

multiple objects, we use the latent code of each object and
get the occupancy and the feature vector of objects. Using the
normalized occupancy of multiple objects as weights, we cal-
culate the weighted sum of feature vectors. The aggregated
feature is then fed to the composition module along with the
human feature to get the final composition output. Note that
our dataset has no such sample with multiple objects.

5.3. Comparison with SOTA

Since our method is the first generative model for com-
positing humans and objects, there is no direct competitor,
and comparison with the previous non-compositional model
such as gDNA is non-trivial. To make the assessment pos-
sible at our best, we consider a specific scenario where a
user wants to create samples with a specific object category,
being the backpack here. To provide such controllability on
gDNA, we first extend the gDNA model with our dataset.
Note that, in this evaluation, we use the same dataset Sth,
Ssh, Ssh+bp for training both our model and gDNA.
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Extending gDNA for Composition. We train gDNA model
using the public code with our datasets. Both human-only
outputs and the ones with a backpack can be sampled from
the trained model. To intentionally generate outputs with
a backpack, we search the latent codes associated with the
training samples with backpacks and fit a gaussian from
which we can perform a sampling. We denote this baseline
method as ‘gDNA (w/ object)’.

The second possible extension of gDNA is based on the
arithmetic operation among gDNA’s latent codes, which is
widely used for GAN-based image manipulation [51]. We
found that gDNA’s original framework allows some level
of composition by adding or subtracting the latent codes.
Specifically, we choose a latent code z∗sh for the source
human without a backpack and another latent code z∗sh+bp

for the source human with the backpack. We simply take their
subtraction zbp = z∗sh+bp − z∗sh, which can be considered
as a residual for the backpack. We found that composition
can be performed by adding this residual to another human’s
latent code, that is zbp+zth. We denote this baseline method
as ‘Arith. gDNA (w/ object)’.
Qualitative Comparison with User Study. The visual com-
parison between ours and the extended gDNAs is shown in
Fig. 9. In the first row, we show random samples generated
from ‘gDNA (w/ object)’. Since the human scans with the
backpack are only of the source human’s (other samples
from Sth do not have any backpack), the generated outputs
lack shape variety for the human part, producing always the
source human’s identity. In the second row of Fig. 9, back-
packs are added to novel identities; however, the method
suffers from lack of details on both humans and objects. In
contrast, the outputs of our method shown in the last row
show strong generalization by creating diverse human identi-
ties with naturally attached detailed objects.

To further validate this comparison, we perform a user test
(A/B test) on CloudResearch Connect. We render samples
from three viewpoints (same views for all) and show ours
with each baseline (A/B examples) in a random order to
each subject. Each subject answers 5 questions per baseline
by choosing more authentic 3D human samples. The data
was collected from 50 subjects. The results are shown in the
“User Preference” column in Tab. 1. As shown, our methods
are preferred over extended gDNA baselines. Moreover, to
confirm the diversity of identities in our method and ‘gDNA
(w/ object)’, 50 subjects were shown the rendering of the
source human and were asked to choose samples that don’t
resemble the source human. Samples of our method were
chosen by 92.4%, indicating that ‘gDNA (w/ object)’ suffers
to generate novel identities with a backpack.
Quantiative Evaluation via FID. To evaluate the genera-
tion quality of our method, we compare Fréchet Inception
Distance (FID) between the 2D normal renderings of the
test dataset Sunseen+bp and the generated outputs, follow-

Method Pred-to-Scan↓ Scan-to-Pred↓

gDNA 0.0162 0.0190
gDNA(w/ object) 0.0218 0.0112
Ours 0.0116 0.0099

Table 2. Fitting accuracy comparison with the SOTA method [13].

Target OursgDNA gDNA
(w/ object)

Ours
(Object Removed)

Figure 10. Fitting and Object Removal. Compared to baselines,
our method successfully explains both human shapes and object
shapes, enabling the natural removal of objects after fitting.

ing [13]. The result is shown in Tab. 1. ‘gDNA (w/ object)’
has a relatively better score than ours, due to the fact that it
only samples 3D humans around Ssh+bp, which are always
close to the GT samples. A more fair comparison is between
ours and ‘Arith. gDNA (w/ object)’, where both approaches
try to attach the backpack to novel identities. Our method
significantly outperforms this baseline.

