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Abstract

One of the main challenges in LiDAR-based 3D ob-
ject detection is that the sensors often fail to capture the
complete spatial information about the objects due to long
distance and occlusion. Two-stage detectors with point
cloud completion approaches tackle this problem by adding
more points to the regions of interest (RoIs) with a pre-
trained network. However, these methods generate dense
point clouds of objects for all region proposals, assum-
ing that objects always exist in the RoIs. This leads to
the indiscriminate point generation for incorrect propos-
als as well. Motivated by this, we propose Point Gen-
eration R-CNN (PG-RCNN), a novel end-to-end detector
that generates semantic surface points of foreground ob-
jects for accurate detection. Our method uses a jointly
trained RoI point generation module to process the contex-
tual information of RoIs and estimate the complete shape
and displacement of foreground objects. For every gen-
erated point, PG-RCNN assigns a semantic feature that
indicates the estimated foreground probability. Extensive
experiments show that the point clouds generated by our
method provide geometrically and semantically rich infor-
mation for refining false positive and misaligned propos-
als. PG-RCNN achieves competitive performance on the
KITTI benchmark, with significantly fewer parameters than
state-of-the-art models. The code is available at https:
//github.com/quotation2520/PG-RCNN .

1. Introduction

3D object detection using LiDAR point clouds is a fun-

damental perception task in autonomous driving that has re-

ceived significant attention in recent years. LiDAR sensors

are frequently used in many 3D applications, such as odom-

etry and mapping [41, 26, 17], object tracking [27, 30, 29],

*Denote equal contribution
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Figure 1. The intermediate outputs of PG-RCNN: (a) first stage

output with initial bounding box proposals in red, and (b) sec-

ond stage outputs with generated points over 0.6 foreground score

in yellow and final detection outputs in green bounding boxes.

Ground truth bounding boxes are shown in blue.

and detection [34, 19, 4], due to their ability to provide ac-

curate distance information in various conditions.

LiDAR-based 3D object detectors use either a point-

based [15, 16, 22, 14] or a voxel-based [43, 34, 13] net-

work to generate bounding boxes for foreground objects.

The two-stage framework with a proposal refinement stage

is often adopted in many detectors to enhance the detection

accuracy [20, 35]. While researchers have explored differ-

ent methods [19, 4] to extract effective refinement features

for the regions of interest (RoIs), some of the most recent

works with voxel-based backbones [18, 8] revisit the point

information within the RoIs at the refinement stage, consid-

ering the precise coordinates and density of internal points.

Nevertheless, the inherent sparsity of LiDAR point

clouds poses a challenge in 3D object detection, particu-

larly for distant and occluded objects. These objects have

fewer collected points, making them difficult to detect and

degrading the overall performance of detectors [12, 32]. To

address this problem, point cloud completion methods have

been explored to assist proposal refinement by adding more

points to the RoIs. The methods in [12, 42] enhance the

resolution of point clouds by utilizing a point cloud com-

pletion network pre-trained from an external dataset [1], but

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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they only take point coordinates pooled from the proposal

bounding box into account during the generation process.

As a result, they fail to capture the contextual information of

the surroundings and indiscriminately produce dense point

clouds for all proposals, including incorrect proposals.

Motivated by this, we propose the Point Generation R-

CNN (PG-RCNN), an end-to-end two-stage 3D object de-

tection method that can extract geometrically and semanti-

cally rich proposal refinement features via semantic surface

point generation. Our method includes the RoI point gener-

ation (RPG) module that estimates the actual shape and dis-

placement of foreground objects, using primitive RoI fea-

tures aggregated from the backbone as input. Note that we

jointly train the RPG module using auxiliary supervision

from given data without introducing any external dataset.

