
Predict to Detect: Prediction-guided 3D Object Detection using Sequential
Images

Sanmin Kim Youngseok Kim In-Jae Lee Dongsuk Kum
KAIST

{sanmin.kim, youngseok.kim, oliver0922, dskum}@kaist.ac.kr

Abstract

Recent camera-based 3D object detection methods have
introduced sequential frames to improve the detection per-
formance hoping that multiple frames would mitigate the
large depth estimation error. Despite improved detection
performance, prior works rely on naive fusion methods
(e.g., concatenation) or are limited to static scenes (e.g.,
temporal stereo), neglecting the importance of the motion
cue of objects. These approaches do not fully exploit the
potential of sequential images and show limited perfor-
mance improvements. To address this limitation, we pro-
pose a novel 3D object detection model, P2D (Predict to
Detect), that integrates a prediction scheme into a detection
framework to explicitly extract and leverage motion fea-
tures. P2D predicts object information in the current frame
using solely past frames to learn temporal motion features.
We then introduce a novel temporal feature aggregation
method that attentively exploits Bird’s-Eye-View (BEV) fea-
tures based on predicted object information, resulting in ac-
curate 3D object detection. Experimental results demon-
strate that P2D improves mAP and NDS by 3.0% and 3.7%
compared to the sequential image-based baseline, proving
that incorporating a prediction scheme can significantly im-
prove detection accuracy.

1. Introduction

3D object detection is an essential task for building a re-
liable self-driving system. In recent years, camera-based 3D
object detection [29, 33, 35, 38] has gained widespread at-
tention due to the cost-effectiveness of a camera sensor and
its high-resolution characteristic. However, camera-based
3D object detection still has limited performance due to the
scale ambiguity caused by projecting 3D space onto a 2D
image and the absence of motion cues that are difficult to
capture in a single image.

Recent works have mitigated these drawbacks by lever-
aging multiple frames from history. Multi-frame ap-

proaches incorporate temporal information into the space
domain to provide richer information. Moreover, sequence
images are often readily available in real-world applications
such as autonomous driving, making the use of sequence
images an attractive option for performance improvements.

Previous works [12, 14, 18, 23] have used temporal im-
ages in feature-level aggregation by concatenating sequen-
tial features to merge them. On the other hand, another line
of work [16, 30, 36, 41] has adopted a temporal stereo [42]
to enhance depth estimation using the multi-view stereo
(MVS) [9]. Although these methods have proved the effec-
tiveness of sequence frames over a single frame, they did
not thoroughly investigate into the motion cue of objects,
from which the object detection would benefit by using se-
quence images.

Temporal images have rich motion information, which
can provide critical motion features for accurate object de-
tection. To further demonstrate the importance of motion
cues in detection, we conducted experiments and evaluated
the performance of the prediction-only results, which rely
on motion prediction from previous frames, without using
the current frame. Our findings from Table 3 indicate that
the prediction-only results (P) can achieve comparable per-
formance to the final results (P+D), reaching up to 76% and
89% in terms of mAP and NDS, respectively. The final
results (P+D) denote detection results that incorporate all
temporal frames, including the current frame. This experi-
ment highlights the potential of using motion features from
previous frames, which has been overlooked in prior works.

To this end, we propose a novel sequential image-based
3D object detection model that learns motion cues to im-
prove detection accuracy. Our approach, P2D (Predict to
Detect), introduces a prediction scheme into the detection
task to fully exploit multi-frame image data. Specifically,
P2D conducts motion prediction using previous frames to
output the predicted objects’ information for the current
frame. In the feature aggregation module, we employ a de-
formable attention [46] to make a spatio-temporal feature
on the basis of prediction results that contains motion fea-
tures. Finally, the 3D detection head takes aggregated the
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Figure 1. Comparison of temporal image-based methods. All methods align features by warping previous frames to the current frame.
(a) Feature-level aggregation methods naively concatenate sequential features before inputting them to the detection head. (b) Depth
enhancement methods facilitate depth estimation using Multi-View Stereo (MVS). (c) Our proposed approach combines prediction and
detection to leverage motion features. We predict object information from previous frames and use it to detect objects in the current frame.

spatio-temporal feature and outputs the final detection re-
sults. In this way, our proposed method can fully benefit
from multi-frame inputs by predicting objects’ motion and
utilizing it explicitly, providing a more accurate and reliable
3D object detection system for autonomous driving.

