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Abstract

Inspired by the great success of language model (LM)-
based pre-training, recent studies in visual document un-
derstanding have explored LM-based pre-training methods
for modeling text within document images. Among them,
pre-training that reads all text from an image has shown
promise, but often exhibits instability and even fails when
applied to broader domains, such as those involving both
visual documents and scene text images. This is a sub-
stantial limitation for real-world scenarios, where the pro-
cessing of text image inputs in diverse domains is es-
sential. In this paper, we investigate effective pre-training
tasks in the broader domains and also propose a novel
pre-training method called SCOB that leverages character-
wise supervised contrastive learning with online text ren-
dering to effectively pre-train document and scene text do-
mains by bridging the domain gap. Moreover, SCOB en-
ables weakly supervised learning, significantly reducing
annotation costs. Extensive benchmarks demonstrate that
SCOB generally improves vanilla pre-training methods and
achieves comparable performance to state-of-the-art meth-
ods. Our findings suggest that SCOB can be served gener-
ally and effectively for read-type pre-training methods. The
code will be available at https://github.com/naver-ai/scob.

1. Introduction
Visually-situated language, which encompasses a mix-

ture of texts and visual objects such as documents, tables,
infographics, and user interfaces, is now ubiquitous in mod-
ern human civilization. Accordingly, automatically reading
and understanding visually-situated language with machine
learning systems is considered commercially valuable and
challenging. Considering the usability and training conve-
nience for machine learning systems, Visual Document Un-
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Figure 1. Our proposed SCOB is applicable to pre-training tasks
of generative text understanding models, including text-read and
OCR-read. (Top) Our renderer generates images at the word-level
with diverse fonts and sizes. Shapes of “A”s and “R”s are little
different respectively in the real image (blue box), but their shapes
vary significantly in the rendered image (red box). (Bottom) By
applying the character-wise supervised contrastive loss, “A”s and
“R”s are clustered respectively and the clusters of “A” and “R”
push away each other in the embedding space.

derstanding (VDU) and Scene Text Understanding (STU)
tasks have been separately studied for visually-situated lan-
guage. VDU mainly handles visually scanned or binarized
document images, whereas STU takes images in real-world
and dynamic environments as input, as shown in Figure 2.

In the context of VDU, Donut [32] has been proposed as
a sequence generation model, which pre-trains a text-read
task of reading all texts in raster scan order from an im-
age, as illustrated in Figure 2. Meanwhile, Pix2seq [7] is an
image-to-sequence model that extends to the object detec-
tion task by gridding images and using coordinate tokens on
the grid. These recent studies [7, 32, 42] suggest that prompt
control in a sequence generation approach can successfully
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Figure 2. Text-read reads the text present in an image in raster scan
order (blue solid box), while OCR-read detects both the text and
its corresponding coordinates from the image (red dashed box).

expand tasks or domains more easily. Inspired by these ap-
proaches, we investigate using VDU and STU data together
for integrating text-related tasks.

This work aims to pre-train a universal text understand-
ing model for both document and scene domains and ex-
tend its use to downstream tasks. However, we empirically
observed that text-read using both VDU and STU data of-
ten fails and becomes unstable, likely due to the complex
natural scene backgrounds in STU conflicting with the doc-
ument images in VDU. To mitigate this issue, we explore
OCR-read (i.e., optical character recognition) [48], which
explicitly guides the model to recognize text in complex
images by adding coordinate tokens from text-read in the
sequence generation architecture. While OCR-read has suc-
cessfully pre-trained both domains, it requires high-cost an-
notation due to the need of location information, unlike text-
read. According to Yair et al. [34], adding box coordinate
annotations for the OCR task increases annotation time by
about 140% compared to text-only annotations.

To address the issues, we propose a novel pre-training
method called SCOB, which stands for Character-wise
Supervised Contrastive Learning (SupCon) with Online
Text Rendering for Bridging Domain Gap. Our online text
renderer serves as a more effective augmentation method
than augmentation methods used in conventional represen-
tation learning [16, 20, 6] for character-wise SupCon, as
shown in Figure 1. SCOB bridges the domain gap by learn-
ing recognition more easily through rendered images and
attracting the projection of positive samples from synthetic,
scene text, and document domains to each other. Applying
SCOB to text-read provides learning stability, indicating
that SCOB effectively bridges the domain gap. Moreover,
pre-training OCR-read with SCOB requires image data with
only text annotation, dramatically reducing annotation costs
compared to traditional OCR training.

