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Abstract

Temporal Action Detection (TAD) is challenging but
fundamental for real-world video applications. Recently,
DETR-based models have been devised for TAD but have
not performed well yet. In this paper, we point out the prob-
lem in the self-attention of DETR for TAD; the attention
modules focus on a few key elements, called temporal col-
lapse problem. It degrades the capability of the encoder
and decoder since their self-attention modules play no role.
To solve the problem, we propose a novel framework, Self-
DETR, which utilizes cross-attention maps of the decoder
to reactivate self-attention modules. We recover the rela-
tionship between encoder features by simple matrix multi-
plication of the cross-attention map and its transpose. Like-
wise, we also get the information within decoder queries.
By guiding collapsed self-attention maps with the guidance
map calculated, we settle down the temporal collapse of
self-attention modules in the encoder and decoder. Our ex-
tensive experiments demonstrate that Self-DETR resolves
the temporal collapse problem by keeping high diversity
of attention over all layers. Moreover, it is validated that
our simple framework achieves a new state-of-the-art per-
formance on THUMOS14 and outperforms all the DETR-
based approaches on ActivityNet-v1.3.

1. Introduction

Understanding videos has become fundamental as un-
countable videos are produced all over devices every mo-
ment. In the first place, action recognition using trimmed
video clips led the field with tremendous advances during
past decades. However, unacceptable costs to snip real-
world videos fostered the literature towards temporal ac-
tion detection (TAD). Temporal action detection not just
classifies an action but also predicts time boundaries of
untrimmed video.

Pioneering methods [2, 3, 11] adopted the concept of
fixed-length windows called action proposals inspired by
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Figure 1: Temporal collapse problem of self-attention.
The figure shows self-attention maps by DETR-based meth-
ods in object detection (OD) and temporal action detection
(TAD). Each map at the top and bottom is from the last
layer of the encoder and decoder, respectively. We can see
that the self-attention maps of the encoder and decoder in
TAD are collapsed to a small number of keys (b, e). On the
other hand, those from OD and ours show high correlation
for neighboring features (a, c) or query themselves (d, f).

object detection [15, 16, 36]. Meanwhile, the following
approaches [20, 25, 53, 58] developed point-wise learning
where they predict probabilities of start and end boundaries
to solve the low-recall issue. They reached the high-recall
score from more flexible action proposals by grouping each
pair of start and end boundaries, but unfortunately, a bunch
of generated proposals with various lengths made the rank-
ing process more challenging. Accordingly, the previous
methods heavily rely on ranking with post-processing such
as non-maximum suppression (NMS) to cope with low-
precision action proposals.

As DETR [4] has had a great impact on object detec-
tion, DETR-based methods for videos [22,30,32,39,44] are
also introduced recently. In TAD, queries of DETR are de-
fined as action instances of a video with their time intervals,
called action queries. Here, the model learns to map these
query vectors to relevant temporal features of the video to
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classify and localize the actions of interest. Since there is
no pre-set mapping between queries and ground-truth in-
stances, bipartite matching associates them with minimal
cost for the objectives to assign the labels. This approach
can tackle the task in an end-to-end manner without any
heuristics like NMS via the set-based objective.

However, it is discovered that the original DETR ar-
chitecture suffers from several problems with videos and
thereby does not perform well in TAD. It has been esti-
mated that the main problem is the failure of dense atten-
tion mechanism [30, 44]. Dense attention here indicates
standard attention mechanism which relates all elements
without any inductive bias such as locality in convolution.
To address this issue, previous DETR-based approaches in
TAD revised the standard attention to boundary-sensitive
module [44], deformable attention [30], or query relational
attention [39].

Nevertheless, the problem of the standard attention still
remains setting back DETR for TAD far behind in perfor-
mance. In this paper, we confront the problem of the stan-
dard attention. Fig. 1 shows self-attention maps of DETR
methods. From the figure, we find that the self-attention for
TAD severely suffers from collapse to a few key elements,
which we define as temporal collapse problem. This phe-
nomenon implies that the model selects the shortcut to skip
the self-attention to elude degeneration of the output. In
contrast, self-attention in object detection and ours is highly
correlated without any collapse. Hence, we point out that
the temporal collapse problem in self-attention is the core
to degrade DETR-based methods for TAD.