In summary, our contributions are as follows:

• We identify the motion feature as a key factor when
handling sequential images for 3D object detection. A
prediction mechanism is introduced to fully exploit the
motion feature of multi-frame image data.

• We propose a novel 3D object detection model using
sequential images. Our model includes a Prediction
Head to predict object information and a Prediction-
guided Feature Aggregation to integrate temporal fea-
tures using motion features.

• Our approach achieves improved performance com-
pared to prior state-of-the-art methods. Extensive ex-
perimentation confirms the effectiveness of our ap-
proach in adapting to moving objects and accurately
estimating their velocities.

2. Related Work
2.1. Camera-based 3D Object Detection

Camera-based 3D object detection has gained significant
attention following the success of 2D detection methods.
Early methods [2, 8, 25, 28, 29, 37, 38] exploit perspective
view features by extracting 2D features from input images
and directly estimating 3D information for object detection.
After the pioneering work of Mono3D [6], M3D-RPN [2]
proposes 3D anchor boxes and depth-aware convolution and
FCOS3D [38] projects 3D targets into a 2D image plane. To
mitigate the depth ambiguity of 2D images, several methods
[19, 27, 32, 37] leverage geometric information while [29]
employs additional depth supervision. PGD [37] constructs
geometric relation graphs across predicted objects to facil-
itate depth estimation and GUPNet [27] estimates a depth

using height information. On the other hand, DD3D [29]
boosts depth estimation ability using extra datasets [10].

Another stream of work employs view transformation to
overcome the limitations of the perspective view. Several
works transform image pixels into 3D point clouds using
estimated depth information to take advantage of LiDAR
detector [39, 44]. On the other hand, other works proposed
to transform image features into voxel-like Bird’s Eye View
(BEV) features for 3D perception [31, 33, 34]. BEVDet
[13] uses LSS [31] based approach, which leverages the
depth distribution to transform the perspective-view fea-
tures into BEV space. BEVDepth [18] adds depth super-
vision using LiDAR point cloud, whereas BEVFormer [20]
adopts a deformable attention [46].

2.2. Sequential Image-based 3D Object Detection

To improve 3D object detection performance, several
works expanded the time horizon by leveraging temporally
sequential frames. Sequential image-based 3D object detec-
tion can be categorized into object-centric and scene-centric
methods.
Object-centric methods. Inspired by the object tracking,
these methods [3, 7, 15] employ object-level association to
improve detection performance. Object-centric methods de-
tect objects frame by frame and refine the detection results
by matching objects. Kinematic3D [3] uses a 3D Kalman
Filter to consider the kinematic motion of objects and up-
date detection results. MotionLoss [7] introduces patch-
wise motion loss for temporal consistency. Time3D [15]
adopts object-wise attention for temporal matching, where
detections from the current frame operate as queries, and
those from previous frames are keys and values.
Scene-centric methods. These methods are subdivided
into two again: feature-level aggregation and depth en-
hancement. Feature-level aggregation methods [12, 14, 18,
20] extract features from each image and aggregate tem-
poral features before inputting them to the detection head.
[12, 14, 18] aggregate sequential image features by concate-
nating them after temporal alignment using warping into the