The proposed SCOB is applicable to a broad range
of existing Transformer-based generative text understand-
ing models, including Donut [32], Dessurt [12], and
Pix2Struct [36]. From a generalized perspective, these
image-to-text models can be interpreted as the same frame-
work, which is a transformer-based encoder-decoder model
with a “read” pre-training strategy (e.g., text-read and OCR-
read). We refer to this framework as the Universal Text
Understanding (W) framework in this work. We conduct
extensive experiments using the W framework on eleven
benchmarks spanning both VDU and STU domains to
observe the characteristics and effects of respective pre-
training strategies with SCOB. Our experimental results and
analysis demonstrate the efficacy and versatility of SCOB
improving the overall model performance. We summarize
our main contributions as follows:

• This paper investigates the effects of text-read and
OCR-read pre-training on a total of eleven tasks, in-
cluding those in the VDU and STU domains.

• We propose a novel pre-training method SCOB that
utilizes character-wise contrastive learning with online
text rendering to effectively bridges the domain gap
between VDU and STU domains.

• SCOB enables weakly supervised OCR pre-training,
significantly reducing annotation costs by using only
text annotations.

• Experimental results show that read-based pre-training
for table reconstruction achieves state-of-the-art per-
formance, and our proposed SCOB generally enhances
the performance of read-based pre-training on various
text-related downstream tasks.

2. Related Work
2.1. Visual Document Understanding

Inspired by the great success of BERT [28] in natural
language process tasks, Xu et al.[58] presented a power-
ful VDU model, LayoutLM, with an efficient pre-training
task, named masked visual-language modeling. Recently,
LayoutLMv3 [22] exploited masked image modeling with
latent codes of a discrete VAE and achieved state-of-the-
art. However, these approaches [58, 59, 38, 22, 21] require
a specific architectural design for the output format of each
downstream task. Moreover, since they use OCR results as
input, they strongly depend on the OCR engine. In addition,
OCR increases overall computational cost, and the errors of
OCR often propagate to the final outputs [32].

In order to solve these challenges, Kim et al. [32] pro-
posed Donut that does not require preprocessing as OCR.
Donut is an end-to-end encoder-decoder model that auto-
regressively generates the desired type of output sequence.
With a simple concept, Donut solves multiple VDU tasks
with a single unified pipeline, and it showed state-of-the-art
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Figure 3. The overview of the Universal Text Understanding (W) framework. This framework provides a unified approach for various
visual text-related tasks. Given an input text image, W generates output sequences for downstream tasks conditioned on task-prompts in
the text decoder. We aim to train the W framework with pre-training tasks such as text-read or OCR-read to effectively handle both VDU
(yellow box) and STU (blue box) domains. When the model is pre-trained without domain conflicts, it can be fine-tuned on various text
understanding tasks spanning both domains, such as table reconstruction, OCR, classification, VQA, and KIE, with improved performance.

performances on various VDU tasks. Donut is pre-trained
with a task, denoted as text-read task, which is simply
reading all characters in the image with raster order [32].
Although Donut showed promising results on many VDU
tasks, it has not been investigated yet how it performs in
scene text-related tasks. In addition, we note that text lo-
calization is likely to be important for some text-related
tasks, which have not been explored deeply in the previ-
ous works [32, 12]. In this paper, text-read and OCR-read
are investigated as pre-training methods and their impact on
VDU and STU downstream tasks.

2.2. Contrastive Learning for Visual Representa-
tion Learning

In the computer vision, unsupervised representation
learning methods have succeeded with contrastive learn-
ing [16, 20, 6, 8, 29, 9]. The common idea of these methods
is that image augmentation is performed on a single batch
of images, where a pair of augmented images can be treated
as a positive pair originally taken from the same image and
a negative pair originally taken from two different images.
The augmentation plays a critical role in contrastive learn-
ing, and the effect of its type and intensity has been ex-
tensively investigated [16, 20, 6, 8, 24]. Another critical
factor is a large number of samples [6]; thus, dictionary-
based methods [57, 20, 9] have been proposed to cache the
negative samples. To fully leverage supervision, supervised
contrastive learning methods have been proposed [29, 23]
where the positives and negatives are constructed with their
label information.

STU field, especially OCR, has also explored the ap-
plication of contrastive learning to train image and text

encoders [3, 1, 60]. Specifically, self-supervised learning
was employed for text recognizer [3, 1] and these methods
can be mainly categorized by the instance-level contrastive
learning. Baek et al. [3] defined instance-level as an im-
age and applied MoCo [20] for representation learning. On
the other hand, Aberdam et al. [1] defined instance-level
as a sub-image under an assumption that the placement of
texts in positives would not be that different unless severe
placement-related augmentations (e.g., flip) are applied. Re-
cently, CLIP-based [49] contrastive learning was proposed
to train both text and image encoders with label informa-
tion. In this paper, we pre-train the auto-regressive text de-
coder as well as the image encoder with SCOB, which can
be effectively transferred to downstream tasks.