While previous point cloud completion methods only output

sets of spatial coordinates, our method goes beyond that by

assigning a semantic feature to each generated point, which

represents its estimated probability of belonging to the fore-

ground. These characteristics allow our novel point gener-

ation method to produce more informative point clouds for

object detection. Figure 1 shows the intermediate outputs

of our method. PG-RCNN generates points with different

foreground scores, presenting high-confidence foreground

points for true positive proposals. The generation points

intuitively express the predicted location and shape of the

objects, visualizing the reasoning process of PG-RCNN.

We demonstrate the effectiveness of our method with

extensive experiments on the KITTI dataset [5]. PG-

RCNN achieves competitive performance with state-of-the-

art models while significantly reducing the computational

cost. Qualitative results show that our approach better

serves the purpose of refining false-positive or misaligned

proposals compared to previous point cloud completion

methods.

In summary, our main contributions are:

• We present PG-RCNN, a novel two-stage 3D object

detection method for LiDAR point clouds. In the pro-

posal refinement stage, our method generates semantic

surface points with foreground probabilities to extract

shape-aware, semantically rich refinement features.

• We compare the point generation results of PG-RCNN

to a previous point cloud completion approach and

show that our method generates more effective points

for object detection.

• PG-RCNN achieves competitive performance on the

KITTI benchmark, with a significantly smaller number

of parameters and inference time than the state-of-the-

art models.

2. Related works

2.1. LiDAR-Based 3D Object Detection

LiDAR-based 3D object detection methods can be cat-

egorized into two streams: point-based and voxel-based.

Point-based methods directly learn point features for de-

tection by sampling raw point clouds and employing

permutation-invariant operations. The majority of point-

based methods [36, 20, 11, 37] use PointNet-like backbones

[15, 16], while methods like [22, 14] adopt other architec-

tures to process the sampled points.

On the contrary, voxel-based detectors [43, 34, 13, 4]

convert point clouds into regular 3D voxels and extract fea-

tures with convolution operations. VoxelNet [43] first pro-

posed a voxel feature encoding method for point clouds, and

SECOND [34] reduced computational cost by introducing

efficient sparse convolution [6]. Voxel R-CNN [4] is a typ-

ical two-stage detector that takes advantage of voxel rep-

resentations in the proposal refinement stage via voxel RoI

pooling.

To mitigate information loss due to data quantization,

voxel-based approaches are often combined with point-

level supervision and representations. Part-A2 Net [21]

and SA-SSD [7] exhibited remarkable performance using a

point-level auxiliary task. PV-RCNN [19] aggregates voxel

features at a set of keypoints obtained from the scene using

the farthest point sampling (FPS) algorithm, and exploits

the keypoint features during the proposal refinement. Some

methods use the points within proposal bounding boxes in-

stead of sampling the points from the entire scene. For

example, CT3D [18] utilizes a voxel-based backbone, but

for refining a proposal, it relies solely on the raw point co-

ordinates within the proposal. Others [3, 8] exploit inter-

nal point information alongside the voxel features for RoI

feature pooling. However, the limited number of collected

points for distant or occluded objects still poses a challenge

to detection performance.

2.2. Point Generation for 3D Object Detection

Several recent works have aimed to overcome the spar-

sity and incompleteness of LiDAR points by augmenting

additional points to the scene. For example, [38, 31, 44]

incorporate RGB images to generate dense pseudo-LiDAR

and virtual points. In terms of single-modal approaches,

PC-RGNN [42] and SIENet [12] generate dense point

clouds of the objects to capture rich spatial information of

RoIs. These methods utilize a pre-trained point cloud com-

pletion network that takes raw point coordinates within a

initial bounding box proposal as input and outputs a set of

point coordinates that form a plausible object shape. PC-

RGNN adds supplementary points to the original points

using a GCN-based [28] point cloud completion network

and encodes their coordinates with a graph neural network.
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Figure 2. PG-RCNN Overview. The input point cloud is first voxelized and passed through the region proposal network to produce initial

bounding box proposals. The RoI point generation module then generates semantic points for each proposal, computing the coordinates

offsets and semantic features from the voxel features aggregated at RoI grid points. Finally, the detection head produces the final detection

output using the generated semantic point clouds as input.

