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Figure 1. Our PODIA-3D successfully adapts 3D generators across significant domain gaps, producing excellent text-image cor-
respondence and 3D shapes, while the baselines fail. See the supplementary videos at gwang-kim.github.io/podia_3d.

Abstract

Recently, significant advancements have been made in
3D generative models, however training these models across
diverse domains is challenging and requires an huge amount
of training data and knowledge of pose distribution. Text-
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guided domain adaptation methods have allowed the gener-
ator to be adapted to the target domains using text prompts,
thereby obviating the need for assembling numerous data.
Recently, DATID-3D presents impressive quality of sam-
ples in text-guided domain, preserving diversity in text by
leveraging text-to-image diffusion. However, adapting 3D
generators to domains with significant domain gaps from
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the source domain still remains challenging due to issues
in current text-to-image diffusion models as following: 1)
shape-pose trade-off in diffusion-based translation, 2) pose
bias, and 3) instance bias in the target domain, resulting in
inferior 3D shapes, low text-image correspondence, and low
intra-domain diversity in the generated samples. To address
these issues, we propose a novel pipeline called PODIA-3D,
which uses pose-preserved text-to-image diffusion-based do-
main adaptation for 3D generative models. We construct
a pose-preserved text-to-image diffusion model that allows
the use of extremely high-level noise for significant domain
changes. We also propose specialized-to-general sampling
strategies to improve the details of the generated samples.
Moreover, to overcome the instance bias, we introduce a
text-guided debiasing method that improves intra-domain
diversity. Consequently, our method successfully adapts 3D
generators across significant domain gaps. Our qualitative
results and user study demonstrate that our approach outper-
forms existing 3D text-guided domain adaptation methods
in terms of text-image correspondence, realism, diversity of
rendered images, and sense of depth of 3D shapes in the
generated samples.

1. Introduction
Recently, 3D generative models [20, 37, 8, 11, 23, 24,

40, 38, 5, 23, 25, 33, 10, 39, 4, 1] have been advanced to
enable multi-view consistent and explicitly pose-controlled
image synthesis. However, training state-of-the-art 3D gen-
erative models is challenging due to the requirement of a
large number of images and knowledge about their camera
pose distribution. This prerequisite has resulted in limited
applications of these models to only a few domains.

Text-guided domain adaptation methods such as
StyleGAN-NADA [9], HyperDomainNet [2], DATID-
3D [18], and StyleGANFusion [35] have emerged as a
promising solution to overcome the challenge of need for
additional data of the target domain. These methods leverage
CLIP [27] or text-to-image diffusion models [31, 28, 32] that
are pretrained on a large number of image-text pairs.

Although non-adversarial fine-tuning methods like
StyleGAN-NADA [9], HyperDomainNet [2], and Style-
GANFusion [35] have demonstrated impressive results,
they suffer from the inherent loss of diversity in a text
prompt and suboptimal text-image correspondence, as il-
lustrated in Fig. 1 (See results of StyleGAN-NADA*). Re-
cently, a diversity-preserved domain adaptation method
called DATID-3D [18] has been developed for 3D generators,
which achieves compelling quality of multi-view consistent
image synthesis in text-guided domains. This method gener-
ates pose-aware target dataset using text-to-image diffusion
models and fine-tunes the 3D generator on the target dataset.

Despite the use of this method, the adaptation of 3D gen-
erators to domains that have significant domain gaps from

the source domain remains challenging due to the problems
encountered in the current text-to-image diffusion models.
1) shape-pose trade-off in diffusion-based translation: For
text-guided pose-aware target generation, we first perturb
the source image or latent xsrc

0 until tr ∈ [1, T ] such that
xtrg
0 generated from xsrc

tr should represent the features cor-
responding the target domains without altering pose of xsrc