3. Method

Inspired by Donut [32], we adopt the sequence genera-
tion model to process various downstream tasks with a sin-
gle architecture. For pre-training the sequence generation
model, we investigate two objectives: text-read and OCR-
read. As shown in Figure 3, text-read is simply reading all
characters in the image with raster order [32]. OCR-read
incorporates text-read and text localization objectives that
decodes the coordinates of bounding boxes and text tran-
scriptions. We expect OCR-read can employ richer infor-
mation packaging physical coordinates and sizes, as well as
the relative distances between text instances [61]. Since text
localization occupies part of the target sequence, shorter
text transcriptions can be exploited for a learning language
model because the decoder has a limited decoding max
length. Thus, text-read learns a language model more com-
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Figure 4. An illustration of the proposed SCOB-applied OCR-read pre-training method for text understanding models. SCOB can also be
applied to text-read by excluding the coordinate tokens. Given real images, xreal, our renderer generates a corresponding synthetic batch,
xsyn, and the multiviewed batch is used to train the model. Under a teacher-forcing scheme [56], the model is trained using a cross-entropy
loss, Ltoken-weak, along with a contrastive loss, LSupCon. Notably, SCOB does not require coordinate annotations of yreal. The coordinate
labels of yreal are replaced with masked tokens ([MASK]), and the loss from the masked tokens is ignored (gray box). To compute the
LSupCon, the predicted character embeddings are passed through an MLP projector (Proj). Note that the predicted character embedding is
the last layer hidden embedding of the decoder, d, not the character token. With SCOB, the same classes of characters are forced to be
clustered in the embedding space, leading to improved model robustness.

prehensively when the image contains many text instances
that the decoding length of OCR-read cannot cover entire
text instances.

Furthermore, we propose SCOB, a novel pre-training
approach that leverages character-wise SupCon and on-
line text rendering to maximize their synergy. The online
text renderer serves as a suitable augmentation method
for general text-related contrastive learning. Document im-
ages [37] are usually well-scanned or binarized, making
it easy for models to recognize text, whereas scene text
images can be challenging due to the natural background.
Also, we observe that text-read is not robust enough to
pre-train document and scene text data together (see Sec-
tion 4.3). SCOB overcomes this limitation by training the
model on synthetic text images, which are easier to recog-
nize, and transferring this knowledge to more challenging
real-world scenarios. Specifically, SCOB pulls the feature
of positive samples from synthetic, document, and scene
text images, facilitating the learning of difficult samples.
Moreover, SCOB supports text-read and OCR-read pre-
training methods and can be trained with weak supervi-
sion for OCR-read, making it an ideal solution for scenarios
where data is scarce.

In the next Section 3.1, we explain the architecture of
W and vanilla pre-training objectives. Then, we discuss the
character-wise supervised contrastive learning method pre-
training in Section 3.2. Finally, Section 3.3 describes the
detailed settings of the online text renderer and the weakly
supervised pre-training method.

3.1. Read-based Pre-training

Recently, the proposal of Pix2Seq [7] made detection
possible with sequence generation, which allows unifying
the output of multiple tasks, including detection. Our OCR-
read pre-training is also in the form of sequence genera-
tion, and the sequence is composed of coordinates (bound-
ing box) and transcription as shown in Figures 3, and 4. To
express the bounding box as a sequence, we uniformly dis-
cretize the height and width of the image into 1,000 bins fol-
lowing Pix2Seq. Therefore, the sequence of word instance
consists of 4 coordinate tokens [xmin, ymin, xmax, ymax],
followed by n character tokens (transcription). In the case
of text-read pre-training, the target sequence is composed
of only character tokens, which can handle more words than
OCR-read.

Architecture. The architecture of W follows the encoder-
decoder framework. The image encoder converts the input
image x∈RH×W×Cin into visual embedding v = Enc(x)
where H , W , and Cin denote the height, width, and chan-
nel of the input image, respectively. The text decoder takes
both v and previously generated token from the decoder
as input and auto-regressively generates output sequence
(ŷ)Ni=1 where ŷi is the i-th generated token, and N denotes
the sequence length of the decoder. We use Swin Trans-
former [39] and Transformer-based [54] decoder as an en-
coder and decoder, respectively.

Objective. The model learns to predict target tokens such
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as prompt, coordinate (only for OCR-read), and character
tokens, using maximum likelihood:

Ltoken = −
N∑
i=1

logP (yi|x, ŷ1:i-1), (1)

where yi denotes i-th target token.

3.2. Character-wise Supervised Contrastive Loss

In general image classification, supervised contrastive
learning [29] has been mostly applied at image-level. On
the other hand, in the image containing text, each character
can be regarded as an instance and we propose character-
wise contrastive learning. The proposed method enables
stable learning without using a kind of memory bank (dy-
namic dictionary queue [20]) because character-wise Sup-
Con allows obtaining abundant positive and negative sam-
ples even in a small batch where most OCR images have
high-resolution sizes (larger than 768×768). Another major
factor of contrastive learning is the augmentation for mul-
tiview images. We propose to generate multiview images
using the online text renderer, which will be described in
the following subsection.