18058



2

BEV features

BEV Prediction 
Head

BEV Detection 
HeadPr

ed
ict

io
n-

gu
id

ed
 Fe

at
ur

e 
Ag

gr
eg

at
io

n

𝑇
𝑇 െ 1

𝑇 െ 𝑛⋮

𝐹஻ா௏்

𝐹஻ா௏்ିଵ

𝐹஻ா௏்ି௡
⋮

𝑷𝑻Prediction

𝑫𝑻Detection

Temporal Images

BEV Backbone

Im
ag

e 
Ba

ck
bo

ne

De
pt

nN
et

 &
 V

ie
w

 T
ra

ns
fo

rm
er

Q

K, V

BEV features

BEV Prediction 
Head

BEV Detection 
HeadPr

ed
ict

io
n-

gu
id

ed
 Fe

at
ur

e 
Ag

gr
eg

at
io

n

𝐼்
𝐼்ିଵ

𝐼்ି௡⋮

𝐹஻ா௏்

𝐹஻ா௏்ିଵ

𝐹஻ா௏்ି௡⋮
𝑷𝑻Prediction

𝑫𝑻Detection

Temporal Images

BEV Backbone

Im
ag

e 
Ba

ck
bo

ne

De
pt

nN
et

 &
 V

ie
w

 T
ra

ns
fo

rm
er

Q

K, V

Figure 2. Overall architecture of P2D. The BEV backbone extracts BEV features from multi-view and multi-timestep images. The BEV
Prediction Head takes BEV features of previous frames as the input and predicts objects in the current frame. The Prediction-guided Feature
Aggregation module merges all temporal features based on predicted object information. The BEV Detection Head takes the aggregated
feature and outputs the final detection results. The whole model is trained with the two loss terms of prediction and detection loss.

current timestep to compensate for the ego-motion. BEV-
Former [20] adopts temporal attention to aggregate tem-
poral features based on BEV queries. Depth enhancement
methods [16, 30, 36, 41] employ temporal stereo, which ex-
tends Multi-view Stereo (MVS) [1, 42] into temporal im-
ages. By setting the translation of an ego agent as a base-
line, two temporally nearby images have stereo correspon-
dence that can be used in stereo matching. DfM [36] em-
ploys the temporal stereo in monocular 3D object detection
with a theoretical analysis. BEVStereo [16] improves the
temporal stereo with a sparse cost volume and an iterative
algorithm inspired by MaGNet [1]. STS [41] focuses on
the multi-view cameras by allowing correspondence across
cameras.

While these methods have demonstrated improved per-
formance compared to single-frame approaches, they have
their own limitations. Object-centric methods heavily de-
pend on frame-by-frame detection results, and thus, they
are susceptible to propagating single-frame errors. Feature-
level aggregation methods cannot take full advantage of
temporal features due to their naive aggregation methods
(e.g., concatenation), and temporal stereo has limited per-
formance on moving objects because of the static scene
assumption. Our proposed method overcomes these limi-
tations by introducing prediction into the detection frame-
work and explicitly leveraging motion cues.

3. Method

3.1. Overall Architecture

P2D extends BEVDepth [18] to perform prediction and
detection within a single framework. As illustrated in Fig.
2, our proposed P2D consists of a BEV backbone, predic-

tion head, prediction-guided feature aggregation, and detec-
tion head. The BEV backbone extracts BEV features from
the temporal input images. The BEV prediction head takes
BEV features of previous frames as input and predicts ob-
ject information in the current frame without relying on the
current image. The predicted object information and BEV
features are then combined into a spatio-temporal feature
using the prediction-guided feature aggregation module. Fi-
nally, the BEV detection head generates the final detection
results by utilizing both the current frame BEV feature and
the spatio-temporal feature.

3.2. BEV Backbone

The BEV backbone of P2D consists of an image back-
bone, a depth network, and a view transformer. The input to
the backbone is N multi-view and T multi-timestep images
represented as I = {It ∈ RN×H×W×3, t = 1, 2, . . . , T −
1, T}. First, the image backbone (e.g., ResNet [11] with
FPN [21]) extracts perspective-view features from the in-
put images. Then, a depth network estimates per-image
depth information from these features. Next, a view trans-
former lifts the perspective-view features into 3D space us-
ing the estimated depth and pools them to make BEV rep-
resentations. The BEV features are represented as F 1:T

BEV =
{F t

BEV ∈ RXf×Yf×Cf , t = 1, 2, . . . , T − 1, T}, where Xf

and Yf denote the grid size and Cf denotes the channel size
of BEV features.

To alleviate the effect caused by ego-motion, we align
the coordinates of BEV features from previous images into
the current frame, following [12]. For more detailed infor-
mation on our backbone, please refer to BEVDepth [18].
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3.3. BEV Prediction Head

Existing approaches that use temporal images [12, 14,
18, 23] often concatenate all temporal features after align-
ment to compensate ego-motion. Although simple and in-
tuitive, such a naive strategy can not fully utilize tempo-
ral cues, limiting performance gain from temporal frames.
Even other approaches like temporal stereo [16, 36, 41] han-
dle temporal features more effectively by enhancing depth
estimation with MVS, but they still overlook the importance
of motion features. To fully benefit from previous frames,
we introduce prediction into the detection framework.