Meanwhile, SIENet generates dense point clouds with an

existing framework called PCN [39]. Then SIENet extracts

features from the generated points using the PointNet++

[16] encoder and fuses the features with the grid-pooled

voxel features to enhance spatial information. In contrast,

our point generation method takes RoI-pooled features as

input, capturing the contextual information of the surround-

ings. Our approach is also distinguished from SPG [33],

the unsupervised domain adaptation method that assigns a

semantic point to every estimated foreground voxel before

feeding into a detector. SPG does not recover the actual

shape of the objects and can be used in parallel with our

method as a data pre-processing technique.

3. PG-RCNN

PG-RCNN is a two-stage method for 3D object detection

composed of a region proposal stage and a proposal refine-

ment stage. Figure 2 illustrates the overview of the PG-

RCNN framework. For the first stage, the region proposal

network (RPN) with a voxel-based backbone generates the

initial bounding box proposals. Our main novelty lies in the

second stage, where we introduce the RoI point generation

(RPG) module to create a semantic surface point cloud for

each proposal. The RPG module aggregates the backbone

voxel features in a grid and uses a Transformer [25] encoder

to capture the global context of the RoI. Then an MLP is in-

dividually applied to each grid point feature to output the

coordinates offset and the semantic feature of the generated

point. Lastly, the detection head produces the final detection

output using the bounding box refinement features extracted

from the generated point clouds with semantic features.

3.1. Region Proposal Network

Following many recent works [19, 4, 18, 8], we adopt

SECOND [34] as our RPN for its high efficiency and re-

call. The input raw point cloud is first divided into evenly

spaced voxels and gradually processed with the 3D back-

bone network composed of a series of sparse convolution

layers, resulting in multiple scales of feature volumes. The

downsampled feature volumes are projected along the Z-

axis and converted into a bird’s-eye view (BEV) feature

map. The proposal layers use the BEV feature map to pro-

duce dense predictions with the classification and box re-

gression branches to generate initial detection output for the

later refinement stage.

3.2. RoI Point Generation Module

Previous approaches [12, 42] leverage point-based com-

pletion models, using raw points pooled from RoI as input.

Instead, our RPG module exploits voxel features from the

3D backbone, which contain rich context information about

their surroundings.

We begin by dividing a region proposal into G×G×G
regular sub-voxels, using the center coordinates of these

sub-voxels as grid points. Then, we use a method from

Voxel R-CNN [4] to aggregate voxel features at the grid

points. Specifically, a grid point gi is quantified into a
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voxel, so that the neighboring voxels are efficiently obtained

by indices translation. Using a PointNet++ [16] module, we

aggregate its feature fgi
from the sampled set of neighbor-

ing voxels Γi = {v1
i ,v

2
i , · · · ,vK

i } as follows:

fgi
= MaxPool

(
{Aagg([vk

i − gi; fvk
i
])}Kk=1

)
, (1)

where Aagg(·) represents the MLP for feature aggregation,

vk
i − gi represents relative coordinates, and fvk

i
is the fea-

ture of voxel vk
i . The RPG module aggregates voxel fea-

tures from feature volumes of the last three stages in the

3D backbone network and concatenates the multi-scale fea-

tures.

The feature pooled at each grid point contains local in-

formation about its surroundings but lacks RoI-level con-

text information for estimating object shapes. To capture

the long-range dependencies between the grid points, we

further process the features with a Transformer encoder. In

Section 4.4, we demonstrate the effectiveness of utilizing

the Transformer encoder in enhancing object detection per-

formance. The refined grid point feature f̃gi is formulated

as

f̃gi = T (fgi , δgi), (2)

where δgi
is the positional encoding, and T (·) is a standard

Transformer encoder. To encode positional information, we

apply a shallow feedforward neural network (FFN) to the

relative coordinates of the grid point with respect to the re-

gion proposal bounding box, as described in [18]:

δgi = Apos([gi − rc;gi − r1;gi − r2; · · · ;gi − r8]), (3)

where Apos(·) represents the FFN, rc is the center, and

r1,2,··· ,8 are the eight corners of the bounding box.