Figure 4 shows the overview of the proposed character-
wise SupCon. Our model takes original (real) and multiview
(synthetic) images as the input and auto-regressively gener-
ates the token ŷi = MLP(di) where di denotes the last hid-
den embedding of the decoder at i-th generation index. At
the same time, character-wise projections zi = Proj(di) are
placed in a contrastive subspace. Here, we define a multi-
viewed batch as a union of original batch and rendered batch
constructed by the renderer. Within a multiviewed batch, let
j ∈ C be the index of a character where C denotes the
set of all target characters in multiviewed batch. Then, the
model is trained with character-wise supervised contrastive
loss:

LSupCon =
∑
j∈C

−1

|P (j)|
∑

p∈P (j)

log
exp(zj · zp/τ)∑

a∈A(j) exp(zj · za/τ)
,

(2)

where A(j) = C \ {j}, and P (j) = {p ∈ A(j) : cp = cj}
is the set of indices that have same character label c in the
multiviewed batch. |P (j)|, symbol · and τ denote cardinal-
ity of P (j), dot product, and scalar temperature, respec-
tively.

3.3. Online Text Renderer

To address the limitations of existing augmentation
methods for OCR in contrastive learning [3, 1, 49], we pro-
pose the online text renderer. Existing methods cannot em-
ploy strong geometric augmentations like crop and flip, as
the same word must be identically contained in multiview

images, which weakens the variance between the positive
views. In contrast, the renderer generates an image cor-
responding one-to-one with the original image using text
transcription, outputting the synthetic image and the bound-
ing box annotation together. This creates a more substantial
variance between the same characters even without strong
augmentation, such as cropping.

The renderer is designed specifically for the character-
wise SupCon and differs from existing renderers [17, 32]
in two significant ways: i) We adopt an online genera-
tion method to replace existing augmentation in contrastive
learning. ii) To maximize the character variance with high
speed, we randomly select various fonts and background
colors. We also observed that the renderer could generate
synthetic data in less time than it takes to load real data into
memory. Overall, the proposed renderer presents a simple
and efficient approach to text rendering that can improve
the variance between positive views, leading to better con-
trastive learning results.

Online Rendering Engine. Our generation engine is im-
plemented using the Python Pillow package [11]. To gen-
erate synthetic text images, we require only a font and a
set of words. We leverage more than 3,000 fonts provided
by Google* to maximize the character variance. Detailed
settings can be adjusted, including image resolution range,
background RGB range, font size range, and whether to
generate character-level coordinates. The background color
is chosen randomly within the specified range, and each
word in the set is rendered at a randomly selected location
and size within the specified range. Examples of synthetic
images are shown in Figures 1 and 4.

Weakly Supervised Pre-training OCR. We propose a
weakly supervised pre-training for OCR-read that elimi-
nates the need for expensive coordinate annotation of real
images. Specifically, the model learns coordinate informa-
tion solely from rendered data. As shown in Figure 4, the
proposed weakly supervised learning involves two steps: i)
replacing the input coordinate tokens of real data with mask
tokens in a teacher-forcing scheme [56], and ii) masking the
coordinate token loss of the real data. As a result, the model
learns localization and recognition on synthetic data while
only learning text annotations on real data. Additionally, the
renderer generates the same characters of input text annota-
tions in multiview images, providing high-quality positive
samples for character-wise SupCon. The proposed weakly
supervised learning can be expressed as follows:

Ltoken-weak = −
N∑
i=1

wi logP (yi|x, ŷ1:i-1), (3)

where wi denotes a pre-assigned weight for coordinate to-
kens in the sequence. We set wi = 0 for the coordinate

*https://fonts.google.com
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tokens of real data and set wi = 1 for other cases. In the
case of text-read, Ltoken-weak is equivalent to Ltoken due to
the absence of the coordinate tokens.

Loss Function. Finally, we present the following loss func-
tion L of SCOB that consists of token loss Ltoken-weak as well
as our character-wise supervised contrastive loss LSupCon:

L =
1

M

M∑
m=1

Lm
token-weak + λLSupCon, (4)

where M is the number of image-label pairs in multiviewed
batch and λ denotes a scaling factor of LSupCon.

