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Abstract

LiDAR segmentation is crucial for autonomous driving
perception. Recent trends favor point- or voxel-based meth-
ods as they often yield better performance than the tradi-
tional range view representation. In this work, we unveil
several key factors in building powerful range view mod-
els. We observe that the “many-to-one” mapping, semantic
incoherence, and shape deformation are possible impedi-
ments against effective learning from range view projec-
tions. We present RangeFormer – a full-cycle framework
comprising novel designs across network architecture, data
augmentation, and post-processing – that better handles the
learning and processing of LiDAR point clouds from the
range view. We further introduce a Scalable Training from
Range view (STR) strategy that trains on arbitrary low-
resolution 2D range images, while still maintaining satis-
factory 3D segmentation accuracy. We show that, for the
first time, a range view method is able to surpass the point,
voxel, and multi-view fusion counterparts in the competing
LiDAR semantic and panoptic segmentation benchmarks,
i.e., SemanticKITTI, nuScenes, and ScribbleKITTI.

1. Introduction
LiDAR point clouds have unique characteristics. As the

direct reflections of real-world scenes, they are often diverse
and unordered and thus bring extra difficulties in learning
[26, 40]. Inevitably, a good representation is needed for
efficient and effective LiDAR point cloud processing [64].

Although there exist various LiDAR representations as
shown in Tab. 1, the prevailing approaches are mainly based
on point view [32, 61], voxel view [15, 60, 81, 28], and
multi-view fusion [41, 72, 51]. These methods, however, re-
quire computationally intensive neighborhood search [50],
3D convolution operations [43], or multi-branch networks
[2, 24], which are often inefficient during both training
and inference stages. The projection-based representations,
such as range view [68, 46] and bird’s eye view [78, 80],
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Figure 1: Three detrimental factors observed in the LiDAR
range view representation: 1) the “many-to-one” problem;
2) “holes” or empty grids; and 3) shape distortions.

Table 1: Comparisons for different LiDAR representations.

View Formation Complexity Representative

Raw Points Bag-of-Points O(N · d) RandLA-Net, KPConv
Range View Range Image O(H·W

r2 · d) SqueezeSeg, RangeNet++
Bird’s Eye View Polar Image O(H·W

r2 · d) PolarNet
Voxel (Dense) Voxel Grid O(H·W ·L

r3 · d) PVCNN
Voxel (Sparse) Sparse Grid O(N · d) MinkowskiNet, SPVNAS

Voxel (Cylinder) Sparse Grid O(N · d) Cylinder3D
Multi-View Multiple O((N + H·W

r2 ) · d) AMVNet, RPVNet

are more tractable options. The 3D-to-2D rasterizations and
mature 2D operators open doors for fast and scalable in-
vehicle LiDAR perception [46, 71, 64]. Unfortunately, the
segmentation accuracy of current projection-based methods
[79, 13, 78] is still far behind the trend [73, 72, 75].

The challenge of learning from projected LiDAR scans
comes from the potential detrimental factors of the LiDAR
data representation [46]. As shown in Fig. 1, the range view
projection1 often suffers from several difficulties, includ-
ing 1) the “many-to-one” conflict of adjacent points, caused

1We show a frustum of the LiDAR scan for simplicity; the complete
range view projection is a cylindrical panorama around the ego-vehicle.
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by limited horizontal angular resolutions; 2) the “holes”
in the range images due to 3D sparsity and sensor disrup-
tions; and 3) potential shape deformations during the ras-
terization process. While these problems are ubiquitous in
range view learning, previous works hardly consider tack-
ling them. Stemming from the image segmentation com-
munity [77], prior arts widely adopt the fully-convolutional
networks (FCNs) [44, 8] for range view LiDAR segmenta-
tion [46, 79, 13, 35]. The limited receptive fields of FCNs
cannot directly model long-term dependencies and are thus
less effective in handling the mentioned impediments.

In this work, we seek an alternative in lieu of the cur-
rent range view LiDAR segmentation models. Inspired by
the success of Vision Transformer (ViT) and its follow-ups
[19, 67, 70, 42, 57], we design a new framework dubbed
RangeFormer to better handle the learning and processing
of LiDAR point clouds from the range view. We formulate
the segmentation of range view grids as a seq2seq problem
and adopt the standard self-attention modules [66] to cap-
ture the rich contextual information in a “global” manner,
which is often omitted in FCNs [46, 1, 13]. The hierarchi-
cal features extracted with such global awareness are then
fed into multi-layer perceptions (MLPs) for decoding. In
this way, every point in the range image is able to establish
interactions with other points – no matter whether close or
far and valid or empty – and further lead to more effective
representation learning from the LiDAR range view.

It is worth noting that such architectures, albeit straight-
forward, still suffer several difficulties. The first issue is
related to data diversity. The prevailing LiDAR segmen-
tation datasets [7, 21, 5, 59] contain tens of thousands of
LiDAR scans for training. These scans, however, are less
diverse in the sense that they are collected in a sequential
way. This hinders the training of Transformer-based archi-
tectures as they often rely on sufficient samples and strong
data augmentations [19]. To better handle this, We design
an augmentation combo that is tailored for range view. In-
spired by recent 3D augmentation techniques [80, 36, 47],
we manipulate the range view grids with row mixing, view
shifting, copy-paste, and grid fill. As we will show in the
following sections, these lightweight operations can signifi-
cantly boost the performance of SoTA range view methods.