Finally, a two-layer MLP Agen(·) is applied to the re-

fined features to generate the offset oi from the grid point,

as well as the semantic feature of the generated point fsepi
:

[oi; f
se
pi
] = Agen(f̃gi

). (4)

The generated point’s coordinates pi = (xi, yi, zi) can be

calculated as gi + oi, and the foreground score si for each

generated point is calculated by applying a linear projection

A and a sigmoid function σ to its semantic feature, i.e.,

si = σ(Afsepi
). (5)

3.3. Detection Head

Our detection head is inspired by the design of PointR-

CNN [20] where it uses the PointNet++ encoder to extract

refinement features from semantic point clouds. For every

generated point, we obtain the local spatial feature fsppi
with

an MLP Aloc as follows:

fsppi
= Aloc ([xc

i , y
c
i , z

c
i , di, si]) . (6)

Here, (xc
i , y

c
i , z

c
i ) are the coordinates of the generated point

pi in the canonical coordinates system of the bounding box,

and di =
√

x2
i + y2i + z2i is the depth of the point. The

canonical transformation facilitates robust local spatial fea-

ture learning. However, the transformation causes the in-

evitable loss of points’ depth information, so we append di
as an additional feature. The estimated foreground score

si is also appended as the feature that represents the signifi-

cance of the generated point. We merge fsppi
and fsepi

for each

point pi, and feed the point set with features into the Point-

Net++ encoder to obtain the refinement feature for RoI fr:

fr = P
(
{pi}G

3

i=1, {[fsppi
; fsepi

]}G3

i=1

)
, (7)

where P(·) denotes the PointNet++ encoder taking the set

of point coordinates and the corresponding feature set as in-

put. The RoI feature serves as the input for confidence clas-

sification and bounding box refinement branches, resulting

in the final detection output.

3.4. Training Losses

PG-RCNN is an end-to-end model trained with the sum-

mation of the region proposal loss LRPN, the proposal re-

finement loss Lhead, and the point generation loss LRPG:

Ltotal = LRPN + Lhead + LRPG. (8)

LRPN and Lhead are conventional training losses for

two-stage detectors calculated with the outputs of the RPN

and the detection head, respectively. Both losses are com-

posed of a classification and a regression term. The clas-

sification targets are assigned based on the intersection-

over-union (IoU) of the anchors and the proposals with the

ground truth bounding boxes. Only foreground anchors and

proposals contribute to the regression losses, using the re-

gression target given by their ground truth residuals. Focal

Loss [40] is used for the RPN’s classification branch out-

put, while binary cross-entropy loss is used for the detec-

tion head’s confidence branch output. For the regression

loss, we use the smooth-L1 loss for both losses.

LRPG is an auxiliary loss term that specifically super-

vises point generation, calculated with the RPG module out-

puts:

LRPG = Lscore + Loffset. (9)

Lscore is a point-level segmentation loss that governs the

foreground scores of generated points. We assign segmen-

tation labels to generated points by checking if they are in-

side a ground-truth bounding box. Since we generate G3

points for each proposal, calculating loss at all generated

points would be computationally expensive. We select Np

points from the scene using the FPS algorithm and apply

Focal Loss on the sampled points, i.e.,

Lscore = − 1

Np

∑
j

(1− sj)
γ log sj (10)
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Figure 3. Examples of completed point clouds for a car, pedestrian,

and cyclist. Original point clouds (top) and their corresponding

completed point clouds for supervising point generation (bottom).

where sj , j = 1, 2, · · ·Np are the foreground score of the

sampled points.