4. Experiments
4.1. Pre-training Details
Architecture Setup. Architecture of W has a few changes
from Donut [32]. We use Swin-B [40] pre-trained with
ImageNet-22K [13] as a visual encoder and set the layer
numbers to [2, 2, 18, 2], window size to 12, and input res-
olution to 768×768. The decoder uses a 12-layer Trans-
former [54] initialized by BERT [28] with 12 heads and
768 hidden size, employing character tokenization with
512 maximum sequence length due to its empirical supe-
riority in OCR. The model is trained for 1M steps using
Adam [33] optimizer with a batch size of 32 distributed
across 8 NVIDIA V100 GPUs. For SCOB training, we set
λ = 0.5, τ = 0.07, and a 2-layer MLP character-level pro-
jector with 128 hidden dimensions. Since SCOB for OCR-
read is performed under the assumption that the coordinates
of the real dataset are unavailable, it learns a sequence con-
structed in random order. The coordinate token is config-
ured in the form of a bounding box for all datasets.

Dataset. For pre-training, we use the IIT-CDIP [37] and
real scene text datasets [27, 26, 10, 35, 51, 41], common
in VDU and scene text OCR, with batch ratios of 20%
and 80%, respectively. IIT-CDIP is a dataset composed
of 11M scanned English document images with abundant
sentence-level texts and we achieve pseudo-OCR labels
through the CLOVA OCR API following Donut [32]. We
employ real scene text dataset such as ICDAR2013 [27], IC-
DAR2015 [26], TotalText [10], OpenImages v6 [35], Tex-
tOCR [51] and HierText [41] where the total amount of
data is 857K. For OpenImages v6, we filter non-text im-
ages and obtain pseudo-OCR labels through CLOVA OCR
API. These scene text datasets contain word instances and
complex backgrounds, enabling the model to learn coordi-
nate information and embed diverse visual features in con-
trastive subspace.

4.2. Fine-tuning Details on Downstream Tasks

To present a comprehensive investigation, we provide
extensive benchmarks on 11 datasets as shown in Table 1.

Although OCR-read has the advantage of the text local-
ization objective, adding coordinate tokens can cause the
maximum sequence length to be relatively insufficient. To
compensate for this, we perform a text-read task of 50K
as short intermediate training just before fine-tuning. Fine-
tuned downstream tasks are briefly described as follows. We
will provide fine-tuning details in the supplemental file.

Scene Text OCR. To evaluate the text localization objec-
tive, we fine-tune and evaluate the widely used scene text
OCR datasets: ICDAR2013, ICDAR2015, and TotalText.
The train set is the pre-training dataset excluding IIT-CDIP.

Table Reconstruction. PubTabNet is a dataset annotated
with HTML format that contains 500K training, 9K valida-
tion, and 9K test samples. In this paper, our models decode
contents in the cell as well as table structure from the input
image. We employ TEDS [63] as an evaluation metric.

VQA for Scene Text and Document. For scene text and
document VQA, we include additional datasets [45, 18,
15], following prior work [55], and fine-tune three mod-
els with different batch ratios: scene text VQA [50, 5],
DocVQA [44], and InfoVQA [43]. Evaluation adheres to
standard settings, with scene text VQA on the validation
dataset [30], and document VQA on the test dataset.

Document Classification. RVL-CDIP [19], a subset of IIT-
CDIP, is 400K scanned document images labeled into 16
categories. This dataset comprises 320K train images, 40K
validation images, and 40K test images.

Key Information Extraction. CORD, the Consolidated
Receipt Dataset, consists of 800 train, 100 validation, and
100 test receipt images. We construct the target sequence
the same as Donut, and the performance is reported with a
TED score between generated and ground-truth JSON files.

4.3. Performance Evaluation and Investigation

We investigate pre-training objectives and validate the
effect of SCOB. Accordingly, we present four pre-trained
models as shown in Table 1:

• WOCR-read: a OCR-read pre-trained model that learns
a sequence composed of coordinate information and
transcription in a raster scan order using Eq. 1.

• WOCR-read w/ SCOB: a pre-trained model where SCOB
is applied to OCR-read. It is trained by Eq. 4 with the
coordinate token of rendered data.

• Wtext-read: a text-read pre-trained model that learns
transcription-only sequences in raster scan order
(pseudo-label order) using Eq. 1. This can be con-
sidered the previous text-read based method, such as
Donut [32] and Dessurt [12].

• Wtext-read w/ SCOB: a pre-trained model where SCOB
is applied to text-read. It is trained by Eq. 4 without the
coordinate token.
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Method #GPUs
Universal Text Understanding Downstream Tasks

Table
Reconstruction KIE

Document
Classification Document VQA

Layout
Analysis Scene Text OCR Scene Text VQA

PubTabNet [63] CORD [47] RVL-CDIP [19] DocVQA [44] InfoVQA [43] PubLayNet [64] IC13 [27] IC15 [26] TotalText [10] TextVQA [50] ST-VQA [5]

WOCR-read 8×V100 96.0 88.2 94.2 56.1 22.7 93.8 95.8 89.6 84.9 55.4 62.9
WOCR-read w/ SCOB 8×V100 95.9 (-0.1) 88.5 (+0.3) 94.6 (+0.4) 60.2 (+4.1) 28.5 (+5.8) 93.9 (+0.1) 96.6 (+0.8) 90.9 (+1.3) 86.0 (+1.1) 56.2 (+0.8) 62.6 (-0.3)