The BEV prediction head uses BEV features only from
previous frames to predict object information in the current
frame, as follows:

PT = Φp(F
1:T−1
BEV ), (1)

where PT ∈ RXf×Yf×Co represents predicted object in-
formation. Co is the number of output attributes, including
localization, dimension, velocity, orientation of an object,
and per-class heatmaps. The per-class heatmaps show the
probability of a specific class object in each position of the
BEV feature. Φp is the detection network, such as the Cen-
terPoint [43] head.

The prediction result PT provides valuable object-level
information, including motion cues, to the downstream net-
work such as the feature aggregation and detection head.
It allows the model to leverage explicit object-level motion
features. Moreover, supervision on the features from pre-
vious frames using the ground truth objects in the current
frame can help the model learn the beneficial features of
previous frames for detecting the current frames when ag-
gregated. The impact of prediction supervision on the BEV
backbone is reported in Table 7.

3.4. Prediction-guided Feature Aggregation

Feature aggregation is a crucial module for effectively
merging predicted object information and BEV features. To
aggregate BEV features based on predicted object informa-
tion, we introduce Prediction-guided object queries and Pre-
diction query-based cross attention, as shown in Fig. 3.
Prediction-guided object queries. In contrast to BEV
queries in BEVFormer [20], which only has positional in-
formation on the BEV space at the initialization stage, we
use prediction results PT as queries to gather temporal fea-
tures based on predicted object information. However, PT

has a large dimension of RXf×Yf×Co , which covers all lo-
cations of the BEV space, while objects only occupy a small
region of it. Therefore, using PT as queries in its original
form is highly inefficient in terms of computational cost.

To address this problem, we use the object heatmap to
select queries. The heatmap represent the probability that
objects can exist in a specific space Specifically, we extract
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Figure 3. Illustration of the proposed Prediction-guided Feature
Aggregation. The class-agnostic heatmap mask is generated from
the class heatmap in the prediction results. The query encoder
takes the masked prediction results to make the prediction-guided
object queries. The prediction query-based cross-attention is a de-
formable attention module that uses object queries with keys and
values from BEV features and fuses the temporal features.

a per-class heatmap represented as HP ∈ RXf×Yf×Nc from
PT and generate the class-agnostic heatmap represented as
HCA ∈ RXf×Yf by selecting the maximum probability
across all classes as follow:

HCA(i, j) = max
Nc

HP (i, j), (2)

where (i, j) is the heatmap location index and Nc is the
number of object classes.

We then create a class-agnostic query mask M ∈
RXf×Yf by filtering heatmap values with a threshold τk.

M(i, j) =

{
1 HCA(i, j) ≥ τk,

0 HCA(i, j) < τk.
(3)

τk in Eq. 3 stands for an adaptive threshold for object
probabilities. We choose τk as the minimum value of top-k
probabilities among HCA so that the number of queries can
be fixed. The binary mask indicates the location candidates
likely to be occupied by objects.

We apply the query mask to the prediction results to fil-
ter out less likely locations. Finally, we embed the masked
prediction results into queries using a linear projection.

Q = Φq(M⊙ PT ), (4)

where Q ∈ RK×Cq stands for the selected prediction-
guided object queries, Φq is a linear project for query em-
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(a) Objects in the scene (b) Prediction heatmap

(c) Prediction-guided queries (d) Detection heatmap

Figure 4. Visualization of the class-agnostic heatmap and
prediction-guided object queries. (a) A sample frame with ob-
jects in the scenes. (b) A class-agnostic heatmap Hp, which is the
output of the prediction head. (c) Prediction-guided object queries
generated using the query mask and the predicted object informa-
tion. (d) The heat map from the final detection results.