On the other hand, Loffset supervises the shape of the

generated point clouds. Since the KITTI dataset does not

provide complete point clouds of the object instances, pre-

vious approaches [42, 12] used external datasets such as

ShapeNet [1] to train their point cloud completion net-

work in advance. Instead, we exploit other object instances

within the provided dataset to approximate the complete

shape of the object. Specifically, we use the approxima-

tion method proposed in [32]. We first search for other ob-

jects of the same class that have similar bounding boxes

and point distributions. Then we combine the point sets of

two best-matching objects with the original points and pro-

duce a dense point cloud. For cars and cyclists, we assume

symmetry along the object’s heading axis and mirror the

points accordingly. Figure 3 displays an example of a com-

pleted point cloud for each class. Using the completed point

clouds as generation targets, we employ Chamfer Distance

on foreground proposals as follows:

Loffset =
1

Nfp

∑
r

(
1

|Pr|
∑
x∈Pr

min
y∈P∗

r

||x− y||22+

1

|P∗
r |
∑
y∈P∗

r

min
x∈Pr

||y − x||22

⎞
⎠ , (11)

where Nfp is the number of foreground proposals, and Pr

and P∗
r are the generated and the target point cloud of the

r-th foreground proposal where r = 1, 2, · · · , Nfp, respec-

tively.

4. Experiments
In this section, we conduct a comprehensive analysis on

the KITTI dataset [5] to verify the effectiveness of PG-

RCNN and its components. In Sec. 4.2, we evaluate PG-

RCNN on the competitive benchmark and compare the per-

formance with the state-of-the-art methods. Furthermore,

we qualitatively compare our point generation results with a

prior point cloud completion approach [12] in Sec. 4.3. Ex-

tensive ablation studies in Sec. 4.4 validate our design. We

also conducted experiments on the Waymo Open Dataset

[23], another popular autonomous driving dataset. Please

refer to the supplementary materials for experiments on

Waymo Open Dataset.

4.1. Experimental Setup

KITTI Dataset. The KITTI dataset provides 7,481 anno-

tated training samples and 7,518 testing samples. Following

[2], we split the original training data into 3,712 and 3,769

samples for training and validation, respectively. We detect

three object classes: cars, cyclists, and pedestrians.

Network Architecture. We limit the detection range as

[0m, 70.4m] for the X-axis, [-40m, 40m] for the Y-axis,

and [-3m, 1m] for the Z-axis. To process this data, the raw

point clouds are divided into voxels of size (0.05m, 0.05m,

0.1m) along each axis. The feature dimensions of the 3D

backbone are (16, 32, 48, 64) across four stages, while the

proposal layer’s feature dimensions are (64, 128). In the

RoI grid pooling step, the dimension of each grid’s feature

fgi
is set to 96 with a grid size G of 6. We use a single-

layer Transformer encoder with a hidden feature dimension

of 384. The semantic feature vector fsepi
and local spatial

feature vector fsppi
of generated points have 32 and 64 di-

mensions, respectively. For each proposal, the point cloud

encoder in the detection head extracts an RoI feature vector

fr of dimension 256. Overall, PG-RCNN use lighter MLP

layers than the motivational works [34, 4, 18, 20], allowing

our model to be significantly more efficient than the previ-

ous methods (please refer to Table 1).

Training Details. For data augmentation, we apply

widely employed strategies, including random flipping

along the X-axis, global scaling, global rotation around the

Z-axis, and ground truth sampling. Please refer to Open-

PCDet [24] for detailed configurations since we used the

toolbox for all our experiments. PG-RCNN is trained us-

ing the Adam optimizer [9] with a one-cycle policy for

80 epochs with an initial learning rate of 0.01. We used

4 NVIDIA RTX 3090 GPUs to train our network with a

batch size of 16, and the training time was less than 5 hours.

Np, the number of points used to calculate Lscore, is set to

2,048.
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Table 1. Comparison with state-of-the-art methods on the KITTI val set. † denotes the re-implemented model, in which we replaced the

first stage detector with RPN of ours. Latency is reported with the average inference time on a single NVIDIA RTX 3090 GPU. The best

performance value is in bold, second-best is underlined.