0 .
However, our investigations show that when the target do-
main requires selecting a high tr to achieve a significant
structural change, preserving the pose is not guaranteed, as
depicted in Fig. 2(a). Consequently, shifting the generator
to a target domain that requires significant shape changes
can lead to poor 3D shapes or low text correspondence, as
illustrated in Fig. 1 (See SpongeBob by DATID-3D [18]). 2)
We found that a publicly available text-to-image diffusion
model, has pose bias issues for certain target domain text
prompts, as illustrated in Fig. 2(b). Pose bias represents
that the position and orientation of certain objects in images
from T2I diffusion models are biased (mainly toward the
front or side). Accordingly, the shifted generators guided
by these text prompts result in either poor 3D structure as
represented in Fig. 1 (See Horse by DATID-3D [18]). 3)
We also found that the text-to-image diffusion models often
generate images with one or a few instances among many in-
stances representing the text prompts as represented in Fig. 2.
In consequence, the shifted generators guided by these text
prompts result in low intra-domain diversity as represented
in Fig. 1. (See Dog by DATID-3D [18]).

To address these issues, we propose a novel pipeline
called PODIA-3D, a method of POse-preserved text-to-
image DIffusion-based domain Adaptation for 3D generative
model. We construct pose-preserved text-to-image diffusion
models. We first collect target images that have the same
pose but different shapes with source images through 3 strate-
gies: identity mixing, text-guided image translation with
pose-guaranteed prompts, utilizing the different domain gen-
erator. Then, we fine-tune the depth-guided diffusion model
to make it ignore the shape information from the depth map
and focus only on pose information. Furthermore, we pro-
pose a specialized-to-general sampling strategy to improve
details of generated images and resolve the detail bias issue.
Using pose-preserved diffusion models and specialized-to-
general sampling, we are able to synthesize pose-consistent
target images with excellent text-image correspondence by
using extremely high-level noise for large shape change. We
then fine-tune the state-of-the-art 3D generator adversari-
ally on the generated target images. Moreover, to improve
intra-domain diversity, we propose a text-guided debiasing
method, which enables the fine-tuned generator to reach the
diverse modes. As a result, our method effectively adapts 3D
generators across significant domain gaps, generating excel-
lent text-image correspondence and 3D shapes, as shown in
Fig. 1. Our approach has been demonstrated to outperform
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Figure 2. Issues in pose-aware target generation for domain adaption of 3D generative models using current text-to-image
diffusion models: (a) a shape-pose trade-off in diffusion-based translation, (b) pose bias, and (c) instance bias in the target
domain.

existing 3D text-guided domain adaptation methods in terms
of text-image correspondence, realism, diversity of rendered
images, and sense of depth of 3D shapes in the generated
samples via the qualitative results and user study.

2. Related Works
2.1. 3D generative models

Recent advancements in 3D generative models [20, 37, 8,
11, 23, 24, 40, 38, 5, 23, 25, 33, 10, 39, 4, 1] have enabled
multi-view consistent and explicitly pose-controlled image
synthesis. Notably, EG3D [4], which uses StyleGAN2 [17]
generator, in conjunction with neural rendering [22], suc-
ceeds in producing high resolution multi-view consistent
images in real-time as well as highly detailed 3D shapes.
However, training modern 3D generative models is more
challenging than training 2D generative models, as it requires
a significant number of images and detailed information on
the camera parameter distribution for those images.

To expand the usability of state-of-the-art 3D generative
models to a wider range of domains, including those with sig-
nificant domain gaps, we introduce PODIA-3D, an approach
that employs text-guided adaptation methods for 3D gen-
erators using pose-preserved diffusion models to enhance
image-text correspondence, 3D shapes, and intra-domain
diversity.

2.2. Text-to-image diffusion models

Diffusion models have demonstrated great success in the
fields of image generation [12, 34, 36, 13, 7] and image-
text multimodal applications [31, 28, 32, 19, 3]. In recent
years, text-to-image diffusion models trained on large-scale
image-text datasets [31, 28, 32] have exhibited remarkable
performance in generating diverse 2D images from a single
text prompt. One variant of text-to-image diffusion models
referred to as depth-guided diffusion models [31], employs
depth maps as a conditioning input throughout the generative
process to synthesize images that correspond to the provided

depth map.
In this work, we propose the pose-preserved text-to-image

diffusion model to generate faithful pose-consistent target
images to adapt the 3D generator to text-guided domains
with large domain gaps.