To solve the problem, we propose a new framework,
Self-DETR, which provides feedback to self-attention from
the encoder-decoder cross-attention. The cross-attention
map contains the entire relation between the encoder and
decoder features. We view the similarity between decoder
queries as how much they focus on similar encoder fea-
tures. Likewise, we consider the similarity between encoder
features as how much they are attended by analogous de-
coder queries. We can obtain these two kinds of guidance
by simple matrix multiplication of the cross-attention map
and its transpose. From these guidance maps, the temporal
collapse is relaxed by minimizing the gap of the guidance
and self-attention maps. Through our extensive experiments
on the public benchmarks, we validate that Self-DETR set-
tle downs the collapse by retaining high diversity of atten-
tion. As a result, Self-DETR has achieved a new state-of-
the-art performance on THUMOS14, and outperforms all
the DETR-based methods in ActivityNet-v1.3 without de-
formable attention.

To sum up, our main contributions are as follows:

• We discover the temporal collapse problem of standard
attention in the DETR-based models for TAD. We re-
veal that the main issue is in self-attention of both the

encoder and decoder.

• We propose a novel framework, Self-DETR, which uti-
lizes cross-attention maps to provide feedback to self-
attention of the encoder and decoder to prevent the
temporal collapse.

• Our extensive experiments demonstrate that Self-
DETR blocks the temporal collapse efficiently by
keeping high diversity of attention. Also we vali-
date that our model reaches a new state-of-the-art per-
formance on THUMOS14, and outperforms all the
DETR-based methods on AcitvityNet-v1.3.

2. Related Work
2.1. Temporal Action Detection

Temporal action detection (TAD) is the task to find a
time interval of an action instance in an untrimmed video
as well as classifying the instance. Early methods [2, 3, 6,
11,13,20,35,40,41,48,51–53] have been realized great im-
provements in TAD during the last decade. As two-stage ap-
proaches had been successful in object detection [15,16,36],
a number of methods in temporal action localization de-
ployed multi-stage strategies [8, 14, 35, 49, 58]. As another
stream of research, R-C3D [49] adopted the R-CNN archi-
tecture [36] in object detection with C3D model [45] for
the first time. Similarly, TAL-Net [6] customized the Faster
R-CNN architecture for TAD with dilated convolutions for
Region-of-Interest (RoI) pooling.

As the subsequent work, point-wise learning has been
widely introduced to generate more flexible action propos-
als without pre-defined temporal windows. SSN [58] and
TCN [8] extended temporal context around a generated
proposal to improve ranking performance. BSN [25] and
BMN [24] grouped candidate start-end pairs to generate
action proposals, then ranked them for final detection out-
puts. BSN++ [43] tackled scale imbalance problem based
on BSN. Besides, graph neural networks are getting a great
deal of attention in TAD [50, 54]. PGCN [54] improved
ranking performance via constructing a graph of proposals
based on their overlaps. GTAD [50] considered TAD as
sub-graph localization problem and proposed a new frame-
work with graph neural network. Also, TCANet [34] de-
vised local and global temporal context aggregation. Ac-
tionFormer [55] deployed transformer encoder as backbone
network, and E2E-TAD [28] studied for the end-to-end
learning in TAD. AMNet [18] introduced a new framework
to refine video features via action-aware attention.

2.2. DETR

End-to-end object DEtection with TRansformers
(DETR) [4] firstly viewed object detection as a direct set
prediction problem, and removed the need of the heuristic
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Method Enc. SA Dec. SA Dec. CA

RTD-Net [44] MLP Standard Standard
TadTR [30] Deformable Standard Deformable
ReAct [39] Deformable Heuristic Deformable
Self-DETR Standard Standard Standard

Table 1: Comparison of baselines and Self-DETR in
terms of attention methods. The table shows the com-
parison in terms of the methods for self-attention and cross-
attention. ‘Enc.’ and ‘Dec.’ mean the encoder and decoder,
‘SA’ and ‘CA’ indicate self-attention and cross-attention.

process, non-maximum-suppression (NMS). However,
DETR required 10 times longer training time than the
conventional approaches since Hungarian matching is hard
to be optimized with dense attention. To cope with this
issue, Deformable DETR [60] introduced sparse attention,
which attends only a part of elements by learning to specify
positions to focus on. Deformable attention gives locality
back to DETR so that the training time is significantly
reduced with performance improvement. The following
DETR-based models [27, 31] further improved query rep-
resentations through explicitly encoding box information,
which effectively helps to stabilize training.