Wtext-read 8×V100 96.2 85.5 94.4 57.0 25.2 93.6 96.0 87.2 83.7 49.3 57.2

Wtext-read w/ SCOB 8×V100 96.0 (-0.2) 87.4 (+1.9) 94.3 (-0.1) 59.6 (+2.6) 27.5 (+2.3) 93.9 (+0.3) 96.0 (+0.0) 90.2 (+3.0) 85.3 (+1.6) 54.4 (+5.1) 61.2 (+4.0)

TableFormer [46] n/a 93.7 - - - - - - - - - -

Donutproto [32] 8×V100 - 85.4 94.5 47.1 10.2* - - - - - -

Donut [32] 64×A100 - 90.9 95.3 67.5 24.4* - - - - 36.8* 61.5*

LayoutLMv3 [22] 32×V100 - 84.4* 95.5 83.4 - 95.1 - - - - -

SPTS [48] 32×V100 - - - - - - 93.3 77.5 82.4 - -

PreSTU [30] n/a - - - - - - - - - 54.5 62.6

Table 1. The extensive benchmarks for text-related downstream tasks. “#GPUs” denotes the total number of employed GPUs for pre-
training. The left section is VDU tasks, and the right section is STU tasks. The best performance is represented in bold. Note that Donut
was pre-trained on IIT-CDIP and SynthDoG, while Donutproto was pre-trained on SynthDoG [32]. ∗ denotes the performance results of our
fine-tuning, conducted following the author’s guidelines.

During the pre-training of Wtext-read, we observed several in-
stabilities. Thus, we employed the weights of Wtext-read that
achieved the highest score on the validation set. Additional
results on the instability are in the supplemental file.

We also report scores of the comparison model. Specif-
ically, TableFormer [46], SPTS [48], and PreSTU [30] fo-
cused on table reconstruction, scene text OCR, and scene
text VQA tasks, respectively. Additionally, Donutproto [32],
Donut [32], and LayoutLMv3 [22] served as foundational
models for VDU tasks. It is well-known that the total ca-
pacity of GPUs is crucial for pre-training. Unfortunately, we
used only eight V100 GPUs, which are a relatively limited
resources compared to other methods, resulting in relatively
lower performance on few benchmarks. However, since the
main goal of our paper is to present an investigation of pre-
training methods and validate the effect of SCOB, our mod-
els still provide meaningful experimental results. In the sup-
plemental material, an investigation is conducted into the
ramifications stemming from variations in the batch size
and image resolution during the pre-training phase. We be-
lieve this investigation can provide insights into the opti-
mization of performance scalability through the harnessing
of additional GPUs.

4.3.1 Text-read vs. OCR-read

We frequently observe that training Wtext-read using both
VDU and STU data leads to unstable learning, while
WOCR-read is trained stably. We suspect that the coordinate
information in WOCR-read alleviates domain conflict by guid-
ing the text to be read explicitly even for complex scene
images. Thus, Wtext-read can be more vulnerable to training
complex scene text images, which is represented in our ex-
perimental results. As shown in Table 1, WOCR-read consider-
ably outperforms Wtext-read on all scene text benchmarks. On
the other hand, Wtext-read shows better performance on docu-

ment VQA tasks. We think that comprehending the contex-
tual information of the text within a well scanned or bina-
rized image is a pivotal component of document VQA tasks.
Thus, Wtext-read, which is trained on longer text sequences,
can be beneficial for contextual comprehension.

4.3.2 The Effect of SCOB.

Experimental results validate the effect of SCOB on both
text-read and OCR-read. We expect SCOB to facilitate sta-
ble pre-training by bridging the complex domain gap and
we confirm Wtext-read w/ SCOB is trained stably. Table 1
also shows that SCOB considerably improves the perfor-
mance on scene text OCR, VQA, and KIE benchmarks
with a large margin. In particular, it is quite notable that
the improvements on TextVQA and ST-VQA are 5.1 and
4.0, respectively. WOCR-read w/ SCOB also notably outper-
forms WOCR-read on VQA and scene text OCR benchmarks,
achieving the best performance among comparisons in in-
foVQA. We would emphasize that WOCR-read w/ SCOB is
trained under the weakly supervised setting. Its required an-
notation is equivalent to Wtext-read and Wtext-read w/ SCOB,
which is much lower cost than that of WOCR-read.

Large improvements are generally achieved at the OCR
and VQA tasks. This can be because better character recog-
nition is a prerequisite for a better understanding of doc-
ument or scene text. Moreover, VQA is closely related to
OCR because most of the answers exist in the image con-
taining text. Significant enhancements to KIE, which in-
volves the task of reading and organizing word boxes, arise
from analogous reasons.