The second issue comes from data post-processing. Prior
works adopt CRF [68] or k-NN [46] to smooth/infer the
range view predictions. However, it is often hard to find
a good balance between the under- and over-smoothing of
the 3D labels in unsupervised manners [34]. In contrast, we
design a supervised post-processing approach that first sub-
samples the whole LiDAR point cloud into equal-interval
“sub-clouds” and then infer their semantics, which holisti-
cally reduces the uncertainty of aliasing range view grids.

To further reduce the overhead in range view learning,
we propose STR – a scalable range view training paradigm.

STR first “divides” the whole LiDAR scan into multiple
groups along the azimuth direction and then “conquers”
each of them. This transforms range images of high hor-
izontal resolutions into a stack of low-resolution ones while
can better maintain the best-possible granularity to ease the
“many-to-one” conflict. Empirically, We find STR helpful
in reducing the complexity during training, without sacri-
ficing much convergence rate and segmentation accuracy.

The advantages of RangeFormer and STR are demon-
strated from aspects of LiDAR segmentation accuracy
and efficiency on prevailing benchmarks. Concretely, we
achieve 73.3% mIoU and 64.2% PQ on SemanticKITTI
[5], surpassing prior range view methods [79, 13] by sig-
nificant margins and also better than SoTA fusion-based
methods [73, 30, 75]. We also establish superiority on
the nuScenes [21] (sparser point clouds) and ScribbleKITTI
[65] (weak supervisions) datasets, which validates our scal-
ability. While being more effective, our approaches run 2×
to 5× faster than recent voxel [81, 60] and fusion [72, 73]
methods and can operate at sensor frame rate.

2. Related Work
LiDAR Representation. The LiDAR sensor is designed to
capture high-fidelity 3D structural information which can
be represented by various forms, i.e., raw point [49, 50, 61],
range view [31, 69, 71, 1], bird’s eye view (BEV) [78],
voxel [43, 15, 81, 75, 10], and multi-view fusion [41, 72,
73], as summarized in Tab. 1. The point and sparse voxel
methods are prevailing but suffer O(N · d) complexity,
where N is the number of points and often in the order of
105 [64]. BEV offers an efficient representation but only
yields sub-par performance [9]. As for fusion-based meth-
ods, they often comprise multiple networks which are too
heavy to yield reasonable training overhead and inference
latency [51, 75, 58]. Among all representations, range view
is the one that directly reflects the LiDAR sampling pro-
cess [62, 20, 63]. We thus focus on this modality to further
embrace its compactness and rich semantic/structural cues.
Architecture. Previous range view methods are built upon
mature FCN structures [44, 68, 69, 71, 3]. RangeNet++ [46]
proposed an encoder-decoder FCN based on DarkNet [53].
SalsaNext [17] uses dilated convolutions to further expand
the receptive fields. Lite-HDSeg [52] proposed to adopt har-
monic convolution to reduce the computation overhead. Ef-
ficientLPS [55] proposed a proximity convolution module
to leverage neighborhood points in the range image. FID-
Net [79] and CENet [13] switch the encoders to ResNet and
replace the decoder with simple interpolations. In contrast
to using FCNs, we build RangeFormer upon self-attentions
and demonstrate potential and advantages for long-range
dependency modeling in range view learning.
Augmentation. Most 3D data augmentation techniques are
object-centric [76, 11, 54, 38] and thus not generalizable to
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Figure 2: Architecture overview. The rasterized LiDAR point cloud of spatial size H × W is fed into four consecutive
stages where each comprising several standard Transformer blocks as shown in the right subfigure. The multi-scale features
extracted from these different stages are then fed into the MLP heads for decoding. The final predictions in 2D will be
projected back to 3D in a reverse manner of Eq. (1).

scenes. Panoptic-PolarNet [80] over-samples rare instance
points during training. Mix3D [47] proposed an out-of-
context mixing by supplementing points from one scene to
another. MaskRange [25] designs a weighted paste drop
augmentation to alleviate overfitting and improve class bal-
ance. LaserMix [36] proposed to mix labeled and unlabeled
LiDAR scans along the inclination axis for effective semi-
supervised learning. In this work, we present a novel and
lightweight augmentation combo tailored for range view
learning that combines mixing, shifting, union, and copy-
paste operations directly on the rasterized grids, while still
maintaining the structural consistency of the scenes.
Post-Processing. Albeit being an indispensable module of
range view LiDAR segmentation, prior works hardly con-
sider improving the post-processing process [64]. Most
works follow the CRF [68] or k-NN [46] to smooth or infer
the semantics for conflict points. Recently, Zhao et al. pro-
posed another unsupervised method named NLA for nearest
label assignment [79]. We tackle this in a supervised way
by creating “sub-clouds” from the full point cloud and infer-
ring labels for each subset, which directly reduces the infor-
mation loss and helps alleviate the “many-to-one” problem.

3. Technical Approach
In this section, we first revisit the details of range view

rasterization (Sec. 3.1). To better tackle the impediments in
range view learning, we introduce RangeFormer (Sec. 3.2)
and STR (Sec. 3.3) which emphasize the effectiveness and
efficiency, respectively, for scalable LiDAR segmentation.

3.1. Preliminaries

Mounted on the roof of the ego-vehicle (as illustrated
in Fig. 1), the rotating LiDAR sensor emits isotropic laser
beams with predefined angles and perceives the positions
and reflection intensity of surroundings via time measure-
ments in the scan cycle. Specifically, each LiDAR scan
captures and returns N points in a single scan cycle, where
each point pn in the scan is represented by the Cartesian

coordinates (pxn, p
y
n, p

z
n), intensity pin, and existence pen.