Transformer-based models inherently suffer from the
large computational cost due to dense attention. In order
to further reduce computational cost, Sparse DETR [37] in-
troduced learnable sparsity to encoder features. To this end,
they utilized encoder-decoder cross-attention maps to pro-
duce a binary mask as the guidance of sparsity. This way
is quite related to ours in that they teach to sparsify encoder
features by cross-attention relation as features with more at-
tention from the decoder are more likely crucial for the task.

In TAD, DETR is also introduced recently as DETR-
based models have reached a new state-of-the-art perfor-
mance in object detection. RTD-Net [44] pointed out the
problem of the dense attention in the DETR’s encoder,
which shows nearly uniform distribution so that the self-
attention layers act like over-smoothing effect. RTD-Net re-
placed the transformer encoder with the boundary-sensitive
module to relieve the smoothing effect. On the other
hand, TadTR [30] devised temporal deformable attention
inspired by Deformable DETR [60] for the same problem
of RTD-Net. When it comes to query relation in the de-
coder, ReAct [39] developed a new relation matching to
enforce high correlation between queries with low-overlap
and high feature similarity. This way alleviated the problem
of query collapse in self-attention of the decoder since the
pre-arranged relations are only permitted.

However, the problem still remains since they have de-
toured standard attention by deformable attention or heuris-
tic query relation, as compared in Tab. 1. However, we
directly settle down the problem of self-attention in TAD

without any deformable attention or heuristic relation.
To be specific about the problem definition, we clearly

identify the problem of self-attention as temporal collapse
beyond existing over-smoothing effect. It is already demon-
strated that collapsed rank-1 matrix degrades performances
in transformer architecture [9]. Here, we find that current
situations are fully aligned as shown in Fig. 1. Therefore,
we claim that the over-smooth matrix is one kind of col-
lapsed matrix but with relatively small values.

3. Our Approach

In this section, we elaborate our framework, Self-DETR,
which resolves the temporal collapse problem of self-
attention in DETR for TAD. As shown in Fig. 2, Self-DETR
follows the DETR [4] architecture. On top of it, our simple
but powerful solution, self-feedback, works for guiding the
self-attention layers with cross-attention map. We first ex-
plain the original DETR and differences between the orig-
inal and ours in the following subsection. Afterwards, we
introduce the motivation, specific method, and objective in
sequence.

3.1. Preliminary

DETR. DETR [4] is based on transformer [46] architec-
ture and thereby has two main components: encoder and
decoder. First, the transformer encoder of DETR is to learn
global relations within input features. DETR uses image
features from CNN as the input tokens of the encoder. There
are multiple layers in the encoder to refine the input fea-
tures gradually. Each layer of the encoder consists of a self-
attention module and multi-layer perceptron (MLP) with
layer normalization and skip connection.

On the other hand, the decoder aims to learn the rela-
tionship between the encoder features and its own inputs,
learnable embedding vectors. They learn positional encod-
ing for object detection so also called object queries. Simi-
lar to the encoder, it has several layers but also an additional
cross-attention module in each layer to focus the relation-
ship between the encoder features and the object queries. In
other words, the outputs of the encoder and object queries
are fed into the decoder and reinforced by self-attention and
cross-attention. Finally, the output of the decoder is used to
predict the class and the location of the object.

Attention Mechanism. Both the encoder and decoder have
the attention modules [46]. They both need three variables
so each has three linear layers to project inputs into three
latent spaces. The projected ones are called query Q, key
K, and value V , respectively. Then, the attention scores are
calculated by matrix multiplication of Q and the transpose
of K followed by the softmax activation function, which
means how Q and K are similar. By pooling V with the
scores followed by a linear projection, we can get the output
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Figure 2: Overall architecture of the proposed framework, Self-DETR. Self-DETR is based on DETR architecture, and
on top of it, we design self-feedback in order to alleviate the temporal collapse problem in the self-attention modules. We
produce two types of guidance GE and GD for the encoder and decoder by matrix multiplication of the cross-attention map
AC and its transpose A⊤