bedding, ⊙ operation denotes element-wise multiplication
and K is the number of queries. In this way, we can avoid
querying from empty space and reduce computational costs
(K ≪ XfYf ). We visualize a sample of the class-agnostic
heatmap from both prediction and detection, and masked
prediction-guided queries, in Fig. 4.
Prediction query-based cross attention. Temporal fea-
tures of a moving object are not projected into the same lo-
cation even after alignment. To effectively aggregate these
temporal features, we adopt a deformable attention [46] by
setting prediction-guided object queries Q as queries and
BEV features F 1:T

BEV as keys and values. We model the
cross attention for temporal BEV features as follows:

PQCA(Qp, {F 1:T
BEV })

=

T∑
t=1

DeformAttn(Qp, p, F
t
BEV + e),

(5)

where Qp denote a query located at p = (i, j), respectively.
e = es + et denotes an embedding for positional and tem-
poral dimensions. t is the temporal indexes. Additionally,
we utilize zero-padding to match the shape of the output of
PQCA with BEV feature’s.

We stack each temporal feature level-wise and apply
deformable cross attention across all timsteps. Through

this, we can make a spatio-temporal feature by collecting
related features in both spatial and temporal dimensions.
Our Prediction-guided Feature Aggregation is more effec-
tive in modeling the spatio-temporal feature compared to
other aggregation methods such as stacking BEV features
[12, 18] or Temporal Self-Attention [20]. This is because
the prediction-guided object queries provide an object-level
prior to the model and work as motion feature-based an-
chors for the cross-attention mechanism.

The BEV Detection Head concatenates the output of the
Prediction Query-based Cross Attention with the BEV fea-
ture at the current frame.

DT = Φd(PQCA(Q, {F 1:T
BEV })⊕ FT

BEV ), (6)

where DT is the final detection output and Φd is the detec-
tion network (e.g., CenterPoint [43] head). It has the same
network structure and outputs as BEV Prediction Head but
does not share weights.

3.5. Training

P2D is an end-to-end trainable network, and the loss in-
cludes two terms: detection loss and prediction loss.

L = Ldet + λpLpred, (7)

where λp is balancing weight term. The detection loss Ldet

consists of classification loss, bounding box loss, and depth
estimation loss. Meanwhile, the prediction loss Lpred con-
tains two of them, except for depth estimation loss. We
adopt the loss functions as focal loss for classification, L1
loss for bounding box regression, and binary cross-entropy
for depth estimation. It is worth noting that P2D does not
require any additional annotations.

4. Experiment
4.1. Dataset and Metrics

We conduct experiments on the nuScenes dataset [4],
which consists of 1000 videos of around 20 seconds with
annotations of 2Hz. The videos are split into three: 700,
150, and 150 scenes for training, validation, and testing, re-
spectively. For the detection task, annotations contain 1.4M
3D bounding boxes of 10 object classes. We adopt the of-
ficial evaluation metrics to evaluate performance, including
nuScenes Detection Score (NDS), mean Average Precision
(mAP), mean Average Translation Error (mATE), mean Av-
erage Scale Error (mASE), mean Average Orientation Error
(mAOE), mean Average Velocity Error (mAVE), and mean
Average Attribute Error (mAAE).

4.2. Implementation Details

Unless otherwise specified, we adopt BEVDepth [18] as
our baseline model with the ImageNet pretrained ResNet50
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Method Temporal Backbone Image Size mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

PETR†[22] ResNet50 384 × 1056 0.313 0.381 0.768 0.278 0.564 0.923 0.225

BEVDet† [13] ResNet50 256 × 704 0.298 0.379 0.725 0.279 0.589 0.860 0.245

BEVDet4D [12] ✓ ResNet50 256 × 704 0.323 0.453 0.674 0.272 0.503 0.429 0.208
BEVDepth [18] ✓ ResNet50 256 × 704 0.333 0.441 0.683 0.276 0.545 0.526 0.226

BEVStereo [16] ✓ ResNet50 256 × 704 0.344 0.449 0.659 0.276 0.579 0.503 0.216

P2D (BEVDepth) ✓ ResNet50 256 × 704 0.360 0.474 0.643 0.271 0.512 0.412 0.217

P2D (BEVStereo) ✓ ResNet50 256 × 704 0.374 0.486 0.631 0.272 0.508 0.384 0.212

FCOS3D [38] ResNet101 900 × 1600 0.295 0.372 0.806 0.268 0.511 1.131 0.170

DETR3D† [40] ResNet101 900 × 1600 0.349 0.434 0.716 0.268 0.379 0.842 0.200
PETR† [22] ResNet101 512 × 1408 0.357 0.421 0.710 0.270 0.470 0.885 0.224