4.3.3 Comparison with SoTA Methods

As shown in Table 1, the presented models achieve com-
petitive or better performance across the VDU and STU
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Method #Params
CORD [47]

(Acc)
RVL-CDIP [19]

(Acc)
DocVQA [44]

(ANLS)

BERT [28] 110M + α 65.5 89.8 63.6

LayoutLM [58] 113M + α 81.3 94.4 69.8

LayoutLMv2 [59] 200M + α 82.4 95.3 78.1

LayoutLMv3 [22] 133M + α 84.4 95.4 78.8
Dessurt [12] 127M - 93.6 63.2

Donutproto [32] 143M 85.4 94.5 47.1

Donut [32] 143M 90.9 95.3 67.5

WOCR-read 202M 88.2 94.2 56.1

WOCR-read w/ SCOB 202M 88.5 94.6 60.5

Wtext-read 202M 84.4 94.4 57.0

Wtext-read w/ SCOB 202M 87.4 94.3 59.6

Table 2. The public benchmark on CORD [47], RVL-CDIP [19],
and DocVQA [44]. α is represented for the requirement of an ad-
ditional OCR model.

Method #Param
TextVQA [50]

(Acc.)
ST-VQA [5]

(ANLS)

SA-M4C [25] 93M 45.4 51.2

TAP [62] 160M 54.7 59.8

GITLarge [55] 347M 37.5 44.6

PreSTU [30] 278M 54.5 62.6

WOCR-read 202M 55.4 62.9
WOCR-read w/ SCOB 202M 56.2 62.6

Wtext-read 202M 49.3 57.2

Wtext-read w/ SCOB 202M 54.4 61.2

Flamingo [2] 80B 57.1 -

GIT [55] 681M 59.9 69.1

LaTr [4] + Rosetta-en n/a 48.4 -

LaTr [4] + Amazon-OCR n/a 59.5 67.5

Table 3. The public benchmark on TextVQA [50] and ST-VQA [5]
for scene text VQA. LaTr requires the result of OCR as the input.
We report two results depending on the employed OCR models.
The best performance among similar-sized models (#Param less
than 400M) is represented in bold.

benchmarks. Wtext-read, regarded as a re-implementation of
Donut using our framework, is faithfully reproduced given
the number of GPUs used, batch size, and resolution. To
validate the presence of the domain gap between VDU
and STU data, we fine-tune Donut on scene text VQA
benchmarks where Donut is mainly pre-trained on VDU
data. While Donut achieved a competitive advantage on the
DocVQA benchmark, it only managed to secure compara-
ble scores on ST-VQA. Furthermore, its performance sig-
nificantly dropped in the TextVQA. We also find that read-
based pre-training is effective for table reconstruction and
our models achieve state-of-the-art. In STU benchmarks,
WOCR-read w/ SCOB outperforms SPTS on all of the scene
text OCR benchmarks and achieves better performance than
PreSTU on TextVQA.

Input Method
TEDS

Simple Complex All

PDF
Tabula 78.0 57.8 67.9

Acrobat Pro 68.9 61.8 65.3

TableFormer [46] 95.4 90.1 93.6

Image

Acrobat Pro 53.8 53.5 53.7

WYGIWYS [14] 81.7 75.5 78.6

EDD [63] 91.2 85.4 88.3

WOCR-read 97.7 94.2 96.0

WOCR-read w/ SCOB 97.5 94.1 95.9

Wtext-read 97.9 94.5 96.2
Wtext-read w/ SCOB 97.6 94.1 96.0

Table 4. The public benchmark on PubTabNet [63] for table recon-
struction including content in the cell.

4.4. Detailed Performance Comparison

In this subsection, we compare our models with more
diverse methods. Table 2 shows that our models present
the second-best performance on CORD and relatively lower
performance on DocVQA. LayoutLMv2 [59] and Lay-
outLMv3 [22] have notable performance on DocVQA. Un-
like Donut, Dessurt, and our models, LayoutLMs take both
image and text (OCR) modalities as input, which addition-
ally requires OCR results as a pre-process. Accordingly,
LayoutLMv3 (1.8 sec/img) takes longer inference time than
our models (1.1 sec/img) due to acquiring OCR results. We
measure the inference time with a V100 GPU on CORD
dataset [47]. Kim et al. [32] also reported that Donut is 2
times faster than LayoutLMv2.

As illustrated in Table 3, our models show compara-
ble performance on scene text VQA tasks. Specifically, our
model achieves the best performance among the similar-
sized models. Surprisingly, WOCR-read w/ SCOB achieves
comparable performance to Flamingo, which has extremely
large parameters. Since our models are also scalable, like
GIT, we expect the enlarged models to reach the perfor-
mance of GIT and Flamingo.

