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Figure 1: An overview of SALAD. (a) Our cascaded diffusion model trained on part-level 3D representations produces
high-quality 3D shapes of different classees. Although trained for unconditional generation, SALAD hints its zero-shot
capability in various manipulation scenarios, including (b) part mixing and refinement, and (c) text-guided part completion.

Abstract
We present a cascaded diffusion model based on a

part-level implicit 3D representation. Our model achieves
state-of-the-art generation quality and also enables part-
level shape editing and manipulation without any addi-
tional training in conditional setup. Diffusion models have
demonstrated impressive capabilities in data generation as
well as zero-shot completion and editing via a guided re-
verse process. Recent research on 3D diffusion models has
focused on improving their generation capabilities with var-
ious data representations, while the absence of structural
information has limited their capability in completion and
editing tasks. We thus propose our novel diffusion model us-
ing a part-level implicit representation. To effectively learn
diffusion with high-dimensional embedding vectors of parts,
we propose a cascaded framework, learning diffusion first
on a low-dimensional subspace encoding extrinsic param-
eters of parts and then on the other high-dimensional sub-
space encoding intrinsic attributes. In the experiments, we
demonstrate the outperformance of our method compared
with the previous ones both in generation and part-level
completion and manipulation tasks. Our project page is
https://salad3d.github.io.

1. Introduction
The staggering rise of the recent image generative model

such as DALL-E 2 [49], StableDiffusion [50], and Midjour-
ney [34] has drawn great attention to the diffusion mod-

*Equal contribution.

els. With the state-of-the-art performance in generating
data [12, 19, 50, 49, 34], diffusion models have quickly
replaced existing generative models in many applications.
Besides the quality of the generated data, another key ad-
vantage of the diffusion models is the zero-shot capability
in completion and editing. Recent research [10, 30, 32] has
shown that diffusion models trained without any conditions
can be applied to completion and editing tasks by starting
the reverse process from partial data and properly guiding
the process.

Such capabilities of the diffusion models have prompted
attempts to apply them to 3D generation [3, 31, 41, 65, 62,
27, 39, 22], although likewise the other neural 3D genera-
tion and reconstruction work, the key challenge in applying
diffusion to 3D is to find an appropriate representation of
3D data. Particularly, to take full advantage of the diffusion
models, both producing realistic data and being leveraged
to editing and manipulation, a careful design of the 3D data
representation is needed. A naive adaption of the 2D image
diffusion models to the 3D voxels is impractical due to the
order of magnitude more computation time and memory.
Hence, the earlier attempt to apply diffusion or score-based
models to 3D (which has also been continued until recently)
was to use point clouds as 3D representation [3, 31, 41], al-
though the fine details of shapes could not be reproduced
since the training computation is still too heavy to increase
the resolution — 2k points are used in training. Later, some
hybrid representations have been explored, such as points
and voxels [65], points and features [62], voxels and fea-
tures [27], although these were still limited in being trained
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with low-resolution 3D data. Implicit representation has
been proven to be the best to capture fine details in 3D gen-
eration and reconstruction [42, 7, 33]. Hence, concurrent
work [27, 39] introduced latent diffusion methods gener-
ating codes that can be decoded into implicit functions of
3D shapes. However, then the diffusion in a latent space
cannot be used for the guided reverse process – e.g., fill-
ing a missing part of a shape while preserving the others,
and thus the model cannot be exploited for manipulation.
Neural wavelet [22] is a notable exception that improves ef-
ficiency in training without a latent space but by learning
diffusion in spectral wavelet space. While it succeeded in
producing local details, it is still nontrivial to specify a local
region to be modified in the spectral space, thus limiting the
model to be used in the manipulation tasks.