UVTR† [17] ✓ ResNet101 900 × 1600 0.379 0.483 0.731 0.267 0.350 0.510 0.200

PolarDETR-T [5] ✓ ResNet101 900 × 1600 0.383 0.488 0.707 0.269 0.344 0.518 0.196

BEVDepth∗ [18] ✓ ResNet101 512 × 1408 0.406 0.490 0.626 0.278 0.513 0.489 0.226

BEVDStereo∗ [16] ✓ ResNet101 512 × 1408 0.409 0.494 0.651 0.277 0.481 0.451 0.215

BEVFormer [20] ✓ ResNet101 900 × 1600 0.416 0.517 0.673 0.274 0.372 0.394 0.198

P2D (BEVDepth) ✓ ResNet101 512 × 1408 0.420 0.514 0.608 0.268 0.447 0.431 0.212

P2D (BEVStereo) ✓ ResNet101 512 × 1408 0.433 0.528 0.619 0.265 0.432 0.364 0.211

BEVDepth∗ ✓ ConvNext-B 640 × 1600 0.426 0.521 0.587 0.267 0.393 0.444 0.229

P2D (BEVDepth) ✓ ConvNext-B 640 × 1600 0.460 0.551 0.537 0.259 0.398 0.388 0.212

Table 1. Comparison on the nuScenes val set. †: methods with CBGS [45]. ∗: We reproduce the model without CBGS for a fair comparison.

Method Backbone mAP ↑ NDS ↑ mATE ↓ mAOE↓

BEVDepth∗ ResNet101 0.396 0.483 0.593 0.533

BEVStereo∗ ResNet101 0.404 0.502 0.587 0.518

P2D(BEVDepth) ResNet101 0.425 0.516 0.549 0.520

P2D(BEVStereo) ResNet101 0.436 0.530 0.550 0.517

Table 2. Comparison on the nuScenes test set. ∗: We reproduce
the model without CBGS for a fair comparison.

[11] backbone and the input image size is resized to 256 ×
704. We set the default BEV grid size as 128 × 128. We
follow image and BEV data augmentation strategies in [18].

We use two previous frames with 1 second of time in-
terval and set the number of object queries k as 2048. We
balance the loss function by setting λp as 0.5. We trained
the model using AdamW optimizer [26] for 24 epochs with
a batch size of 16 on 4 NVIDIA 3090Ti GPUs. The learning
rate is set to 2e-4, and the EMA technique is also used.

4.3. Main Results

We compare our model with existing camera-based de-
tection models on the nuScenes validation dataset [4]. We
report the results of P2D with two different baselines:
BEVDepth [18] and BEVStereo [16] in Table 1. The
evaluation results demonstrate that P2D outperforms other
methods and baselines significantly with ResNet50 back-
bone. Specifically, P2D achieves 2.7% and 3.0% improve-

Baseline Strategy mAP ↑ NDS ↑ mATE ↓ mAOE↓ mAVE ↓

BEVDepth
P + D 0.360 0.474 0.643 0.512 0.412

P 0.272 0.422 0.740 0.587 0.294

BEVStereo
P + D 0.374 0.486 0.631 0.508 0.384

P 0.272 0.418 0.738 0.606 0.308

Table 3. Evaluation of prediction-only results on the nuScenes val
set. P+D represents the model with both prediction and detec-
tion, which is the same as our proposed P2D model. P represents
the prediction-only results generated by the BEV Prediction Head,
which does not use the current frame.

ment in mAP and 3.3 and 3.7 points improvement in NDS
over BEVDepth and BEVStereo, respectively, outperform-
ing other methods with a large margin. In addition, P2D
brings a substantial performance boost on velocity estima-
tion, improving by 0.114 m/s and 0.119 m/s (21.5% and
23.7%) in mAVE compared to each baseline. In the case of
using a larger backbone and input image size (ResNet101
[11] with 512 × 1408 and ConvNext-B [24] with 640 ×
1600), P2D consistently outperforms baselines and other
methods both in mAP and NDS.