Rasterization. For a given LiDAR point cloud, we raster-
ize points within this scan into a 2D cylindrical projection
R(u, v) (a.k.a., range image) of size H ×W , where H and
W are the height and width, respectively. The rasterization
process for each point pn can be formulated as follows:(
un
vn

)
=

( 1
2 [1− arctan(pyn, p

x
n)π

−1]W

[1− (arcsin(pzn, (p
d
n)

−1
) + ϕdown)ξ−1] H

)
,

(1)
where (un, vn) denotes the grid coordinate of point pn in
range image R(u, v); pdn =

√
(pxn)

2 + (pyn)2 + (pzn)
2 is the

depth between the point and LiDAR sensor (ego-vehicle);
ξ = |ϕup| + |ϕdown| denotes the vertical field-of-views
(FOVs) of the sensor and ϕup and ϕdown are the inclination
angles at the upward and downward directions, respectively.
Note that H is often predefined by the beam number of the
LiDAR sensor, while W can be set based on requirements.
Formation. The final range image R(u, v) ∈ R(6,H,W ) is
composed of six rasterized feature embeddings, i.e., coor-
dinates (px, py, pz), depth pd, intensity pi, and existence pe

(indicates whether or not a grid is occupied by valid point).
The range semantic label y(u, v) ∈ R(H,W ) – which is ras-
terized from the per-point label in 3D – shares the same
rasterization index and resolution with R(u, v). The 3D
segmentation problem is now turned into a 2D one and the
grid predictions in the range image can then be projected
back to point-level in a reverse manner of Eq. (1).

3.2. RangeFormer: A Full-Cycle Framework

As discussed in previous sections, there exist potential
detrimental factors in the range view representation (Fig. 1).
The one-to-one correspondences from Eq. (1) are often un-
tenable since H ×W is much less than N . Typically, prior
arts [46, 2, 13] adopt (H,W ) = (64, 512) to rasterize Li-
DAR scans of around 120k points each [5], resulting in over
70% information loss2. The restricted horizontal angular

2Note: # of 2D grids / # of 3D points = 64×512 / 120000 ≈ 27.3%.
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resolutions and an intensive number of empty grids in range
image tend to bring extra difficulties during model training,
such as shape deformation, semantic incoherence, etc.
Architecture. To pursue larger receptive fields and longer
dependency modeling, we design a self-attention-based net-
work comprising standard Transformer blocks and MLP
heads as shown in Fig. 2. Given a batch of rasterized range
image R(u, v), the range embedding module (REM) which
consists of three MLP layers first maps each point in the
grid to a higher-dim embedding F0 ∈ R(128,H,W ). This is
analogous to PointNet [49]. Next, we divide F0 into over-
lapping patches of size 3 by 3 and feed them into the Trans-
former blocks. Similar to PVT [67], we design a pyramid
structure to facilitate multi-scale feature fusions, yielding
{F1,F2,F3,F4} for four stages, respectively, with down-
sampling factors 1, 2, 4, and 8. Each stage consists of cus-
tomized numbers of Transformer blocks and each block in-
clude two modules. 1) Multi-head self-attention [66], serves
as the main computing bottleneck and can be formulated as:

O = Mul(Q,K, V ) = Concat(head1, ..., headh)WO, (2)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) denotes

the self-attention operation with Attention = σ( QK√
dhead

)V ;
σ denotes softmax and dhead is the dimension of each head;
WQ, WK , WV , and WO are the weight matrices of query
Q, key K, value V , and output O. As suggested in [67],
the sequence length of K and V are further reduced by a
factor R to save the computation overhead. 2) Feed-forward
network (FFN), which consists of MLPs and activation as:

F = FFN(O) = Linear(GELU(Linear(O)))⊕O, (3)

where ⊕ denotes the residual connection [27]. Different
from ViT [23], we discard the explicit position embedding
and rather incorporate it directly within the feature embed-
dings. As introduced in [70], this can be achieved by adding
a single 3 by 3 convolution with zero paddings into FFN.
Semantic Head. To avoid heavy computations in decod-
ing, we adopt simple MLPs as the segmentation heads.
After retrieving all features from the four stages, we first
unify their dimensions. This is achieved in two steps: 1)
Channel unification, where each Fi with embedding size
dFi , i = 1, 2, 3, 4, is unified via one MLP layer. 2) Spatial
unification, where Fi from the last three stages are resized
to the range embedding size H × W by simple bi-linear
interpolation. The decoding process for stage i is thus:

Hi = Bi-Interpolate(Linear(Fi)). (4)

As proved in [79], the bi-linear interpolation of range view
grids is equivalent to the distance interpolation (with four
neighbors) in PointNet++ [50]. Here the former operation
serves as the better option since it is totally parameter-free.

Finally, we concatenate four Hi together and feed it into
another two MLP layers, where the channel dimension is
gradually mapped to dcls, i.e. the class number, to form
the class probability distribution. Additionally, we add an
extra MLP layer for each Hi as the auxiliary head. The
predictions from the main head and four auxiliary heads are
supervised separately during training. As for inference, we
only keep the main head and discard the auxiliary ones.
Panoptic Head. Similar to Panoptic-PolarNet [80], we add
a panoptic head on top of RangeFormer to estimate the in-
stance centers and offsets, dubbed Panoptic-RangeFormer.
Since we tackle this problem in a bottom-up manner, the
semantic predictions of the things classes are utilized as
the foreground mask to form instance groups in 3D. Next,
we conduct 2D class-agnostic instance grouping by pre-
dicting the center heatmap [12] and offsets for each point
on the XY -plane. Based on [80], the predictions from
the above two aspects can then be fused via majority vot-
ing. As we will show in the experiments, the advantages of
RangeFormer in semantic learning further yield much better
panoptic segmentation performance.
RangeAug. Data augmentation often helps the model learn
more general representations and thus increases both ac-
curacy and robustness. Prior arts in LiDAR segmentation
conduct a series of augmentations at point-level [81], i.e.,
global rotation, jittering, flipping, and random dropping,
which we refer to as “common” augmentations. To better
embrace the rich semantic and structural cues of the range
view representation, we propose an augmentation combo
comprising the following four operations.