Method
Param. Latency Car 3D APR40 Ped. 3D APR40 Cyc. 3D APR40

(M) (ms) Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [34] 5.33 59.9 90.55 81.61 78.56 55.94 51.15 46.17 82.97 66.74 62.78

PointPillars [10] 4.83 36.5 87.75 78.41 75.19 57.30 51.42 46.87 81.57 62.93 58.98

PointRCNN [20] 4.04 171.5 91.39 80.53 78.05 62.41 55.70 49.01 92.56 73.13 68.81

PV-RCNN [19] 13.12 103.5 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78

CT3D [18] 7.85 142.3 92.34 84.97 82.91 61.05 55.57 51.10 89.01 71.88 67.91

PC-RGNN [42] 21.43 152.4 90.94 81.43 80.45 − − − − − −
Voxel R-CNN [4] 7.59 93.2 91.72 83.19 78.60 − − − − − −
PDV [8] 12.86 161.5 92.44 85.05 82.77 63.89 57.41 52.56 91.78 75.95 71.36
SIENet [12] 24.62 120.8 92.49 85.43 83.05 − − − − − −
SIENet† 21.03 117.6 91.96 84.45 82.64 − − − − − −
PG-RCNN (Ours) 2.28 60.1 92.73 85.26 82.83 68.44 60.63 55.36 93.84 74.85 70.15

Table 2. Performance comparison on the KITTI test set with AP under 40 recall positions. Most of the results were obtained from the

KITTI test server, while ‡ indicates the model whose result was obtained from the paper because it was not reported to the server. The best

performance value is in bold, second-best is underlined.

Method
Car 3D APR40 Car BEV APR40 Cyc. 3D APR40 Cyc. BEV APR40

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND‡ [34] 83.13 73.66 66.20 88.07 79.37 77.95 70.51 53.85 46.90 73.67 56.04 48.78

PointPillars [10] 82.58 74.31 68.99 90.07 86.56 82.81 77.10 58.65 51.92 79.90 62.73 55.58

PointRCNN [20] 86.96 75.64 70.70 92.13 87.39 82.72 74.96 58.82 52.53 82.56 67.24 60.28

PartA2 [21] 87.81 78.49 73.51 91.70 87.79 84.61 79.17 63.52 56.93 83.43 68.73 61.85

Point-GNN [22] 88.33 79.47 72.29 93.11 89.17 83.90 78.60 63.48 57.08 81.17 67.28 59.67

3DSSD [36] 88.36 79.57 74.55 92.66 89.02 85.86 82.48 64.10 56.90 85.04 67.62 61.14

PV-RCNN [19] 90.25 81.43 76.82 94.98 90.65 86.14 78.60 63.71 57.65 82.49 68.89 62.41

CT3D [18] 87.83 81.77 77.16 92.36 88.83 84.07 − − − − − −
PC-RGNN‡ [42] 89.13 79.90 75.54 94.91 89.62 86.57 − − − − − −
Voxel R-CNN [4] 90.90 81.62 77.06 94.85 88.83 86.13 − − − − − −
BtcDet [32] 90.64 82.86 78.09 92.81 89.34 84.55 82.81 68.68 61.81 84.48 71.76 64.70
PDV [8] 90.43 81.86 77.36 94.56 90.48 86.23 83.04 67.81 60.46 85.54 71.31 64.40

SIENet [12] 88.22 81.71 77.22 92.38 88.65 86.03 − − − − − −
PG-RCNN (Ours) 89.38 82.13 77.33 93.39 89.46 86.54 82.77 67.82 61.25 84.94 70.65 64.03

4.2. Comparison with State-of-the-Arts

We trained our model on the train set and tuned the hy-

perparameters based on the val set evaluation results. To

submit the detection results on KITTI official test server,

we trained the model using all annotated train+val samples.

All results are evaluated by the mean average precision (AP)

calculated with 40 recall positions (R40), using IoU thresh-

olds of 0.7 for cars, and 0.5 for pedestrians and cyclists. The

evaluation results are reported on three levels of difficulties:

easy, moderate, and hard.