C . By applying the objectives of LE
feedback and LD

feedback to minimize the gap between the guidance
and self-attention maps, the temporal collapse of self-attention disappears. This enables the model to precisely localize and
classify action instances.

of the attention modules.
Formally, Q, K, V are in RNQ×D, RNK×D, RNV ×D,

respectively, where NQ, NK , NV are the lengths of Q, K,
V , and D is the number of channels. Here, we assume that
the number of channels for Q, K, V are the same. We can
formulate the attention mechanism as follows:

Attention(Q,K, V ) = AV,

A = softmax(
QK⊤
√
D

),
(1)

where A is the attention map, A⊤ indicates the transpose
of A. For the self-attention module, Q, K, V are from the
same input features. On the other hand, Q is from the de-
coder query embeddings, and K, V from the encoder fea-
tures in the cross-attention module.
DETR for TAD. As for input to the model, we deploy fea-
tures of a 3D CNN pre-trained on Kinetics [19]. Note that
3D CNN is fixed while training our model. To extract the
video features, each video is fed into the 3D CNN followed
by global-average pooling in spatial dimensions so that only
the temporal dimension remains.

Self-DETR follows the architecture of DAB-DETR [27],
but decoder queries stand for action instances, called ac-
tion queries. Therefore, the decoder receives the refined
video features from the encoder and relates them with action
queries. Finally, the output of the decoder passes through

classification and regression heads, then final detection re-
sults are produced.

3.2. Guidance Maps

Motivation. From [9], the pure attention module itself has
the bias towards a rank-1 matrix exponentially with respect
to the depth of the model without skip connections. Unfor-
tunately, the collapse problem also can be found in DETR
for TAD as aforementioned Fig 1 though it has skip connec-
tions. This phenomenon implies that skip connections are
not enough to slow down the collapse in TAD. It is critical
to DETR-based models because the self-attention modules
are just skipped for the task without learning expressive re-
lation. Nonetheless, we observe that the cross-attention of
DETR does not suffer from the temporal collapse by direct
optimization from the objective. The cross-attention map
contains the entire relations between encoder features and
decoder queries, so we process the map to get useful infor-
mation for guiding self-attention.

In this paper, we emphasize to retain the standard atten-
tion in self-attention instead of replacing it. The main ben-
efit of keeping standard attention mechanism is that it intro-
duces no inductive bias [10]. Convolutions or deformable
attention [60] give a bias of locality so that it could lead
the model to learn shortcuts. In addition, it is eventually
based on heuristics where pixels resemble their neighbor-
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Figure 3: Self-feedback methods. (a) For aggregating self-attention maps Ai
E from multiple layers of the encoder, we use a

series of matrix multiplication with recurrent element-wise square-root normalization. Also, we average the guidance maps
GE for the encoder from the cross-attention maps of the decoder. The guidance map is applied on the aggregated self-
attention map of the encoder H . (b) On the other hand, the self-feedback for the decoder is provided layer by layer between
the self-attention map Al

D and guidance map Gl
D.

hood. The effort to remove biases sets the model free from
limitations in learning [10], which is aligned with the prin-
cipal of DETR [4].

Cross-Attention. The original goal of the cross-attention
is to represent encoder features with the score of similarity
between from decoder queries and encoder features. Ac-
cordingly, we usually see the map as cross-relation between
decoder queries Q and encoder features K. In addition,
there are two perspectives to view the cross-attention map.
First, at the side of Q, they focus on the similar parts of K
when they are analogous. On the other side of K, they are
attended by the similar parts of Q if they are related.

We emphasize the one’s side by multiplying the cross-
attention map and the transpose of it. When we denote the
cross-attention map as AC , we make the guidance map GD

for the self-attention modules of the decoder as follows:

GD = sqrt(ACAC
⊤), (2)

where sqrt(·) is element-wise square-root operation, AC ∈
RLq×Le and GD ∈ RLq×Lq where Lq and Le are the num-
ber of the query and encoder features.

Equivalently, we can obtain the guidance map GE for the
self-attention modules of the encoder as follows:

GE = sqrt(AC
⊤AC), (3)

where GE ∈ RLe×Le .