As a 3D diffusion model feeding two birds with one
seed, achieving high-quality generation and enabling ma-
nipulation, we present our novel Shape PArt-Level LAtent
Diffusion Model, dubbed SALAD. Our work is inspired by
recent work [15, 21, 28, 18] introducing disentangled im-
plicit representations into parts. The advantages of the part-
level disentangled representation are in the efficiency allo-
cating the memory capacity of the latent code effectively to
multiple parts, and also in the locality allowing each part to
be edited independently, thus best fitted to our purpose. We
specifically base our work on SPAGHETTI [18] that learns
the part decomposition in a self-supervised way. Each part
is described with an independent embedding vector describ-
ing the extrinsics and intrinsics of the part as shown in Fig-
ure 1, and thus the parts that need to be edited or replaced
can be easily chosen. It is a crucial difference from latent
diffusion where the latent codes do not explicitly express
any spatial and structural information and voxel diffusion
where the region to be modified can only be specified in the
3D space, not in the shape.

Our technical contribution is the diffusion neural net-
work designed to properly handle the characteristics of the
part-level implicit representation, which is a set of high-
dimensional embedding vectors. To cope with the set
data and achieve permutation invariance while allowing
global communications across the parts, we employ Trans-
former [57] and condition each self-attention block with the
timestep in the diffusion process. The challenge is also
in learning diffusion in the high-dimensional embedding
space, which is known to be hard to train [61]. To get
around the issue, we introduce a two-phase cascaded dif-
fusion model. We leverage the fact that the part embed-
ding vector is split into a small set of extrinsic parameters
approximating the shape of a part and a high-dimensional
intrinsic latent supplementing the detailed geometry infor-
mation. Hence, our cascaded pipeline learns two diffusions,
one generating extrinsic parameters first and the other pro-
ducing an intrinsic latent conditioned on the extrinsics, ef-

fectively improving the generation quality with the same
computation resources.

Our quantitative and qualitative assessments on SALAD
demonstrate its outperformance compared with SotA meth-
ods in shape generation as shown in Section 5.1. We fur-
ther demonstrate zero-shot manipulation capability of our
SALAD, trained solely for unconditional generation, by
conducting extensive experiments on downstream tasks, in-
cluding part completion (Section 5.2), part mixing and re-
finement (Section 5.3). Last but not least, we showcase the
versatility of SALAD in modeling multi-modal distribu-
tions such as text-guided generation (Section 5.4) and com-
pletion (Section 5.5). To summarize, our contributions are:

• We propose SALAD, a novel diffusion model capable
of generating part-level 3D implicit representations.

• We propose a two-phase cascaded diffusion model,
effective for handling high-dimensional latent spaces,
that sets a new SotA in shape generation.

• We demonstrate the importance of orchestrating diffu-
sion models and part-level implicit representation for
the zero-shot capability of SALAD in shape editing.

• We further extend our SALAD to text-guided gener-
ation and editing that can synergize with text-driven
part segmentation network.

2. Related Work
3D Generative Models. The first 3D generative models
are based on GAN, learning a distribution of latents that can
be decoded into various 3D representations such as point
clouds [1, 56, 51] and implicit representations [24, 17, 7, 23,
64]. Later research [4, 14] also proposed to leverage a 2D
discriminator in the 3D GAN training while projecting the
3D shape to 2D via differentiable rendering [26, 35]. Au-
toregressive models for 3D data have also been introduced
to produce meshes [40], point clouds [54], or (ir)regular
feature grids [63, 58], which have also been extended to
handle conditional inputs in the completion [58] and multi-
modal generation [36, 13] tasks. Recent work focused on
exploiting the better generation capabilities of diffusion and
score-based models. Cai et al. [3], Luo and Hu [31], and
Zhou et al. [65] were the first proposing score-based [3]
or diffusion-based [31, 65] frameworks learning distribu-
tions of point clouds. Hui et al. [22] proposed to learn
diffusion over wavelet coefficients of truncated signed dis-
tance functions. The recent success of latent diffusion mod-
els (LDMs) [50] for 2D images also prompted to develop
diffusion models operating on latent vectors of either the
entire 3D shapes [9, 39] or each point [62], voxel [27], and
triplane [52] (note that all of them are concurrent work ex-
cept for LION [62]). Conditional models taking texts [41]
or multimodal data [27, 8] are also concurrently introduced
with our work.
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The advances in 3D generative models have shown sig-
nificant improvement in the quality of produced shapes, al-
though, in our work, we focus on introducing a more ver-
satile 3D generative model that can be used not only for
shape generation but also for shape editing and completion
without any additional training for the conditional setups
(yet also achieving the SotA generation results). We aim
to fully utilize the manipulation capabilities of the diffusion
model with a compact part-level implicit representation of
3D shapes.