2.3. Text-guided domain adaptation

Domain adaptation methods guided by textual prompts
have been developed for 2D generative models, providing a
promising solution to the challenge of acquiring additional
data for the target domain. These methods utilize CLIP [27]
or text-to-image diffusion models [31, 28, 32] pretrained on
a large number of image-text pairs, allowing for text-driven
domain adaptation. StyleGAN-NADA [9] and HyperDo-
mainNet [2] fine-tune pretrained StyleGAN2 [17] models to
shift the domain towards a target domain, utilizing a simple
textual prompt guided by CLIP [27] loss. StyleGANFu-
sion [35] adopts SDS loss [26] as guidance of text-guided
adaptation of 2D and 3D generators using text-to-image dif-
fusion models. Although these non-adversarial fine-tuning
methods have demonstrated impressive results, they suffer
from the inherent loss of diversity in a text prompt and subop-
timal text-image correspondence. DATID-3D [18] achieves
impressive quality in multi-view consistent image synthesis
for text-guided domains by generating diverse pose-aware
target dataset using text-to-image diffusion models and fine-
tuning the 3D generator on the target dataset while preserv-
ing diversity in the text. However, adapting 3D generators
to domains with significant domain gaps from the source
domain using existing methods remains challenging. This
is because these models suffer from several issues, such as
a shape-pose trade-off in diffusion-based translation, pose
bias, and instance bias in the target domain. As a result,
the generated samples often exhibit inferior 3D shapes, low
text-image correspondence, and low intra-domain diversity.

To mitigate these issues, we propose PODIA-3D, a novel
method of pose-preserved text-to-image diffusion-based do-
main adaptation for the 3D generative models.
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Figure 3. Overview of PODIA-3D. (a) We prepare data for training pose-preserved diffusion models (PPD) and (b) fine-tune
the depth-guided diffusion models on the collected data. (c) We use a specialized-to-general sampling strategies to generate
high quality pose-aware target images. (d) Finally, we fine-tune the state-of-the-art 3D generator on them adversarially.

Figure 4. Our text-guided debiasing method includes obtain-
ing a set of subclass texts, and then generating a pose-aware
target dataset for each subclass text. We combine these
datasets to construct a debiased target dataset.

3. PODIA-3D

We begin by constructing a text-to-image diffusion model
that preserves the pose of the source images while generating
target images, as shown in Fig. 3(a)(b). We then propose a
specialized sampling strategy to enhance the pose-preserved
diffusion and improve image details, as demonstrated in
Fig. 3(c). Using this approach, we perform pose-preserved
diffusion-driven text-guided domain adaptation in two steps:
1) generating a pose-aware target dataset and 2) fine-tuning
the 3D generator using adversarial training, as depicted in
Fig. 3(d). Furthermore, to address the instance bias observed
in certain text prompts, we introduce a text-guided debiasing
method, as illustrated in Fig. 4, to improve intra-domain
diversity.

3.1. Pose-preserved text-to-image diffusion models

We aim to synthesize target images that have faithful
pose-consistency, high diversity, and excellent text-image
correspondence. To achieve this, we initially consider us-
ing the depth-guided diffusion model (DGD) [31], which
generates images conditioned on both depth maps and text
prompts, thus producing images consistent with the given
depth maps. However, as shown in Fig. 8, we observed
that the strong shape constraints imposed by the depth maps
can result in low diversity and poor text-image correspon-
dence, particularly for text prompts that require significant
shape changes. To overcome this issue while retaining the
benefits of DGD, we develop pose-preserved text-to-image
diffusion models (PPD) by fine-tuning DGD to focus only
on pose information and ignore shape information during
image generation.