3.3. Self-Feedback

Now, we have the guidance maps GE and GD for the
self-feedback to the self-attention modules of the encoder
and decoder, respectively by Eq. 2 and 3. Still, there
are more options to consider for how to handle the cross-
attention and self-attention maps from the multiple layers

of the encoder and decoder. This consideration is quite im-
portant because the attention map on each layer exhibits
different patterns as it goes deeper. If we apply one sin-
gle guidance map to force all self-attention maps to equally
follow it, it will narrow down the diversity of representa-
tion. From this perspective, we deliver how to choose or
aggregate the cross-attention and self-attention maps before
giving the feedback, as illustrated in Fig. 3.

Encoder. Firstly, as for the encoder, we need to aggregate
the self-attention maps of the encoder, on which we give
the self-feedback. There are two possible options for aggre-
gation: 1) average pooling, 2) matrix multiplication. One
of the simplest ways is to average the self-attention maps
from the encoder layers. On the other hand, we also use
matrix multiplication to aggregate them. The stacked en-
coder layers can be viewed as the matrix multiplication of
the subsequent self-attention maps when we assume there
are no MLPs and skip connections. In this sense, we aggre-
gate the self-attention maps from the multiple layers of the
encoder by a series of matrix multiplication.

Formally, let us denote the self-attention map in the i-
th layer of the encoder as Ai

E . Then we can describe the
aggregated map as follows:

Hi = sqrt(Hi−1Ai
E

⊤
), (4)

where i = [2, 3, 4, ..., NE ], H1 = A1
E . The final aggregated

map H = HNE with the number of encoder layers NE .
As for the guidance map for the encoder, we simply aver-

age the cross-attention maps from the layers of the decoder.
Afterwards, we obtain the guidance map GE by Eq. 2. With
the given aggregated self-attention map H of the encoder,
and guidance map GE of the decoder, we formulate the ob-
jective function of the self-feedback for the self-attention

10290



modules of the encoder as follows:

LE
Feedback = DKL(H || GE), (5)

where DKL is the Kullback–Leibler (KL) divergence.
Decoder. The decoder also has multiple layers, and each
layer has the self-attention and cross-attention modules. On
the same layer, the self-attention and cross-attention mod-
ules share the representations so their representation level
is same. Therefore, we do not aggregate the attention maps
from the multiple layers. Instead, we make the guidance
map GD at each layer and give it to the self-attention mod-
ule on the corresponding layer.

Formally, we define the self-attention map in the l-th
layer of the decoder as Al

D. Similarly, let us denote the GD

from the l-th layer of the cross-attention module as Gl
D. We

then formulate the cost function of the self-feedback for the
self-attention modules of the decoder as follows:

LD
Feedback =

ND∑
l=1

DKL(A
l
D || Gl

D), (6)

where ND is the number of decoder layers.

3.4. Objectives

DETR. Let us denote the ground-truths, and the M predic-
tions as y, ŷ = ŷi

M
i=1, respectively. For the bipartite match-

ing between the ground-truth and prediction sets, we define
the optimal matching with the minimal cost to search for the
permutation of M elements j ∈ JM as follows:

ĵ = argmin
j∈JM

M∑
i

Lmatch(yi, ŷj(i)), (7)

where Lmatch(yi,ŷj(i)) is a pair-wise matching cost between
yi and the prediction with the index from j(i), which out-
puts the index i from the permutation j.

Next, let us denote each ground-truth action as yi =
(ci, ti), where ci is the target class label with the back-
ground one ∅, and ti is the time intervals of the start and
end times. For the prediction with the index j(i), we define
the probability of the class ci as p̂j(i)(ci) and the predicted
time intervals as t̂ĵ(i). Then, we define Lmatch(yi, ŷj(i)) as
below:

Lmatch(yi, ŷj(i)) = −1ci ̸=∅ p̂j(i)(ci) + 1ci ̸=∅ Lreg(ti, t̂j(i)),

where Lreg(ti, t̂j(i)) is the regression loss between the
ground-truth ti and the prediction t̂ with the index j(i).
The regression loss Lreg consists of L1 and Interaction-over-
Union (IoU) losses as in the DETR-based methods [30, 39,
44]. Finally, we formulate the main objective as following:

LDETR(y, ŷ) =

M∑
i=1

[− log p̂ĵ(i)(ci) + 1ci ̸=∅Lreg(ti, t̂ĵ(i))], (8)

where ĵ is the optimal assignment from Eq. 7.
Full Objectives. To summarize the objectives for our
framework, Self-DETR, the full objective is can be de-
scribed as below:

L = LDETR + λELE
Feedback + λDLD

Feedback, (9)

where λE and λD are the weights for the self-feedback
losses for the encoder and decoder.