1) RangeMix, which mixes two scans along the inclina-
tion ϕ = arctan( pz√

(px)2+(py)2
) and azimuth θ directions.

This can be interpreted as switching certain rows of two
range images. After calculating ϕ and θ for the current scan
and the randomly sampled scan, we then split points into
kmix equal spanning inclination ranges, i.e., different mixing
strategies. The corresponding points in the same inclination
range from the two scans are then switched. In our experi-
ments, we design mixing strategies from a combination, and
kmix is randomly sampled from a list [2, 3, 4, 5, 6].

2) RangeUnion, which fills in the empty grids of one
scan with grids from another scan. Due to the sparsity in
3D and potential sensor disruptions, a huge number of grids
are empty even after rasterization. We thus use the exis-
tence embedding pe to search and fill in these void grids
and this further enriches the actual capacity of the range
image. Given a number of Nunion =

∑
n p

e
n empty range

view grids, we randomly select kunionNunion candidate grids
for point filling, where kunion is set as 50%.

3) RangePaste, which copies tail classes from one scan to
another scan at correspondent positions in the range image.
This boosts the learning of rare classes and also maintains
the objects’ spatial layout in the projection. The ground-
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Figure 3: The occupancy trade-off between 2D grids & 3D
points in the LiDAR range view representation. Statistics
calculated on the SemanticKITTI [5] dataset.

truth semantic labels of a randomly sampled scan are used
to create pasting masks. The classes to be pasted are those
in the “tail” distribution, which forms a semantic class list
(sem classes). After indexing the rare classes’ points,
we paste them into the current scan while maintaining the
corresponding positions in the range image.

4) RangeShift, which slides the scan along the azimuth
direction θ = arctan(py/px) to change the global position
embedding. This corresponds to shifting the range view
grids along the row direction with kshift rows. In our ex-
periments, kshift is randomly sampled from a range of W

4 to
3W
4 . These four augmentations are tailored for range view

and can operate on-the-fly during the data loading process,
without adding extra overhead during training. As we will
show in the next section, they play a vital role in boosting
the performance of range view segmentation models.
RangePost. The widely-used k-NN [46] votes and assigns
labels for points near the boundary in an unsupervised way,
which cannot handle the “many-to-one” conflict concretely.
Differently, we tackle this in a supervised manner. We first
sub-sample the whole point cloud into equal-interval “sub-
clouds”. Since adjacent points have a high likelihood of
belonging to the same class, these “sub-clouds” are shar-
ing very similar semantics. Next, we stack and feed these
subsets to the network. After obtaining the predictions,
we then stitch them back to their original positions. For
each scan, this will automatically assign labels for points
that are merged during rasterization in just a single forward
pass, which directly reduces the information loss caused
by “many-to-one” mappings. Finally, prior post-processing
techniques [46, 79] can then be applied to these new predic-
tions to further enhance the re-rasterization process.

3.3. STR: Scalable Training from Range View

To pursue better training efficiency, prior works adopt
low horizontal angular resolutions, i.e., small values of W
in Eq. (1), for range image rasterization [46, 2]. This in-
evitably intensifies the “many-to-one” conflict, causes more
severe shape distortions, and leads to sub-par performance.
2D & 3D Occupancy. Instead of directly assigning small
W for R(u, v), we first lookup for the best possible options.

W

ped walkm.listo.veh road park build fencbicy moto truc o.gro vegb.list trun terr

STR (before training)

STR (after prediction)

Wtrain

H

. . .

Wtrain
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Figure 4: Illustration of the proposed STR paradigm. We
split LiDAR points into multiple “views” (left) and raster-
ized them into range images with high horizontal angular
resolutions (right). After training, the predictions are con-
catenated sequentially to form the complete LiDAR scan.

We find an “occupancy trade-off” between the number of
points in the LiDAR scan and the desired capacity of the
range image. As shown in Fig. 3, the conventional choices,
i.e., 512, 1024, and 2048, are not optimal. The crossover
of two lines indicates that the range image of width 1920
tends to be the most informative representation. However,
this configuration inevitably consumes much more memory
than the conventionally used 512 or 1024 resolutions and
further increases the training and inference overhead.
Multi-View Partition. To maintain the relatively high res-
olution of W while pursuing efficiency at the same time, we
propose a “divide-and-conquer” learning paradigm. Specif-
ically, we first partition points in the LiDAR scan into mul-
tiple groups based on the unique azimuth angle of each
point, i.e., θi = arctan(pyi /p

x
i ). This will constitute Z

non-overlapping “views” of the complete 360◦ range view
panorama as shown in Fig. 4, where Z is a hyperparameter
and determines the total number of groups to be split. Next,
points from each group will be rasterized separately with
a high horizontal resolution to mitigate “many-to-one” and
deformation issues. In this way, the actual horizontal train-
ing resolution of the range image is eased by Z times, i.e.,
Wtrain = W

Z , while the granularity (# of grids) of the range
view projection in each “view” is perfectly maintained.
Training & Inference. During training, for each LiDAR
scan, we randomly select only one of the Z point groups for
rasterization. That is to say, the model will be trained with
a batch of randomly sampled “views” at each step. During
inference, we rasterize all groups for a given scan and stack
the range images along the batch dimension. All “views”
can now be inferred in a single pass and the predictions are
then wrapped back to form the complete scan. Despite be-
ing an empirical design, we find this STR paradigm highly
scalable during training. The convergence rate of train-
ing from multiple “views” tends to be consistent with the
conventional training paradigm, i.e., STR can achieve com-
petitive results using the same number of iterations, while
the memory consumption has now been reduced to only 1

Z ,
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which liberates the use of small-memory GPUs for training.