Part-Level Implicit 3D Representations. There is a
large body of work exploring part-level 3D decomposition,
although most of which focuses on segmenting or abstract-
ing a supervised [60, 46, 47, 38, 37] and unsupervised [55,
53, 59, 44, 6, 11, 43] ways. Recent work coupled the part-
level structure with the implicit shape representation to en-
able shape manipulation with the part representation param-
eters. SIF [16] and LDIF [15] first introduced the idea of
combining a set of Gaussians in the 3D space to local im-
plicit functions corresponding to each of them. NeuralTem-
plate [21] instead used a set of convexes as the part-level
extrinsics and connected each of them with a latent vector
decoded into a local implicit function. SPAGHETTI [18]
employed 3D Gaussians again but trained the network so
that the Gaussians can not only approximate the shape but
also transform a local region with its mean and covariance
parameters. We base our work on SPAGHETTI and present
a framework of learning diffusion on the SPAGHETTI rep-
resentation. While SPAGHETTI also provided an auto-
decoding-based shape generation pipeline, we demonstrate
that our cascaded model diffusing on extrinsics and intrin-
sics sequentially produces shapes with much better quality
while learning the exact data distributions on both spaces.

3. Diffusion Models and Part-Level Shape Rep-
resentation

3.1. Background on Diffusion Models

We first briefly overview the technical background of dif-
fusion models. Diffusion models [19] are latent variable
models that approximate a data distribution q(x(0)) with a
Markov chain, which is also called a reverse process:

pθ(x
(0)) :=

∫
pθ(x

(0:T ))dx(1:T ), (1)

where pθ(x
(0:T )) = p(x(T ))ΠT

t=1pθ(x
(t−1)|x(t)). Here,

p(x(T )) = N (x(T );0, I) is the standard normal prior en-
abling tractable sampling.

The conditional probabilities {pθ(x(t−1)|x(t))}Tt=1 are
parameterized by a neural network whose weights are de-
noted by θ. The weights are optimized through the forward
diffusion process q(x(1:t)|x(0)) that sequentially adds Gaus-

DecoderMLP

Figure 2: Part-Level implicit representation by Hertz et
al. [18]. A latent vector z encoding global geometry is first
mapped to a set of part latents {pi}Ni=1, each of which is
decomposed into extrinsic parameters {ei}Ni=1 and intrinsic
latents {si}Ni=1. The decoder, conditioned on {(ei, si)}i=1,
outputs an occupancy value given a query point x.

sian noises to the data x(0) ∼ q(x(0)):

q(x(1:t)|x(0)) := Πt
s=1q(x

(s)|x(s−1)),

where q(x(s)|x(s−1)) := N
(
x(s);

√
1− β(s)x(s−1), β(s)I

)
,

(2)

and β(s) is an element of a monotonically increasing se-
quence β(1:T ) ∈ (0, 1]T . By choosing Gaussians as forward
diffusion kernels, the conditional densities q(x(t)|x(0)) at
t = 1, . . . , T can be expressed in the closed form:

q(x(t)|x(0)) = N (x(t);
√

ᾱ(t)x(0), (1− ᾱ(t))I), (3)

where α(t) := 1 − β(t) and ᾱ(t) := Πt
s=1α

(s). Over the
forward process dissipating a sample x(0) ∼ q(x(0)) to-
ward q(x(T )) = N (0, I), the weights θ parameterizing the
reverse process pθ(x(0)) are learned by optimizing the fol-
lowing variational bound on negative log likelihood:

Eq(x(0))[− log pθ(x
(0))] ≤

Eq(x(0),...,x(T ))

[
− log

pθ(x
(0:T ))

q(x(1:T )|x(0))

]
.