Preparation of training data for PPD. We prepare train-
ing data DPPD = {(dsrc

i , qtrg
i , ytrg)}NPPD

i=1 for training PPD,
which consists of a source depth map dsrc

i , target diffusion
latent qtrg

i = EV (xtrg
i ) from target image xtrg

i encoded by
VQGAN encoder EV , and target text prompt ytrg following
the process illustrated in Fig. 3(a). We start by generating
N src source images xsrc = Gθ(z, c) with random latent vec-
tors z and camera parameters c given the pretrained source
3D generator Gθ, which in our case is the EG3D [4] model
trained on 5122 FFHQ [16] images. Next, we obtain the
source depth maps dsrc using a pretrained depth estimation
model. To collect the set of target images xtrg with the
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Figure 5. Qualitative comparison with existing text-guided domain adaptation methods with a star (*) indicating their 3D
extensions. Our method allows to adapt the 3D generative models to domains with huge domain gap, presenting excellent
text-image correspondence and 3D shape.

same pose as the source images but different shapes, we
employ the following three strategies: 1) Identity mixing:
We generate images by feeding the same camera parameters
c with the source images into G but with different latent
vectors z. The prompts for ytrg are chosen to represent the
source domain. 2) Text-guided image-to-image translation
(T-I2I) [21] with pose-guaranteed prompts yp-guar: We use
the pretrained text-to-image model (Stable diffusion [31]) to
perform T-I2I on the identity-mixed images for each prompt
with guaranteed pose consistency and excellent text-image
correspondence, based on our observation. We carefully

select the text prompts to avoid overlapping visual features,
mitigating bias issues. 3) Using a different domain gener-
ator: To achieve further large shape changes, we use the
generator trained for a different domain. Specifically, we
use the EG3D [4] model pretrained on AFHQ-cat [15, 6]
dataset, which is transferred from the FFHQ EG3D model.
We generate images to have the same pose as the source
images with this model and also use the translated images
using T-I2I.
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Figure 6. Our method succeeds in text-guided adaption to the wide range of domains while other baselines show the results
with low text-image correspondence. For extended results, see the supplementary Fig. S2 and S3.

Fine-tuning objective for PPD. We fine-tune the copy of
pretrained DGD ϵPPD

ϕ on DPPD using following objective:

E(dsrc,qtrg,ytrg)∈DPPD,ϵ,t[∥ϵ− ϵPPD
ϕ (qtrg

t , ytrg,dsrc, t)∥22],

where ϵ ∼ N (0, 1), t ∼ U([1, T ]).

3.2. Specialized-to-general sampling

Although PPD trained on augmented data can generate
images with corresponding pose and shape to the depth map
and text prompt, we discovered the presence of style and
detail biases that are inherent in the training data. To address
this issue and enhance details, we propose specialized-to-
general sampling strategies that leverage the pose-consistent
generation capability of the PPD model and the general-
ization capability of text-to-image diffusion models as pre-
sented in Fig. 3(c). During the first ηT period, where
η ∈ [0, 1] is a PPD ratio and T is the number of total diffu-
sion steps, we use the PPD model to generate large struc-
tural components and pose information. For the remaining
(1− η)T period, we utilize Stable diffusion [31], the general
text-to-image diffusion model, to generate small structures
or details in the images.

3.3. Adapting 3D generator to broader domains

As illustrated in Fig. 3(d), we translate the source image
xsrc to yield the target image xtda guided by a text prompt ytda

using PPD and specialized-to-general sampling, constructing
the pose-aware target dataset Dtda(ytda) = {(ci,xtda

i )}Ni=1 .
Then, we fine-tune 3D generator adversarially using the loss
composed of ADA loss LADA [14] and density regularization
loss Lden, following EG3D [4] and DATID-3D [18].