4. Experimental Analysis
4.1. Settings

Benchmarks. We conduct experiments on three standard
LiDAR segmentation datasets. SemanticKITTI [5] pro-
vides 22 sequences with 19 semantic classes, captured by a
64-beam LiDAR sensor. Sequences 00 to 10 (exc. 08), 08,
and 11 to 21 are used for training, validation, and testing,
respectively. nuScenes [21] consists of 1000 driving scenes
collected from Boston and Singapore, which are sparser due
to the use of a 32-beam sensor. 16 classes are adopted af-
ter merging similar and infrequent classes. ScribbleKITTI
[65] shares the exact same data configurations with [5] but
is weakly annotated with line scribbles, which corresponds
to around 8.06% semantic labels available during training.
Evaluation Metrics. Following the standard practice, we
report the Intersection-over-Union (IoU) for class i and
the average score (mIoU) over all classes, where IoUi =

TPi

TPi+FPi+FNi
. TPi, FPi and FNi are the true-positive, false-

positive, and false-negative. For panoptic segmentation, the
models are measured by the Panoptic Quality (PQ) [33]

PQ =

∑
(i,j)∈TP IoU(i, j)

|TP|︸ ︷︷ ︸
SQ

× |TP|
|TP|+ 1

2 (|FP|+ |FN|)︸ ︷︷ ︸
RQ

, (5)

which consists of Segmentation Quality (SQ) and Recogni-
tion Quality (RQ). We also report the separated scores for
things and stuff classes, i.e., PQTh, SQTh, RQTh, and PQSt,
SQSt, RQSt. PQ† is defined by swapping the PQ of each
stuff class to its IoU then averaging over all classes [48].
Network Configurations. After range view rasterization,
the input R(u, v) of size 6 ×H ×W is first fed into REM
for range view point embedding. It consists of three MLP
layers that map the embedding dim of R(u, v) from 6 to 64,
128, and 128, respectively, with the batch norm and GELU
activation. The output of size 128 × H × W from REM
serves as the input of the Transformer blocks. Specifically,
for each of the four stages, the patch embedding layer di-
vides an input of size Hembed,Wembed into 3 × 3 patches
with overlap stride equals to 1 (for the first stage) and 2 (for
the last three stages). After the overlap patch embedding,
the patches are processed with the standard multi-head at-
tention operations as in [19, 67, 70]. We keep the default
setting of using the residual connection and layer normal-
ization (Add & Norm). The number of heads for each of
the four stages is [3, 4, 6, 3]. The hierarchical features ex-
tracted from different stages are stored and used for de-
coding. Specifically, each of the four stages produces fea-
tures of spatial size [(H,W ), (H2 ,

W
2 ), (H4 ,

W
4 ), (H8 ,

W
8 )],

with the channel dimension of [128, 128, 320, 512]. As

described in previous sections, we perform two unifica-
tion steps to unify the channel and spatial sizes of dif-
ferent feature maps. We first map their channel dimen-
sions to 256, i.e., [128, H,W ] → [256, H,W ] for stage 1,
[128, H

2 ,
W
2 ] → [256, H

2 ,
W
2 ] for stage 2, [320, H

4 ,
W
4 ] →

[256, H
4 ,

W
4 ] for stage 3, and [512, H

8 ,
W
8 ] → [256, H

8 ,
W
8 ]

for stage 4. We then interpolate four feature maps to the spa-
tial size of H×W . The probabilities of conducting the four
augmentations in RangeAug are set as [0.9, 0.2, 0.9, 1.0].
For RangePost, we divide the whole scan into three “sub-
clouds” for the 2D-to-3D re-rasterization.
Implementation Details. Following the conventional set-
tings [46, 13], we conduct experiments with Wtrain =
512, 1024, 2048 on SemanticKITTI [5] and Wtrain = 1920
on nuScenes [21]. We use the AdamW optimizer [45] and
OneCycle scheduler [56] with lr = 1e-3. For STR training,
we first partition points into 5 and 2 views and then raster-
ize them into range images of size 64×1920 (Wtrain = 384)
and of size 32×960 (Wtrain = 480), for SemanticKITTI [5]
and nuScenes [21], respectively. The models are pre-trained
on Cityscapes [16] for 20 epochs and then trained for 60
epochs on SemanticKITTI [5] and ScribbleKITTI [65] and
for 100 epochs on nuScenes [21], respectively, with a batch
size of 32. Similar to [52, 13], we include the cross-entropy
dice loss, Lovasz-Softmax loss [6], and boundary loss [52]
to supervise the model training. All models can be trained
on single NVIDIA A100/V100 GPUs for around 32 hours.