(4)

Following Ho et al. [19], we parameterize our reverse pro-
cess pθ(x(t−1)|x(t)) as:

pθ(x
(t−1)|x(t)) := N (x(t−1);µθ(x

(t), t), β(t)I). (5)

In particular, we use the parameterization µθ(x
(t), t) =

1/
√
α(t)(x(t)− β(t)/

√
1 − ᾱ(t)ϵθ(x

(t), t)) and optimize its pa-
rameters θ with a training objective that encourages a net-
work ϵθ to predict the noise ϵ ∼ N (0, I) present in the
given data:

L(θ) := Et,x(0),ϵ

[∥∥∥ϵ− ϵθ

(√
ᾱ(t)x(0) +

√
1− ᾱ(t)ϵ, t

)∥∥∥2] .
(6)

3.2. Part-Level Shape Representation

Neural implicit representations [7, 42, 33] have been
widely exploited in 3D shape generation and reconstruc-
tion due to their advantages in capturing fine details without
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limitation in resolutions even with a small memory foot-
print. However, their disadvantage of not supporting in-
tuitive editing and manipulation has been a hindrance to
increasing their utilization. To remedy the drawback, re-
cent works [16, 15, 17, 21, 18] introduced dual representa-
tions combining explicit and implicit representations, tak-
ing advantage of both of them. Among them, Hertz et al.
[18], which our work is based on, was the first introduc-
ing a hybrid representation integrating two types of dis-
entanglements simultaneously into an implicit representa-
tion: 1) part-level disentanglement, representing each lo-
cal region separately, and 2) extrinsic-intrinsic disentan-
glement, describing extrinsic properties (i.e., the approx-
imate shape and transformations) with parameters in the
3D space while encoding intrinsic properties (i.e., geomet-
ric details) using a latent code. This novel representation,
called SPAGHETTI [18], is learned in an auto-decoding
setup without any supervision of the part decomposition.

In SPAGHETTI, a 3D shape is first mapped to a global
latent z and then further encoded into a set of part em-
bedding vectors {pi}Ni=1, where N denotes the number of
parts. Each part embedding vector pi is again mapped into
both a set of extrinsic parameters ei and an intrinsic la-
tent si through an MLP. The set of extrinsic parameters
ei = {ci,Σi, πi} of each part represents a Gaussian in the
3D space with mean ci ∈ R3 and covariance Σi ∈ R3×3,
depicting an approximate shape of a part. πi ∈ R is the
blending weight for the Gaussian mixture representation of
the entire shape:

∑
i πiN (x|ci,Σi), describing the volume

of the shape as a probability distribution. Since {ei}Ni=1

can only encode the part-level structural information, the
intrinsic latents {si}Ni=1 supplement the detailed geometry
information so that the pairs of the extrinsic parameters and
intrinsic latents can be decoded back to the original shape
in an implicit form. Specifically, an implicit decoder D is
trained to predict an occupancy value at point x:

o = D
(
x
∣∣∣ {ei}Ni=1, {si}Ni=1

)
, (7)

where occupancy value o ∈ [0, 1] is 1 when the query point
is inside the shape, and 0 otherwise. The keys to achieving
both the part-level and extrinsic-intrinsic disentanglements
in the training of decoder D are the regularizations forcing
a single pair (ei, si) of a part to determine the occupancy of
each point, and the Gaussian parameters in ei to transform
the corresponding local region. See the original paper [18]
for the details of the decoder training.

The extrinsic vector ei is precisely represented as a 16-
dimensional vector {ci, λ1

i , λ
2
i , λ

3
i ,u

1
i ,u

2
i ,u

3
i , πi}, where

λj
i ∈ R and uj

i ∈ R3 are eigenvalues and eigenvectors
of the covariance matrix Σi, while the intrinsic vector si
is a 512-dimensional vector. Note that the much smaller ex-
trinsic vector contains the approximate shape information

of the part; we leverage this fact in our effective cascaded
diffusion model.

Also, note that SPAGHETTI is trained in an auto-
decoding setup while regularizing the global latent code
z ∈ R512 to follow the unit Gaussian. Thus, the shapes can
be simply generated by sampling a latent code z from the
unit Gaussian in the z space, although we demonstrate that
diffusion in the extrinsic and intrinsic embedding spaces can
produce much more plausible shapes (Section 5.1).