4. Experiments
4.1. Datasets

Our experiments are conducted on the two challeng-
ing benchmarks of temporal action detection: THU-
MOS14 [17] and ActivityNet-v1.3 [12].

THUMOS14 has 1,010 and 1,574 untrimmed videos as
its validation and testing samples, respectively. Specifically,
200 and 212 videos have temporal annotations in the valida-
tion and testing sets, respectively. The dataset has 20 action
classes. We use the validation set for training, and the test-
ing one for evaluation.

ActivityNet-v1.3 contains 19,994 videos with 200 ac-
tion classes. 10024, 4926, and 5044 videos are for training,
validation, and testing, respectively.

4.2. Implementation Details

Architecture. We use the features of I3D [5] pre-trained on
Kinetics [19]. In order for fair comparison, we are based
on the size-modulated cross-attention module [27] as the
baselines [30, 39] deploy deformable attention [60] which
also uses the size-modulated attention. Also, Self-DETR
deploys learnable anchors and the way of updating predic-
tions iteratively as done in [30, 39]. The number of layers
of the encoder and decoder is 2, and 4, respectively. The
number of the queries is 40. We set the weights λE , λD of
the losses of the self-feedback for the encoder and decoder
as 5.
Training. As for both datasets, we use Adam [21] as the
optimizer with the batch size of 16. For the input, we use
128 and 192 length of temporal features for THUMOS14
and ActivityNet-v1.3, respectively.

In THUMOS14, we train the framework for 120 epochs.
The learning rate is decayed by 1/10 when it reaches 80 and
100 epochs. As for ActivityNet-v1.3, 20 epochs are taken
for training. The learning rate decreases by cosine aneal-
ing with a warm-up of 5 epochs. In addition, we resize the
features of a video with linear interpolation to 192 length.
Inference. We slice the temporal features with a 128-
length window with overlap of 32 for THUMOS14. As for
ActivityNet-v1.3, we resize the features to 192 length as
done in training. Also, we use the top 100, and 200 predic-
tions after non-maximum suppression (NMS) for the final
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Method THUMOS14 ActivityNet-v1.3
0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Standard Methods
BSN [25] 53.5 45.0 36.9 28.4 20.0 36.8 46.46 29.96 8.02 29.17
BMN [24] 56.0 47.4 38.8 29.7 20.5 38.5 50.07 34.78 8.29 33.85
GTAD [50] 54.5 47.6 40.2 30.8 23.4 39.3 50.36 34.60 9.02 34.09
BC-GNN [1] 57.1 49.1 40.4 31.2 23.1 40.2 50.56 34.75 9.37 34.26
BSN++ [43] 59.9 49.5 41.3 31.9 22.8 41.1 51.27 35.70 8.33 34.88
IC & IC [57] 53.9 50.7 45.4 38.0 28.5 43.3 43.47 33.91 9.21 30.12
MUSES [29] 68.9 64.0 56.9 46.3 31.0 53.4 50.02 34.97 6.57 33.99
CSA [42] 64.4 58.0 49.2 38.2 27.8 47.5 52.44 36.69 5.18 35.43
PBRNet [26] 58.5 54.6 51.3 41.8 29.5 47.1 53.96 34.97 8.98 35.01
VSGN [56] 66.7 60.4 52.4 41.0 30.4 50.2 52.38 36.01 8.37 35.07
ContextLoc [61] 68.3 63.8 54.3 41.8 26.2 50.9 56.01 35.19 3.55 34.23
AFSD [23] 67.3 62.4 55.5 43.7 31.1 52.0 52.40 35.30 6.50 34.40
DCAN [7] 68.2 62.7 54.1 43.9 32.6 52.3 51.78 35.98 9.45 35.39
Zhu et al. [62] 72.1 65.9 57.0 44.2 28.5 53.5 58.14 36.30 6.16 35.24
RCL [47] 70.1 62.3 52.9 42.7 30.7 51.0 54.19 36.19 9.17 35.98
TAGS [33] 68.6 63.8 57.0 46.3 31.8 52.8 56.30 36.80 9.60 36.50