4.2. Comparative Study

Semantic Segmentation. Firstly, we compare the pro-
posed RangeFormer with 13 prior and SoTA range view
LiDAR segmentation methods on SemanticKITTI [5] (see
Tab. 2). In conventional 512, 1024, and 2048 settings,
we observe 9.3%, 9.8%, and 8.6% mIoU improvements
over the SoTA method CENet [13] and 7.2% mIoU higher
than MaskRange [25]. Such superiority is general for al-
most all classes and especially overt for dynamic and small-
scale ones like bicycle and motorcycle. In Tab. 3, we fur-
ther compare RangeFormer with 11 methods from other
modalities. We can see that the current trend favors fusion-
based methods which often combine the point and voxel
views [30, 14]. Albeit using only range view, RangeFormer
achieves the best scores so far; it surpasses the best fusion-
based method 2DPASS [73] by 0.4% mIoU and the best
voxel-only method GASN [75] by 2.9% mIoU. Similar ob-
servations also hold for nuScenes [21] (see Tab. 5).
STR Paradigm. As can be seen from the last three rows of
Tab. 2, under the STR paradigm (Wtrain = 384), FIDNet [79]
and CENet [13] have achieved even better scores compared
to their high-resolution (Wtrain = 2048) versions. Range-
Former achieves 72.2% mIoU with STR, which is better
than most of the methods on the leaderboard (see Tab. 3)
while being 13.5% faster than the high training resolution
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Table 2: Comparisons among state-of-the-art LiDAR range view semantic segmentation methods with different spatial
resolutions (512, 1024, and 2048) on the test set of SemanticKITTI [5]. All IoU scores are given in percentage (%). For each
resolution block: bold - best in column; underline - second best in column. Symbol †: Wtrain = 384.

# Method (year) mIoU car bicy moto truc o.veh ped b.list m.list road park walk o.gro build fenc veg trun terr pole sign

64
×
51

2

RangeNet++ [46] [’19] 41.9 87.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0
MPF [2] [’21] 48.9 91.1 22.0 19.7 18.8 16.5 30.0 36.2 4.2 91.1 61.9 74.1 29.4 86.7 56.2 82.3 51.6 68.9 38.6 49.8

FIDNet [79] [’21] 51.3 90.4 28.6 30.9 34.3 27.0 43.9 48.9 16.8 90.1 58.7 71.4 19.9 84.2 51.2 78.2 51.9 64.5 32.7 50.3
CENet [13] [’22] 60.7 92.1 45.4 42.9 43.9 46.8 56.4 63.8 29.7 91.3 66.0 75.3 31.1 88.9 60.4 81.9 60.5 67.6 49.5 59.1

RangeFormer 70.0 94.7 60.5 70.2 58.4 64.6 72.8 73.0 55.4 90.8 70.4 75.4 39.9 90.7 66.6 84.6 68.6 70.5 59.4 63.6

64
×
10

24

RangeNet++ [46] [’19] 48.0 90.3 20.6 27.1 25.2 17.6 29.6 34.2 7.1 90.4 52.3 72.7 22.8 83.9 53.3 77.7 52.5 63.7 43.8 47.2
MPF [2] [’21] 53.6 92.7 28.2 30.5 26.9 25.2 42.5 45.5 9.5 90.5 64.7 74.3 32.0 88.3 59.0 83.4 56.6 69.8 46.0 54.9

FIDNet [79] [’21] 56.0 92.4 44.0 41.5 33.2 30.8 57.9 52.6 18.0 91.0 61.2 73.8 12.6 88.2 57.9 80.8 59.5 65.1 45.3 58.4
CENet [13] [’22] 62.3 93.0 50.5 47.6 41.7 43.4 64.5 65.2 32.5 90.5 65.5 74.1 29.2 90.9 65.4 81.6 65.4 65.6 55.9 61.0

RangeFormer 72.1 95.7 66.2 72.9 59.8 66.5 75.8 74.5 56.5 91.8 71.9 77.4 41.6 91.6 68.9 85.8 71.5 71.6 64.2 65.8

64
×
20

48

SqSeg [68] [’18] 30.8 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3
SqSegV2 [69] [’19] 39.6 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0

RangeNet++ [46] [’19] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
SqSegV3 [71] [’20] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9

3D-MiniNet [3] [’20] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6
SalsaNext [17] [’20] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1

KPRNet [34] [’21] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1
LiteHDSeg [52] [’21] 63.8 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.3 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7

MPF [2] [’21] 55.5 93.4 30.2 38.3 26.1 28.5 48.1 46.1 18.1 90.6 62.3 74.5 30.6 88.5 59.7 83.5 59.7 69.2 49.7 58.1
FIDNet [79] [’21] 59.5 93.9 54.7 48.9 27.6 23.9 62.3 59.8 23.7 90.6 59.1 75.8 26.7 88.9 60.5 84.5 64.4 69.0 53.3 62.8

RangeViT [4] [’23] 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7
CENet [13] [’22] 64.7 91.9 58.6 50.3 40.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6

MaskRange [25] [’22] 66.1 94.2 56.0 55.7 59.2 52.4 67.6 64.8 31.8 91.7 70.7 77.1 29.5 90.6 65.2 84.6 68.5 69.2 60.2 66.6
RangeFormer 73.3 96.7 69.4 73.7 59.9 66.2 78.1 75.9 58.1 92.4 73.0 78.8 42.4 92.3 70.1 86.6 73.3 72.8 66.4 66.6

ST
R
† FIDNet w/ STR 60.1 93.6 48.8 44.4 45.0 38.4 58.1 65.5 7.0 92.2 68.3 76.2 27.4 88.1 61.3 82.8 61.0 69.5 55.6 58.4