As shown in Table 2, we also compare the performance
with nuScenes test dataset. With the same backbone and im-
age size (ResNet101 with 512 × 1408), P2D still shows im-
proved performance of 2.9% and 3.2% in mAP and 3.3 and
2.8 points in NDS over BEVDepth and BEVStereo, respec-
tively, proving the effectiveness of the proposed method.
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Methods mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

BEVDepth 0.815 0.271 0.404 2.010 0.159

+ P2D 0.783 0.256 0.367 1.712 0.149
BEVStereo 0.822 0.269 0.345 1.712 0.149

+ P2D 0.773 0.260 0.243 1.477 0.146

Table 4. Results on the moving objects. Only objects with a veloc-
ity higher than 1m/s are evaluated.

PH PFA mAP ↑ NDS ↑ mATE ↓ mAOE ↓ mAVE ↓

0.334 0.448 0.680 0.551 0.469

✓ 0.351 0.466 0.668 0.528 0.414

✓ 0.353 0.459 0.662 0.541 0.472

✓ ✓ 0.360 0.474 0.643 0.512 0.412

Table 5. Ablation study on P2D. PH and PFA denote Prediction
Head and Prediction-guided Feature Aggregation, respectively.

Methods
Prev.
frames

mAP ↑ NDS ↑ mATE ↓ mAOE ↓ mAVE ↓

BEVDepth

0 0.312 0.357 0.695 0.645 1.144

1 0.333 0.441 0.683 0.545 0.526

2 0.334 0.448 0.680 0.551 0.469

3 0.346 0.451 0.687 0.575 0.461

P2D
2 0.351 0.457 0.672 0.558 0.436
3 0.362 0.465 0.652 0.434 0.464

Table 6. Experiments on a different number of previous images.

Prediction ability. The quality of the prediction re-
sults generated from the prediction head plays a crucial role
since it represents the potential of motion features. In addi-
tion, it is even more important because P2D uses these pre-
diction results as object queries. Therefore, We evaluated
the prediction-only results PT (the output of the prediction
head) and reported them in Table 3 to verify the effective-
ness of the prediction. The results show that the prediction-
only results can achieve comparable performance to the fi-
nal detection results, up to 76% and 89% in mAP and NDS,
respectively. It proves that the previous frames can estimate
objects in the current frame using their motion features, and
thus, the motion features can help the model to improve its
detection performance.
Moving objects. In the autonomous driving environ-
ment, moving objects should be handled more attentively
than static objects because moving objects often interact
with autonomous agents and can lead to a safety-critical sit-
uation. However, previous methods, such as the temporal
stereo-based approaches [36, 41] overlook the importance
of moving objects and focus on static scenes. To confirm
that P2D is advantageous in dynamic scenes, we report the
detection results of moving objects in Table 4. In the ta-
ble, only objects with a ground-truth velocity higher than 1
m/s are evaluated. In both BEVDepth and BEVStereo base-

Prediction
supervision

mAP ↑ NDS ↑ mATE ↓ mAOE ↓ mAVE ↓

0.351 0.457 0.672 0.557 0.464

✓ 0.360 0.474 0.643 0.512 0.412

Table 7. Ablation of backbone supervision on prediction loss. The
prediction loss does not affect BEV backbone in the model without
prediction supervision.

λ(p) mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

0.1 0.352 0.464 0.666 0.279 0.547 0.460 0.212

0.3 0.357 0.463 0.665 0.279 0.545 0.431 0.201
0.5 0.360 0.474 0.643 0.271 0.512 0.412 0.217

Table 8. Ablation of loss balancing weight.

Methods mAP ↑ NDS ↑ FPS ↑ Memory ↓

BEVDepth 0.334 0.448 8.82 4.26G
P2D 0.360 0.474 10.81 4.40G

Table 9. Comparison of inference time and memory usage.

lines, P2D achieves better performance, especially on the
translation (mATE) and velocity error (mAVE). We think
that this improvement comes from the prediction scheme in
P2D, which explicitly provide motion information by fore-
casting the location of objects.