PPD and specialized-to-general sampling not only enable
us to produce pose-consistent target images, but also im-
prove their text-image correspondence by leveraging the full
expressiveness of the text-to-image diffusion model through
the use of extremely high return steps. This approach enables
us to adapt 3D generators to domains with significant domain
gaps without the need for time-consuming CLIP- and pose
reconstruction-based filtering processes in DATID-3D [18],
making the pipeline more efficient and simplified.

3.4. Text-guided debiasing

We observe that text-to-image diffusion models often
suffer from an instance bias issue where only a few instances
representing the text prompts are generated in the images.
However, when we specify subclasses (e.g. breeds of dog)
of the objects represented by the text prompt, the images of
the instance are synthesized well. Based on this observation,
we propose a text-guided debiasing method to improve intra-
domain diversity, as depicted in Fig. 4.

To debias the target domain X tda represented by the text
ytda in terms of attribute A, we first obtain a set {ytda,A

i }N sub

i=1
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Figure 7. Our text-guided debiasing method improves intra-
domain diversity of the results of text-guided domain adap-
tation.

of N sub subclass texts ytda,A
i from various sources such as

books, web search, or AI-powered chatbots like ChatGPT.
We can ask ChatGPT "Tell me the list of Breeds of Dogs."
when X tda = Dog and A = Breed. Then, we generate
pose-aware target dataset D(ytda,A

i ) for each subclass text.
Finally, combining these dataset, we can construct the debi-
ased dataset Ddeb(ytda,A) = {D(ytda,A

i )}N sub

i=1 .

4. Experiments

We demonstrate the effectiveness of our approach by
applying it to a range of diverse domains with significant
domain gaps using state-of-the-art 3D generators, EG3D [4].
For the experiments, we employ a Stable diffusion and its
variants, depth-guided diffusion [31]. We use MiDaS [29,
30] as our depth map estimation model. To fine-tune the
3D generators, 1,000 target images per text prompt are used.
We set η = 0.4 as default. In case of text-guided debiased
dataset, we use 300 images per subclass text. For more
detailed information about the setup of experiments, see the
supplementary Section C and D.

Table 1. User study results on text-image correspondence,
realism and diversity of rendered images from adapted gen-
erators.

Rendered 2D images Text-Corr.↑ Realism↑ Diversity↑

StyleGAN-NADA∗ 3.267 2.571 2.719
HyperDomainNet∗ 3.231 2.576 2.776
StyleGANFusion 3.502 2.812 2.871
DATID-3D 3.776 3.148 3.160
Ours 4.071 3.455 3.426

Table 2. User study results on text-image correspondence,
sense of depth and details of 3D shape extracted from
adapted generators.

3D shapes Text-Corr.↑ Sense of depth & Details↑

StyleGAN-NADA∗ 2.707 2.779
HyperDomainNet∗ 2.688 2.802
StyleGANFusion 2.860 2.981
DATID-3D 3.214 3.260
Ours 3.495 3.440

4.1. Evaluation

Baselines. We compare our approach to several recent
methods for domain adaptation in 3D generative models,
including StyleGANFusion [35] and DATID-3D [18], both
of which are based on text-to-image diffusion methods. We
also compare our approach to CLIP-based methods for 2D
generative models, StyleGAN-NADA [27] and HyperDo-
mainNet [2], denoted by a star symbol (∗) to indicate their
extension to 3D models.

To evaluate our method, we use the EG3D [4] genera-
tor pretrained on 5122 images from the FFHQ dataset [16]
as our source generator, and adapt it to a range of diverse
domains with significant domain gaps. In contrast, other
methods used the EG3D generator pretrained on 5122 FFHQ
images for adaptation to movie or animation characters, and
the EG3D generator pretrained on 5122 AFHQ-cat images
for adaptation to animal domains, following their original
experimental settings.