CENet w/ STR 65.8 93.6 60.2 60.0 43.5 47.4 69.4 67.6 19.7 92.0 70.2 77.6 43.6 90.2 66.9 84.7 66.2 71.3 60.5 65.4
RangeFormer w/ STR 72.2 96.4 67.1 72.2 58.8 67.4 74.9 74.7 57.5 92.1 72.5 78.2 42.4 91.8 69.7 85.8 70.4 72.3 62.8 65.0

64

66

68

70

72

74

JS3C-Net
[AAAI’21]

SPVNAS
[ECCV’20]

Cylinder3D
[CVPR’21]

AF2S3Net
[CVPR’21]

PVKD
[CVPR’22]

2DPASS
[ECCV’22]

RPVNet
[ICCV’21]

RangeFormer
(Ours)

Range Only
Voxel Only
Voxel + RGB
Voxel + Point
Voxel + Point + Range
BEV + Range

AMVNet
[arXiv’20]

Date of PublicationYear’20 Year’21 Year’22

GFNet
[TMLR’22]

MSSNet
[arXiv’22]

GASN
[ECCV’22]

55.0

50.5

58.2

50

53
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59

62

65

MinkNet
[’19]

mIoU (%)

Table 3: State-of-the-art LiDAR semantic segmen-
tation methods on the test set of SemanticKITTI [5].

Table 4: Comparisons among state-of-the-art LiDAR panoptic seg-
mentation methods on the test set of SemanticKITTI [5]. All scores
are given in percentage (%). For each metric: bold - best in column;
underline - second best in column. RN denotes RangeNet++ [46]. PP
denotes PointPillars [37]. Symbol †: Wtrain = 384.

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

RN + PP 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4
KPConv + PP 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8
Panoster [22] 52.7 59.9 64.1 80.7 49.4 58.5 83.3 55.1 68.2 78.8 59.9

MaskRange [25] 53.1 59.2 64.6 81.2 44.9 53.0 83.5 59.1 73.1 79.5 61.8
P-PolarNet [80] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5

DS-Net [29] 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6
EfficientLPS [55] 57.4 63.2 68.7 83.0 53.1 60.5 87.8 60.5 74.6 79.5 61.4

P-PHNet [39] 61.5 67.9 72.1 84.8 63.8 70.4 90.7 59.9 73.3 80.5 66.0
P-RangeFormer 64.2 69.5 75.9 83.8 63.6 73.0 86.8 64.6 78.1 81.7 72.0

w/ STR† 61.8 67.6 73.8 83.1 60.3 69.6 86.3 62.9 76.8 80.8 71.0

(i.e., 2048) option (see Tab. 5) and saves 80% memory con-
sumption. It is worth highlighting again that the conver-
gence rate tends not to be affected. The same number of
training epochs are applied to both STR and conventional
training to ensure that the comparison is accurate.

Panoptic Segmentation. The advantages of RangeFormer
in semantic segmentation have further yielded better panop-
tic segmentation performance. From Tab. 4 we can see that
Panoptic-RangeFormer achieves better scores than the re-
cent SoTA method Panoptic-PHNet [39] in terms of PQ,
PQ†, and RQ. Such superiority still holds under the STR
paradigm and is especially overt for the stuff classes. The
ability to unify both semantic and instance LiDAR segmen-
tation further validates the scalability of our framework.

Weakly-Supervised Segmentation. Recently, [65] adopts
line scribbles to label LiDAR point clouds, which further
saves the annotation budget. From Fig. 5a we can observe
that the range view methods are performing much better
than the voxel-based methods [15, 60, 81] under weak su-
pervisions. This is credited to the compact and semantic-
abundant properties of the range view, which maintains bet-
ter representations for learning. Without extra modules or
procedures, RangeFormer achieves 63.0% mIoU and ex-
hibits clear advantages for both the things and stuff classes.

Accuracy vs. Efficiency. The trade-offs between segmen-
tation accuracy and inference run-time are crucial for in-
vehicle LiDAR segmentation. Tab. 5 summarizes the la-
tency and mIoU scores of recent methods. We observe
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Figure 5: Comparative & ablation study. (a) Weakly-supervised LiDAR semantic segmentation results on the val set of
ScribbleKITTI [65] (the same as SemanticKITTI [5]). (b) Results of different 3D data augmentation approaches on the val
set of SemanticKITTI [5]. (c) Results of different post-processing methods on the val set of SemanticKITTI [5].

that the projection-based methods [78, 79, 13] tend to
be much faster than the voxel- and fusion-based methods
[51, 72, 81], thanks to the dense and computation-friendly
2D representations. Among all methods, RangeFormer
yields the best-possible trade-offs; it achieves much higher
mIoU scores than prior range view methods [79, 13] while
being 2× to 5× faster than the voxel and fusion counterparts
[73, 60, 72]. Furthermore, the range view methods also ben-
efit from using pre-trained models on image datasets, e.g.
ImageNet [18] and Cityscapes [16], as tested in Tab. 6.
Qualitative Assessment. Fig. 6 provides some visualiza-
tion examples of SoTA range view LiDAR segmentation
methods [79, 13] on sequence 08 of SemanticKITTI [5]. As
clearly shown from the error maps, prior arts find segment-
ing sparsely distributed regions difficult, e.g., terrain and
sidewalk. In contrast, RangeFormer – which has the abil-
ity to model long-range dependencies and maintain large
receptive fields – is able to mitigate the errors holistically.
We also find advantages in segmenting object shapes and
boundaries. More visual comparisons are in Appendix.