4. SALAD – Part-Level Cascaded Diffusion
Here we introduce our cascaded diffusion framework

generating the part-level implicit shape representation. In
the shape representation introduced in Section 3.2, note that
there are multiple layers of representations all of which can
be decoded into the original shape, such as the global latent
z, the set of part latents {pi}, and the set of extrinsic and
intrinsic vectors {(ei, si)}. Below, we first introduce some
preliminary approaches to learning diffusion for each rep-
resentation, and then we propose our final cascaded frame-
work for learning diffusions in two phases.

Diffusion of z. Learning diffusion in the space of the
global shape latent z is straightforward; the noise predic-
tion network ϵθ (in Equation 6) can be simply modeled as
an MLP. In the network ϵθ, the timestep t is generally first
transformed by a positional encoding γ(·) [57] and then fed
as the scale and translation factors to the adaptive normal-
ization layers such as AdaIN [45]. In our experiments (Sec-
tion 5.1), we show that this simple diffusion already out-
performs the quality of generation by sampling z from the
unit Gaussian since it can learn the exact distribution of z,
although the improvement is marginal.

Diffusion of {pi}Ni=1. To improve the quality of genera-
tion, one can instead consider diffusing the set of part la-
tents {pi}Ni=1. A simple MLP taking the concatenation of
the part latents as input, however, results in diffusion in
a very high-dimensional space and also does not address
the order invariance of the set data. We employ Trans-
former [57] to properly handle the set data while also pro-
moting communications across parts. Each self-attention
block is equipped with a post-MLP, where the positional-
encoded timestep γ(t) is fed to the AdaIN layer. This part-
level latent diffusion can better reproduce the details of each
part, while it still suffers from the difficulty in diffusing in a
high-dimensional latent space.

Cascaded Diffusion of {ei}Ni=1 and {si}Ni=1. Inspired by
Ho et al. [20] introducing cascaded diffusion for images,
diffusing low-resolution images first and then diffusing
high-resolution images conditioned on the low-resolution
outputs, we propose a two-phase framework for learning
diffusion. We observe that the extrinsic and intrinsic at-
tributes {ei}Ni=1 and {si}Ni=1 play similar roles to low-
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Figure 3: Pipeline overview. SALAD consists of two diffusion models for extrinsic and intrinsic vectors, respectively.
During phase 1 (left), it generates extrinsic vectors representing structures of shapes. Phase 2 (right) takes these outputs as
conditions and produces intrinsic vectors encoding local geometry information.
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Figure 4: Architecture diagrams. The architecture for Diffusion of z is a sequence of M alternating MLPs and AdaIN [45]
layers. Time-Conditioned Transformer, a Transformer [57] architecture designed to handle diffusion on set data, replaces
MLPs with self-attention layers. SALAD is a cascaded two Time-Conditioned Transformers: one for diffusion of {ei}Ni=1

and the other for {si}Ni=1. In the second phase of SALAD, a concatenation of {ei}Ni=1 and γ(t) is fed to AdaIN layers as
conditioning input.

and high-resolution images; the former describes the ap-
proximate of the data, while the latter captures fine de-
tails. Also importantly, the extrinsic vector ei is much
lower-dimensional, thus easier to make the noise predic-
tion converge. Thus, in our first phase, we learn the dif-
fusion of {ei}Ni=1 with the same Transformer-based noise
prediction network ϵθ above. Then, in the second phase,
we use another Transformer-based network ϵϕ to model a
conditional distribution p({si}Ni=1|{ei}Ni=1) given {ei}Ni=1.
Specifically, in the post-MLP of the self-attention block, for
each si, now the AdaIN layer takes as input a concatenation
of the positional-encoded timestep γ(t) and a feature vector
E(ei) learned from the corresponding extrinsic parameters
ei. The features {E(ei)}Ni=1 are learned from an additional
stack of the self-attention modules encoding {ei}Ni=1. Both
of the noise prediction networks ϵθ and ϵϕ are trained with
the same variational bound loss with Equation 6 as follows:

Le(θ) := Et,{e}N
i=1,ϵ

[∥∥∥ϵ− ϵθ

(
{e(t)}Ni=1, γ(t)

)∥∥∥2]
(8)

Ls(ϕ) := Et,{s}N
i=1,ϵ

[∥∥∥ϵ− ϵϕ

(
{s(t)}Ni=1, γ(t), {e(0)}Ni=1

)∥∥∥2]
(9)

where e(t) and s(t) are the extrinsic and intrinsic attributes
after t-step forward process of adding Gaussian noise, re-
spectively. Refer to the supplementary material for more
implementation details.