DETR-based Methods
RTD-Net [44] 68.3 62.3 51.9 38.8 23.7 49.0 47.21 30.68 8.61 30.83
TadTR [30] 62.4 57.4 49.2 37.8 26.3 46.6 49.10 32.60 8.50 32.30
ReAct [39] 69.2 65.0 57.1 47.8 35.6 55.0 49.60 33.00 8.60 32.60
Self-DETR 74.6 69.5 60.0 47.6 31.8 56.7 52.25 33.67 8.40 33.76

Table 2: The comparison results with the-state-of-the-art on THUMOS14 and ActivityNet-v1.3. The table shows the
evaluation results of the two types: standard and DETR-based models. In THUMOS14, our model shows the state-of-the-art
performance over all previous methods. Also, our model outperforms the existing DETR-based methods on ActivityNet.

localization results for ActivityNet-v1.3, and THUMOS14,
respectively. We use SoftNMS with the NMS threshoold of
0.40. For the class label, we fuse our classification scores
with the top-1 video-level predictions of [59] as done in
[30, 39, 44] for ActivityNet-v1.3.

4.3. Comparison with the State-of-the-Art

We compare the-state-of-the-art methods to evaluate our
framework, Self-DETR, on THUMOS14 and ActivityNet-
v1.3 datasets. Table. 2 shows the comparison results
with the state-of-the-art methods on THUMOS14 and
ActivityNet-v1.3. On THUMOS14, Self-DETR shows a
new state-of-the-art performance over all of the existing ap-
proaches. Compared to the standard methods which are not
based on the set prediction, our model shows superior per-
formances at all the IoU thresholds. As for the DETR-based
methods [30, 39, 44], Self-DETR outperforms all the previ-
ous DETR-based methods in terms of the average mAP as
well as the IoU thresholds of 0.3, 0.4, and 0.5.

As for ActivityNet-v1.3, Self-DETR also shows a new
state-of-the-art performance among the DETR-based ap-
proaches. Interestingly, the APs at the 0.50 and 0.95 have
almost reached the state-of-the-art of the standard methods.

Figure 4: Diversity of self-attention maps. In order to
further analyze the effect of the self-feedback for the tem-
poral collapse problem, we measure the diversity defined in
Eq. 10 of the self-attention maps.

This shows that the performance of the DETR-based meth-
ods has become comparable to the standard approaches.

4.4. Ablation Studies
Diversity of Self-Attention. To further analyze the effect
of the self-feedback, we can measure the diversity of self-
attention maps according to [9]. The diversity d(A) for the
attention map A is the measure of the closeness between the
attention map and a rank-1 matrix as defined as below:

d(A) = ∥A− 1a⊤∥,where a = argmin
a′

∥A− 1a′⊤∥, (10)
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LE
Feedback LD

Feedback 0.3 0.4 0.5 0.6 0.7 Avg.
· · 70.5 64.3 53.9 39.3 23.8 50.3
✓ · 73.5 67.9 57.2 43.2 26.6 53.7
· ✓ 73.4 67.4 58.5 44.5 28.7 54.4
✓ ✓ 74.5 69.5 60.0 47.6 31.8 56.7

Table 3: Ablation on self-feedback. To validate each self-
feedback loss for the encoder and decoder, we have con-
ducted experiments for ablating them on THUMOS14.

Encoder Decoder 0.3 0.4 0.5 0.6 0.7 Avg.
last layer 73.0 67.2 57.8 44.9 28.8 54.3

average layer 74.6 68.6 59.2 46.0 32.0 56.1
matmul layer 74.6 69.5 60.0 47.6 31.8 56.7
matmul last 72.2 66.6 56.6 42.5 27.8 53.1
matmul average 70.4 63.8 54.0 41.5 26.0 51.1

Table 4: Aggregation methods for guidance. The table
shows the comparison results of the aggregation methods
for self-attention maps of encoder and decoder.

where ∥·∥ denotes the ℓ1,ℓ∞-composite matrix norm, a, a′

are column vectors of the attention map A, and 1 is an all-
ones vector. Note that the rank of 1a⊤ is 1, and therefore, a
smaller value of d(A) means A is closer to a rank-1 matrix.