4.3. Ablation Study

Following [13, 71], we probe each component in Range-
Former with inputs of size 64 × 512 on the val set of Se-
manticKITTI [5]. Since our contributions are generic, we
also report results on SoTA range view methods [79, 13].
Augmentation. As shown in Fig. 5b, data augmentations
help alleviate data scarcity and boost the segmentation per-
formance by large margins. The attention-based models are
known to be more dependent on data diversity [19]. As a
typical example, the “plain” version of RangeFormer yields
a slightly lower score than CENet [13]. On all three meth-
ods, RangeAug helps to boost performance significantly and
exhibits clear superiority over the common augmentations
and the recent Mix3D [47]. It is worth mentioning that the
extra overhead needed for RangeAug is negligible on GPUs.
Post-Processing. Fig. 5c attests again the importance of

Table 5: The trade-off comparisons between efficiency
(run-time) and accuracy (mIoU). Symbol ♣: results on
SemanticKITTI [5] test set. Symbol ⋆ / ■: results on
nuScenes [21] val / test set. Latency is calculated on Se-
manticKITTI [5] and given in ms. Symbol †: Wtrain = 384
(SemanticKITTI) and 480 (nuScenes), respectively.

Method (year) Size Latency ♣ ⋆ ■ Modality

RangeNet++ [46][’19] 50.4M 126 52.2 65.5 − Range Image
KPConv [61][’19] 18.3M 279 58.8 − − Bag-of-Points
MinkNet [15][’19] 21.7M 294 63.1 − − Sparse Voxel

SalsaNext [17][’20] 6.7M 71 59.5 72.2 − Range Image
RandLA-Net [32][’20] 1.2M 880 53.9 − − Bag-of-Points

PolarNet [78][’20] 13.6M 62 57.2 71.0 69.4 Polar Image
AMVNet [41][’20] − − 65.3 76.1 77.3 Multiple
SPVNAS [60][’20] 12.5M 259 66.4 − 77.4 Sparse Voxel

Cylinder3D [81][’21] 56.3M 170 67.8 76.1 77.2 Sparse Voxel
FIDNet [79][’21] 6.1M 16 58.6 71.4 72.8 Range Image

AF2-S3Net [14][’21] − − 69.7 62.2 − Multiple
RPVNet [72][’21] 24.8M 111 68.3 77.6 − Multiple
2DPASS [73][’22] − 62 72.9 − 80.8 Multiple

GFNet [51][’22] − 100 65.4 76.8 − Multiple
LidarMultiNet [74][’22] − − − 82.0 81.4 Multiple

CENet [13][’22] 6.8M 14 64.7 73.3 74.7 Range Image
RangeViT [4][’23] − − − − 75.2 Range Image

RangeFormer 24.3M 37 73.3 78.1 80.1 Range Image

w/ STR† 24.3M 32 72.2 77.1 78.7 Range Image

Table 6: Effect of pre-training strategies on the val sets
of SemanticKITTI [5] (left) and nuScenes [21] (right), with
spatial sizes 64× 2048 and 32× 1920, respectively.

Method (year) FIDNet [79][’21] CENet [13][’22] RangeFormer

No Pre-Train 60.4+0.0 / 71.4+0.0 63.4+0.0 / 73.3+0.0 68.1+0.0 / 77.1+0.0

ImageNet 61.6+1.2 / 72.1+0.7 64.1+0.7 / 73.9+0.6 68.9+0.8 / 77.6+0.5

Cityscapes − / − − / − 69.6+1.5 / 78.1+1.0

post-processing in range view LiDAR segmentation. With-
out applying it, the “many-to-one” problem will cause se-
vere performance drops. Compared to the widely-adopted
k-NN [46] and the recent NLA [79], RangePost can better
restore correct information since the aliasing among adja-
cent points has been reduced holistically. We also find the
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Figure 6: Qualitative comparisons of state-of-the-art range view LiDAR segmentation methods [79, 13]. To highlight the
differences, the correct / incorrect predictions are painted in gray / red, respectively. Each point cloud scene covers a region
of size 50m by 50m, centered around the ego-vehicle. Best viewed in colors.
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Figure 7: Exploring best-possible “view” partitions in STR.

extra overhead negligible since the “sub-clouds” are stacked
along the batch dimension and can be processed in one for-
ward pass. It is worth noting that such improvements hap-
pen after the training stage and are off-the-shelf and generic
for various range view segmentation methods.
Scalable Training. To unveil the best-possible granular-
ity in STR, we split the point cloud into 4, 5, 6, 8, and 10
views and show their results in Fig. 7. We apply the same
training iteration for them hence their actual memory con-
sumption becomes 1

Z . We see that training on 4 or 5 views
tends to yield better scores; while on more views the conver-

gence rate will be affected, possibly by limited correlations
in low-resolution range images. In summary, STR opens up
a new training paradigm for range view LiDAR segmenta-
tion which better balances the accuracy and efficiency.

5. Conclusion
In this work, in defense of the traditional range view rep-

resentation, we proposed RangeFormer, a novel framework
that achieves superior performance than other modalities
in both semantic and panoptic LiDAR segmentation. We
also introduced STR, a more scalable way of handling Li-
DAR point cloud learning and processing that yields better
accuracy-efficiency trade-offs. Our approach has promoted
more possibilities for accurate in-vehicle LiDAR percep-
tion. In the future, we seek more lightweight self-attention
structures and computations to further increase efficiency.
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