5. Experiment
In this section, we demonstrate that SALAD outper-

forms other baselines in shape generation (Section 5.1)
and enables intuitive manipulation, such as part comple-
tion (Section 5.2) and part mixing and refinement (Sec-
tion 5.3), where the combination of part-level represen-
tation and diffusion models is essential. Lastly, we also
demonstrate that SALAD outperforms other baselines in
text-guided shape generation (Section 5.4) and can lever-
age part-level representation for text-guided part comple-
tion (Section 5.5).

5.1. Shape Generation

Evaluation Setup. For evaluation and comparison, we
follow the settings of Hui et al. [22]. We use air-
plane and chair classes from the ShapeNet [5] dataset and
the train-test split from Chen et al. [7]. The model is
trained for each class. At inference time, we sample 2000
shapes for each class, and measure three evaluation met-
rics [1, 29] to assess quality and diversity of the gener-
ated shapes: Coverage (COV), Minimum Matching Dis-
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tance (MMD), and 1-Nearest Neighbor Accuracy (1-NNA).
We compare SALAD with existing 3D generative mod-
els [7, 24, 31, 18, 22].

Results. The quantitative and qualitative results, includ-
ing ablation studies, are summarized in Table 1 and Fig-
ure 5. For more results, refer to the supplementary mate-
rial. We reproduced the results of SPAGHETTI [18] and
Neural Wavelet [22] using the official code, and the other
quantitative results are directly borrowed from Hui et al.
[22], marked with “∗” in Table 1. (We also display the re-
sults of SPAGHETTI [18] and Neural Wavelet [22] reported
by Hui et al. [22] [22] in the gray-colored rows. Note that
SPAGHETTI results are similar, while there is a gap in the
Neural Wavelet results.) To ease qualitative comparisons in
Figure 5, we retrieve the generated shapes using the same
query ground truth shape and compare them.

As shown in Table 1, SALAD achieves SotA results or
is on par with the baselines. In particular, we outperform
Neural Wavelet [22], which is a SotA diffusion-based 3D
generative model, on 1-NNA by a large margin: 65.04 vs.
57.82 for chair CD, and 75.77 vs. 73.92 for airplane CD
(lower is better).

Qualitatively, SALAD produces clean high-resolution
meshes with fine details as shown in Figure 5. When
comparing “Diffusion of z” (in Section 4) with
SPAGHETTI [18], we demonstrate that our simple la-
tent diffusion already produces much better quality shapes
than sampling z from the unit Gaussian distribution as
SPAGHETTI does. “Diffusion of {pi}Ni=1” uses Trans-
former [57] instead of simple MLPs and outperforms
“Diffusion of z”, clearly showing how our Transformer-
based architecture is the key to learning the distribution of
high-dimensional latents represented as a set.

When comparing our final model SALAD with “Dif-
fusion of {pi}Ni=1”, SALAD outperforms “Diffusion of
{pi}Ni=1” by a large margin across all metrics. It shows that
our cascaded diffusion training is crucial to improve shape
generation quality.

5.2. Part Completion

Here, we describe how SALAD, which was trained in
an unconditional setup, can be employed to part comple-
tion. We compare the results against the most recent dif-
fusion model, Neural Wavelet [22] and the SotA of shape
completion, ShapeFormer [58].

Experiment Setup. For completion using diffusion mod-
els, we run guided reverse process proposed by Meng et al.
[32]. Specifically, given the input data x ∈ Rd and a mask
of the region to be reconstructed m ∈ [0, 1]d, each step of
the reverse process of the diffusion is performed as follows:

x
(t−1)
unmasked ∼ N (

√
ᾱ(t)x(0), (1− ᾱ(t))I)

x
(t−1)
masked ∼ N (µθ(x

(t), t), β(t)I)

x(t−1) = m⊙ x
(t−1)
unmasked + (1−m)⊙ x

(t−1)
masked.