Table 1 summarizes the performance comparison of PG-

RCNN on KITTI val set with the state-of-the-art mod-

els that officially released the trained weights. PG-RCNN

shows the best or second-best performance for all classes

and difficulties, except for the car class on a hard difficulty,

where we achieved the third-best performance. The pre-

vious point cloud completion approach, SIENet [12] sur-

passes our model on car class for moderate and hard diffi-

culties. We believe this is due to its advanced region pro-

posal network, and we re-implemented SIENet with gen-

eral RPN from SECOND [34] as our model to fairly com-

pare the effect of point generation on the refinement stage.

In this case, it can be observed that PG-RCNN outperforms

the model (denoted as SIENet† in Table 1) at all levels of the

car class, implying that our refinement method is more ef-

fective. Moreover, PG-RCNN exhibits remarkably superior

efficiency compared to recent methods. Notably, our model

has over 9 times fewer parameters in to previous point cloud

completion approaches. PG-RCNN also has a low inference

time demand, comparable to a single-stage detector [34].

PG-RCNN also obtains competitive detection perfor-
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Figure 4. The point generation and detection results of SIENet and PG-RCNN (ours) on KITTI val samples. The generated points, true

positive predictions, false positive predictions, and ground truth bounding boxes are highlighted in yellow, green, red, and blue, respectively.

mance on the KITTI test set, as summarized in Table 2. We

ranked second or third place on the 3D detection results ex-

cept on the easy level for the car class. In comparison to

previous point cloud completion approaches [42, 12], PG-

RCNN consistently outperforms the competitors on 3D de-

tection performances for cars on all levels. Although our

method’s performance falls short on certain metrics when

compared to the most recent publications, PG-RCNN still

exhibits a remarkable trade-off in terms of high efficiency.

However, we hypothesize that our model’s lack of scala-

bility in test set evaluation results from its lightweight na-

ture. In our future work, we plan to explore the use of a

more sophisticated detection head to improve detection per-

formance on larger datasets.

4.3. Analysis on Point Generation Results

Here, we compare the qualitative results of the proposed

method on KITTI val data with a previous point cloud com-

pletion method, SIENet [12]. To fully focus on the effect

of point generation in the refinement stage, we compare our

model with SIENet† we presented in Table 1.

Figure 4 illustrates some of the point generation and de-

tection results of SIENet and PG-RCNN. The foreground

score of each point is expressed with its opacity in the fig-

ure. Since the point cloud completion network of SIENet

only produces spatial coordinates, we set the foreground

score of all its generated points to 1. The top two rows of

Fig. 4 display the outputs in a bird’s-eye-view. Observations

show that SIENet indiscriminately generates point clouds

for all region proposals, and results more false positive pre-

dictions than ours. In contrast, our method presents high-

confidence foreground points only at true positive bounding

PG-RCNN (Ours)SIENet

Figure 5. The point generation and refinement results for a mis-

aligned proposal. The generated points, initial proposal, refine-

ment results, and ground truth are highlighted in yellow, red,

green, and blue, respectively.

boxes. This suggests that considering foreground probabili-

ties of generated points can effectively regularize producing

false positive detection results. The third row of Fig. 4 ex-

hibits the projections of the outputs of our model onto the

images, showing that the generated points are well-aligned

with the foreground objects. The results suggest that PG-

RCNN can not only detect objects but also successfully es-

timate their actual shape.

To further investigate the effectiveness of our point gen-

eration method, we compare how the point cloud comple-

tion network of SIENet and our RPG module behave in the

same situation. We artificially composed misaligned pro-
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posals by slightly distorting ground truth bounding boxes,

and provided them to both models. Figure 5 illustrates some

of the refinement stage outputs of SIENet and ours. Al-

though SIENet creates a denser point cloud than ours, it

does not align with existing foreground points nor get out-

side of the proposal bounding box. In the top example of

Fig. 5, SIENet refined the proposal towards the ground truth

bounding box. However, this prediction did not align with

the point generation result. Moreover, in the bottom exam-

ple, SIENet was unable to make a confident final prediction

with the generated point cloud. This indicates the gener-

ated points are pointless for proposal refinement. On the

contrary, points generated with our method actively move

outside the initial proposal, attempting to capture the ac-

tual foreground object surface. The generated points mostly

fit within the ground truth bounding box, and the final de-

tection bounding boxes are predicted accordingly. The in-

tuitive comparisons show that our point generation results

better serve a purpose for addressing misaligned proposals.