4.4. Ablation Studies

We conduct ablation studies to verify the effectiveness of
each module and the performance of different hyperparam-
eters. We use the nuScenes val set and Table 5 to 9 describe
the results of ablation studies.
Prediction head. Table 5 demonstrates the ablation of
each module in P2D. The model with only the prediction
head concatenates the prediction results and temporal BEV
features without an aggregation strategy. Adding Prediction
Head to the baseline improves mAP by 1.7 % and NDS by
1.8 points, demonstrating the prediction scheme improves
the detection performance. Especially the velocity estima-
tion significantly improves by 11.7%, showing that the pre-
diction strategy helps the model to estimate the motion of
objects in the current frame.
Prediction-guided feature aggregation. Adding a de-
formable attention-based feature aggregation also improves
mAP by 1.9% and NDS by 1.1 points, even solely adopted
without a prediction head. We hypothesize that our feature
aggregation method merges the features of an object along
different timesteps, and thus it is beneficial to make features
useful. Finally, by combining these two modules, our P2D
improves mAP and NDS by 2.6 points, showing the effec-
tiveness of our method.
Number of previous frame. For the fair comparison, we
set the number of previous frames as the same and evalu-
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Figure 5. Qualitative results of P2D. The blue dotted rectangle in the BEV view designates the highly occluded object in the image view.
Since P2D leverages temporal frames, such an occluded object that appears in the previous frames can be detected.

ated on the nuScenes val set. As reported in Table 6, there
is still a performance gap between P2D and the baseline
BEVDepth with two previous frames. Although there is
a significant improvement when a previous frame is used
due to the benefit from the multi-frame input, adding an-
other previous frame brings only a marginal improvement,
demonstrating that increasing previous frames in a naive
manner is barely beneficial. Note that P2D needs at least
two previous frames to estimate motion from past frames.

Backbone supervision. P2D has a prediction loss term
that provides supervision for the targets in the current frame
to the previous frames. We hypothesize that this supervi-
sion can guide the backbone to learn how to extract motion-
related features from input images. To verify this, we
trained P2D with and without the gradient of the prediction
loss in the BEV backbone, and Table 7 shows the results.
We confirm that with the gradient of the prediction loss on
the BEV backbone, the performance improves by 0.9% and
1.7 points in mAP and NDS, respectively, demonstrating
the prediction loss makes the BEV backbone learn motion
features.

Loss balancing weight. We compare the performance of
different values of the loss balancing weight λp in Eq. 7.
As shown in Table 8, the mAP and velocity estimation im-
proves as the value of λp gets larger, proving that the predic-
tion loss helps the model learn motion cues and is beneficial
in 3D object detection.

Inference time and memory usage. Table 9 shows the
FPS and GPU memory usage during the inference. For a
fair comparison, both the baseline and P2D use two previ-
ous images with the same backbone and image size. We
find that although there is a slight increase in memory us-
age, P2D runs faster than the baseline by increasing FPS
from 8.82 to 10.81.

4.5. Qualtitative Results

We visualize a sample case for a qualitative evaluation.
P2D is capable of detecting highly occluded objects, as
demonstrated by the object enclosed in the blue dotted box
in the top view of Fig. 5. Despite being highly occluded in
the current frame, this object has been captured in previous
frames, enabling P2D to detect it. Additional quantitative
results are illustrated in Appendix.

5. Conclusion

In this work, we propose a novel camera-based 3D ob-
ject detection using temporal images, namely P2D. P2D in-
tegrates Prediction and Detection in a single framework to
fully benefit from the sequential images. P2D improves de-
tection performance, including velocity estimation, and we
verified that the motion features obtained by prediction are
crucial for 3D object detection.
Broader impacts. P2D has shown that utilizing prediction
techniques with motion cues can lead to a significant im-
provement in the performance of 3D object detection mod-
els. We believe that further research in this area is war-
ranted to explore how best to leverage prediction strategies
for more effective 3D object detection. In addition, P2D has
the potential to inspire the development of 3D object track-
ing models that place a greater emphasis on motion cues
and their role in object detection and tracking.
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