Qualitative results. As shown in Fig. 1 and 5, Our method
successfully adapts 3D generators to the domains with signif-
icant domain gaps, enabling the synthesis of diverse samples
with excellent text-image correspondence and 3D shapes. In
contrast, other methods fail to adapt to these domains. For
instance, when the target domain is an elephant, the sam-
ples and 3D shapes generated by StyleGAN-NADA∗ [27],
HyperDomainNet∗[2], and StyleGANFusion[35] resemble
cats more than elephants. Although DATID-3D succeeds
in generating samples that resemble elephants, its pose is
biased toward the front view, leading to poor quality of 3D
shapes. In comparison, our method produces images that
closely correspond to elephant images with detailed shapes.
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Figure 8. Results of text-guided image-to-image translation using Stable diffusion (SD) [31], depth-guided diffusion
(DGD) [31], our pose-preserved diffusion (PPD), and specialized-to-general (S-to-G). Pose-preserved diffusion enables
image translation with pose-consistency and domain adaptation with high-quality of 3D shapes. S-to-G allows to resolve the
bias issue in details.

Figure 9. Results of text-guided image-to-image translation
depending on the data collection stratgies for training the
pose-preserved diffusion model.

User study. We conduct a user study to evaluate the quality
of the generated samples and 3D shapes from the shifted
generator through baselines and our methods and report the
mean opinion score. The participants were requested to
assess the visual quality of the generated images in terms of
text-image consistency, realism, and diversity using a rating
scale ranging from 1 to 5. Additionally, we asked users to
rate the text-image correspondence and sense of depth &
details for evaluating the 3D shapes. Our results, presented
in Table 1 and Table 2, demonstrate the superior text-image
correspondence, realism, diversity, and quality of 3D shapes
compared to the baselines. See the supplementary Section D
for further details on the comparison.

4.2. Text-guided debiasing

We apply text-guided debiasing to bear, 3D animation
characters, and characters in Zootopia using the attribute
species, 3D animation characters, and types of animals, re-
spectively. We obtained the information on subclasses from
ChatGPT. As represented in Fig. 7, our text-guided debias-
ing method enables to enhance intra-domain diversity (Bear,
Characters in Zootopia) or further improve the text-image
correspondence (3D animation characters).

4.3. Ablation studies

4.4. Pose-preserved text-to-image diffusion

In Fig. 8, we compare the results of text-guided image
translation using Stable diffusion (SD), the depth-guided dif-
fusion (DGD), our proposed pose-preserved diffusion (PPD),
and our specialized-to-general sampling strategy (S-to-G).
We observe that SD exhibits low image-text correspondence,
such as unnatural ear shapes when using a low return step,
and low pose consistency when using a high return step.
DGD suffers from overly strong shape constraints from the
depth map. In contrast, our PPD enables pose-consistent
image generation but may exhibit biases in style or details.
The S-to-G strategy resolves these biases by utilizing the
general text-to-image diffusion for creating details. See the
supplemetary Fig. S4 for extended results.

Data preparation for training PPD. The effectiveness
of training PGD with only identity mixing is not opti-
mal as shown in Fig. 9. However, when PGD is trained
with the translated targets from identity mixing using pose-
guaranteed prompts, PPD enables large shape changes, par-
ticularly when the target domain is similar to the human
domain (e.g. SpongeBob). However, PPD fails to produce
satisfactory results when the domain gap is significant (e.g.
Goat). To overcome this limitation, we leverage another gen-
erator trained on a different domain, which enables PPD to
translate the input image to target images even with a large
domain gap.

5. Discussion and Conclusion

Limitation. Our methods may pose potential societal risks
and therefore should be used with caution for appropriate
purposes. Further information on limitations and potential
negative social impacts can be found in the supplementary
Section F.
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Conclusion. We propose a novel pipeline called PODIA-
3D, for domain adaptation of 3D generative models using
pose-preserved text-to-image diffusion models. By utiliz-
ing PPD and specialized-to-general sampling models, our
method is able to adapt 3D generators to the domains across
large domain gaps, broadening applicability of 3D genera-
tive models. Our method achieves superior text-image cor-
respondence and 3D shapes compared to existing methods.
Additionally, we propose a text-guided debiasing method to
address instance bias.
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