Fig. 4 shows the diversity on each layer of the encoder
and decoder for the baseline DETR and Self-DETR. The di-
versity is measured on the test set on THUMOS14 averaged
over 160 randomly selected samples. As the model depth
gets deeper, the diversity of the baseline decreases close to
0. However, the diversity of Self-DETR does not fall down
and even increases since the self-feedback loss guides the
self-attention maps.
Ablation on Self-Feedback. In order to validate contribu-
tion of each self-feedback for the self-attention module of
the encoder and decoder, we have conducted experiments
for ablating the self-feedback on the THUMOS14 dataset.

Tab. 3 shows the ablation study on the self-feedback. As
reported, each self-feedback for the encoder and decoder
significantly improves the overall performance at all the IoU
thresholds. Moreover, when we use the self-feedback for
both the encoder and decoder, the performance gain be-
comes larger reaching the state-of-the-art performance on
THUMOS14. Through this ablation study, each of the self-
feedback losses LE

Feedback and LD
Feedback is crucial to relieve

the temporal collapse problem of self-attention in DETR.
Aggregation for Guidance. To search for the optimal ag-
gregation method, we conducted the experiments on THU-
MOS14 in Tab. 4. ‘last’ means providing self-feedback only
for the last self-attention layer. ‘average’ indicates average
pooling self-attention maps and ‘matmul’ is matrix multi-
plication. Also, ‘layer’ means self-feedback to each layer
with guidance from the corresponding layer of the decoder.

In the table, ‘average’ and ‘matmul’ aggregation meth-
ods show superior performances over the ‘last’ method. As

Method 0.3 0.4 0.5 0.6 0.7 Avg.
baseline 70.5 64.3 53.9 39.3 23.8 50.3
relative 69.1 63.4 53.8 40.5 24.6 50.3
identity 69.1 62.0 52.9 40.6 24.6 49.9
diversity 56.5 49.5 39.2 26.2 14.1 37.1
cross-attn. 74.6 69.5 60.0 47.6 31.8 56.7

Table 5: Alternatives for self-feedback. The table shows
results of alternatives for self-feedback.

λE λD 0.3 0.4 0.5 0.6 0.7 Avg.
1 5 73.1 67.2 58.6 45.1 29.7 54.7
3 5 73.8 67.8 58.5 46.4 30.6 55.4
5 5 74.6 69.5 60.0 47.6 31.8 56.7
5 3 73.7 67.9 59.1 47.5 32.1 56.1
5 1 73.4 67.1 57.7 44.3 28.3 54.2

Table 6: Loss weights for self-feedback. The table shows
results depending on weights for self-feedback loss.

for the decoder, ‘layer’ approach outperforms ‘last’ and ‘av-
erage’ methods as representation levels of self- and cross-
attention on the same layer are well compatible.

Alternatives for self-feedback. Table. 5 shows the results
for alternatives to the cross-attention maps for self-feedback
on THUMOS14. ‘relative’ stands for deploying relative at-
tention [38] to self-attention of the encoder. Also, ‘iden-
tity’ means forcing the model to follow the identity matrix
as guidance map, and ‘diversity’ indicates we give the ob-
jective to maximize the diversity defined by Eq. 10. The
table shows that all alternatives do not bring a performance
gain. Hence, self-feedback of our guidance map from cross-
attention is not just for regularization for diversity of self-
attention but for learning expressive self-relation.

Loss Weights of Self-Feedback. Tab. 6 shows perfor-
mances for the different weights for the self-feedback losses
for the encoder and decoder in THUMOS14. It shows that
the weight of 5 is suitable for the encoder and decoder.

5. Conclusion

In this paper, we have explicitly discovered the tempo-
ral collapse problem of self-attention in DETR for TAD. To
alleviate the collapse, we have proposed a new framework,
Self-DETR, which re-purposes cross-attention between the
encoder and decoder in DETR to produce guidance map as
self-feedback for self-attention. Our extensive experiments
have demonstrated that Self-DETR has resolved the col-
lapse of self-attention preserving diversity of relation while
reaching the state-of-the-art performance.
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