Performance on Fitting. We evaluate the expressiveness
of our model by fitting it to unseen scans with objects. As
a baseline, we consider gDNA [13] as it demonstrates bet-
ter fitting results on 3D clothed human scans over other
SOTA methods [16, 48]. Besides the original gDNA trained
with Sth, we also consider gDNA trained with Sth, Ssh and
Ssh+bp (‘gDNA (w/ object)’) to enable fitting of the object
part. We use scans with backpacks from Renderpeople2 [52]
and captured dataset Sunseen+bp for fitting comparison.

As shown in Tab. 2, our method reports better fitting
accuracy than the baselines. Our method effectively fits the
geometry of both humans and objects while baselines only
reconstruct either the human part or the object part as shown
in Fig. 10. Moreover, since our method separately models
humans and objects, it enables the high-quality removal of
objects after fitting.

2RenderPeople was downloaded, accessed, and used in this research exclu-
sively at SNU.
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Figure 11. Composition Comparison. While naive composition
suffers from severe artifacts, neural composition reduces these
artifacts and produces high-quality outputs.

Method Chamfer↓ P2S↓ Normal↓
Occ 0.0140 0.0169 0.0092
Occ & SDF 0.0098 0.0128 0.0074

Table 3. Reconstruction accuracy comparison between the original
gDNA and gDNA trained with additional SDF loss terms.

5.4. Ablation Study

Neural Composition. Our system provides two ways of ex-
tracting the final composition output. One is by using ocomp:
neural composition, and the other is by using the maximum
value between oh and oo of queried points: naive composi-
tion. We verify the necessity of using neural composition
in order to generate high-quality outputs of humans with
objects. Compared to naive composition, neural composition
remarkably reduces the artifacts induced by the imperfect
fitting of the source human, resulting in lower FID values
(Tab. 1). Qualitative comparison is presented in Fig. 11.

Hybrid Modeling of Occupancy and SDF. We verify the
significance of predicting both occupancy and SDF over pre-
dicting only occupancy to generate outputs with higher fre-
quency details. For each method, we reconstruct the ground
truth data used for training with assigned latent codes. We
then compute the Chamfer distance and point-to-surface dis-
tance (P2S) between the ground truth and the reconstruction
output. We also render 2D normal maps from fixed views
and compute the L2 error (Normal). As demonstrated in Tab.
3, reconstruction outputs are improved when both occupancy
and SDF are predicted. In Fig. 12 we show the qualitative
comparison between samples generated via each method.
See supp. mat. for further experimental results.

Generated outputs when trained with occupancy only

Generated outputs when trained with occupancy and SDF

Figure 12. Qualitative Comparison on Introducing SDF Net-
work in the Human Module. Top row: Generated outputs when
trained with occupancy only. Bottom row: Generated outputs when
trained with the hybrid modeling of occupancy and SDF. Addition-
ally predicting the SDF improves the details of generated outputs.

6. Discussion

We present a novel framework for learning a composi-
tional generative model of humans and objects (backpacks,
coats, scarves, and more). Our compositional generative
model provides separate controllability for the human part
and object part. To train our compositional model without
manual annotation for the object geometries, we propose
to leverage 3D scans of a single person with and without
objects. Our results show that the learned generative model
for the object part can be authentically transferred to novel
human identities.

Limitations and Future Work. While our approach is gen-
eral and supports diverse objects, decomposing thin layers of
clothing in an unsupervised manner remains a challenge due
to the limited precision of 3D scans and inherent limitations
of the SDF representation. Furthermore, it is important to
note that our method is also subject to the quality of gDNA,
where the upper limit of the quality achievable in our com-
position output is constrained by the quality limitations of
gDNA. Extending our approach towards better quality out-
puts with textures, or to model compositions of humans and
objects from RGB images would be an exciting research
direction for future work.
Acknowledgements: The work of H. Joo and T. Kim was supported by SNU
Creative-Pioneering Researchers Program, NRF grant funded by the Korea
government (MSIT) (No. 2022R1A2C2092724), and IITP grant funded by
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