For table reconstruction, taking the image input is more
challenging than PDF because the contents in the cell
should also be decoded. As can be seen in Table 4, the per-
formance of Acrobat Pro on PDF has much higher than that
on the image input. Our models substantially outperform
previous methods despite using the image input and can
be a strong baseline for the generation model. We discuss
more comparisons on other tasks such as layout analysis,
and scene text OCR, in a supplemental file.

5. Analysis

Ablation Study. We conduct an ablation study on proposed
components: (A) OCR-read, (B) character-wise SupCon,
(C) online text rendering, (D) SCOB, and (E) SCOB with

19569



Components KIE [47] DocVQA [44] OCR [27, 26, 10] Scene VQA [50, 5]

A. OCR-read 88.2 55.1 81.3 57.3

B. A w/ SupCon 88.0 50.0 82.2 56.8

C. A w/ rendering 87.7 47.8 82.0 54.3

D. A w/ SCOB 88.5 55.5 83.0 59.4

E. D w/ full annotation 86.8 55.1 82.6 59.6

Table 5. Ablation study on the proposed components. E denotes
that the model is trained by SCOB with full annotations of both
rendered and real images. We report the performance averaged on
scene text OCR and scene text VQA.

full annotations of rendered and real images. We pre-train
each model with different components and fine-tune each
model on several downstream tasks. As shown in Table 5, B
and C improve the performance of OCR but degrades that of
the other downstream tasks. We think the reasons are as fol-
lows: i) For the case of SupCon, a naive augmentation used
in previous works [16, 20, 6, 8] would not be beneficial to
other downstream tasks (compare A vs. B). ii) For the case
of online text rendering, it is trained only with half of the
real data because half of the batch is charged with rendered
images (compare A vs. C). iii) For the case of SCOB, the
renderer plays a critical role as a fitted augmentation of Sup-
Con by providing strong variance to positive samples. Also,
character-wise SupCon bridges all synthetic, document, and
scene domains by enforcing the same characters close to-
gether, which presents the synergistic effect. Comparing D
and E, SCOB using full supervision could not significantly
improve the performance, which shows SCOB is success-
fully pre-trained with weak supervision. We conduct an ab-
lation study with a down-scaled setting for efficiency. More
details will be provided in the supplementary material.

Qualitative Analysis. In Figure 5, we visualize represen-
tations extracted from the final layer of the decoder using
t-SNE [53] by mapping high-dimensional features into low-
dimensional space through KL-divergence. Note that SCOB
clusters embeddings more discriminatively than other meth-
ods. More figures are in the supplemental material.

6. Discussion
We reported a wide range of benchmark results, some

of which may not be desirable for validating SCOB. This
is because we hope to contribute to the text understanding
field by presenting a transparent investigation rather than
hiding adverse findings. The sequence generation model in-
herently suffers from the limitation of maximum sequence
length [32, 55]. For future works, it would be important to
solve this problem, which may help the model further learn
document understanding.

Character vs. Subword Tokenizer. Despite a subword tok-
enizer’s efficiency, we opted for a character tokenizer to im-
prove performance on both VDU and STU tasks. Notably,
using a subword tokenizer led to a drop in OCR perfor-

Figure 5. The t-SNE [53] visualization for OCR-read, text-read,
and their respective SCOB applications. Note that different colors
denote each class (character) and the nine most predicted charac-
ters are displayed. Data: ICDAR2015 [26] test set

mance, while other tasks maintained similar performance.
This choice is consistent with OCR models like SPTS and
UNITS [31]. While a decoding length of 512 may appear
concerning, it facilitated larger batch sizes with the same
GPU memory. For certain tasks, such as table reconstruc-
tion, we increased the decoding length during fine-tuning,
thereby enhancing our final performance.

Random Placement of Words in Synthetic Images. In our
study, we discerned a consistent stability in SCOB training
across both the VDU and STU domains. Interestingly, even
though the absence of real data coordinates in SCOB im-
pinges upon the OCR’s detection performance, it enhances
recognition capabilities and promotes stability in training
by leveraging more accessible rendering data. While the
absence of word coordinates in real data could potentially
disrupt the prediction of subsequent words, we posit that
the employment of a teacher-forcing scheme, which feeds
in ground-truth words during training, effectively mitigates
this issue. Additionally, Sinha et al. [52] found that word
co-occurrence statistics are more crucial than word order in
MLM pre-training, which may explain why SCOB can pre-
train effectively.

7. Conclusion
This paper investigates an effective pre-training on a total

of eleven text-related tasks in the document and scene text
domains. Our proposed SCOB is a new pre-training method
for universal text understanding that leverages a character-
wise supervised contrastive loss with online text rendering,
enhancing the stability of training and reducing annotation
costs. Experimental results on various visual text-related
tasks validate that our SCOB is broadly applicable to read-
based pre-training methods and improves performance.
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