4.4. Ablation Studies

To verify the effectiveness of the proposed method, we

conduct extensive ablation studies on the KITTI val set.

Point Generation Loss. Our RPG module is trained with

the supervision of two losses, Lscore and Loffset, which

assign semantic and geometric attributes to the generated

points, respectively. To investigate the impact of these

supervisions on object detection performance, we ablated

each loss term and compared the 3D detection performances

on car objects. In the absence of Lscore, a uniform fore-

ground score of si = 1 is allocated for all generated points.

Similarly, a fixed offset oi = (0, 0, 0) is used for the ab-

sence of Loffset, indicating that all generated points were

located at the grid centers. Table 3 summarizes the results

of the experiments. Our model showed a consistent per-

formance drop when we did not employ Lscore, resulting

in a decline of 0.82% in mAP. This reveals that assigning

semantic information to generated points is an important

feature of our method. Similarly, when Loffset was not

utilized, the mAP decreased by 0.61%. This result demon-

strates the necessity of spatial supervision, which provides

a beneficial trait of shape-awareness for refinement.

RoI Point Generation Module. In this ablation study, we

justify the decision choices regarding the components of the

RPG module. Here we compare the 3D detection perfor-

mances of three classes on the moderate level. First, we

examined the performance gain brought by the Transformer

[25] encoder. Second, we verified the method for deriving

generate points’ coordinates, comparing the case of using

the RoI center and grid points as the reference point for

predicting offsets. Table 4 summarizes the results of the

experiment. The use of the Transformer encoder resulted

Table 3. Performance comparison of adopting different point gen-

eration loss.

Lscore Loffset
Car 3D APR40 mAP

Easy Mod. Hard

� 92.31 83.97 82.03 86.10

� 91.90 84.72 82.33 86.31

� � 92.81 85.22 82.74 86.92

Table 4. Performances comparison of different implementations of

RoI point generation module.

T (·) offset center
3D APR40 (Mod.)

Car Ped. Cyc.

grid points 82.37 58.39 73.79

� RoI center 81.94 56.44 72.80

� grid points 85.22 60.45 74.84

in a gain of over 1% in AP for all classes, highlighting the

advantage of accessing RoI-level contextual information by

employing this component. The results demonstrate that us-

ing grid points as the offset center can significantly improve

detection performance for all classes, as compared to using

the RoI center as the offset center.

5. Conclusion
In this paper, we present a novel two-stage detector

called Point Generation R-CNN (PG-RCNN), that address

the LiDAR-based 3D object detection problem by generat-

ing semantic surface points of the foreground objects. PG-

RCNN is distinguished from existing point cloud comple-

tion approaches in three aspects. First, our RoI point gen-

eration (RPG) module takes grid-pooled backbone features

instead of raw coordinates of the points in RoI. Therefore,

it can process the contextual information of the proposal’s

surrounding and estimate the actual shape and displace-

ment of foreground objects. Secondly, our method discrim-

inates the generated points by giving them semantic fea-

tures that represent foreground probabilities, allowing the

model to distinguish incorrect proposals during the refine-

ment stage. Lastly, the RPG module is jointly trained with

the rest of the PG-RCNN components without demand-

ing an external dataset for supervision. Consequently, the

proposed method provides intuitive and informative point

clouds with semantic features for accurate object detec-

tion. PG-RCNN achieves highly competitive performance

on the KITTI dataset while exhibiting significantly better

efficiency than previous methods.
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