(10)

Unlike previous methods such as ShapeFormer [58], this
approach guarantees to preserve the unmasked region. In
our experiments, we randomly remove and regenerate a se-
mantic part of chairs and airplanes. While we can simply
select (ei, si) pairs of parts we want to remove in SALAD,
in feature-voxel representation like Neural Wavelet [22], it
is not trivial to specify the regions that would include the
completed part. This limits their generation output to only
occupy the masked voxels, while a larger mask could inter-
fere with or even break unwanted parts leading to seams in
the final output. For the guided reverse process of Neural
Wavelet [22] in our experiments, we use the axis-aligned
bounding box of a part as a mask and transform the mask to
the wavelet domain. Refer to the supplementary material
for more details on mask construction.

We first randomly choose 100 shapes from our train-
ing set. Then, for all methods, we randomly select a se-
mantic part from each shape and generate five variations.
For quantitative comparisons, we report the reconstruction
loss, MMD and FPD (Fréchet PointNet Distance) [51] in-
dicating the quality and diversity of completions. Note that
we measure MMD from completions to groundtruth shapes
to quantify the proximity of the completed shapes to the
groundtruth shapes. We use the official pre-trained models
for ShapeFormer [58] and Neural Wavelet [22]. We also
report the results from Neural Wavelet trained by ourselves.

Results. The quantitative results and qualitative results
are summarized in Table 2 and Figure 6, respectively. For
more results, refer to the supplementary material. As
shown in Table 2, SALAD, trained solely for unconditional
shape generation, outperforms the baselines in most of the
metrics by large margins, especially in FPD which is the
metric of how plausible the shapes are.

The qualitative results presented in Figure 6 further man-
ifests the advantages of employing a part-level 3D rep-
resentation in SALAD. In row 1 of Figure 6, Shape-
Former [58] introduces noticeable artifacts at the back of
the chair that lies outside the binary mask (column 2). In
contrast, SALAD completes the seat seamlessly while pre-
serving the other parts, benefiting from the spatial corre-
spondence between the binary mask and the shape represen-
tation. Even with such spatial correspondences, the limita-
tion of specifying regions instead of parts persists in Neural
Wavelet [22]. In particular, the row 2 of Figure 6 shows
visible seams at the bounding box boundary while SALAD
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Table 1: Quantitative comparison of shape generation. The numbers directly from Hui et al. [22] are marked with *.
MMD-CD scores and MMD-EMD scores are scaled by 103 and 102, respectively. The best results are highlighted without
considering the gray-colored rows. The ablation study results are presented in rows 8-9.

Id Method
Chair Airplane

COV ↑ MMD ↓ 1-NNA ↓ COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

1 IM-NET∗ [7] 56.49 54.50 11.79 14.52 61.98 63.45 61.55 62.79 3.320 8.371 76.21 76.08
2 Voxel-GAN∗ [24] 43.95 39.45 15.18 17.32 80.27 81.16 38.44 39.18 5.937 11.69 93.14 92.77
3 DPM∗ [31] 51.47 55.97 12.79 16.12 61.76 63.72 60.19 62.30 3.543 9.519 74.60 72.31
4 SPAGHETTI∗ [18] 49.19 51.92 14.90 15.90 70.72 68.95 58.34 58.38 4.062 8.887 78.24 77.01
5 Neural Wavelet∗ [22] 58.19 55.46 11.70 14.31 61.47 61.62 64.78 64.40 3.230 7.756 71.69 66.74
6 SPAGHETTI 49.48 50.22 14.7 15.85 72.34 69.46 56.86 58.83 4.260 8.930 79.36 78.86
7 Neural Wavelet 49.63 50.15 12.12 14.25 65.04 62.87 60.94 59.09 3.528 7.964 75.77 72.93

8 Diff. of z 49.71 48.75 11.71 14.12 62.72 61.25 54.88 59.33 3.877 8.958 82.20 80.35
9 Diff. of {pi}Ni=1 50.96 51.40 13.57 15.41 66.19 67.04 58.59 61.80 4.264 9.230 78.80 76.14

10 SALAD (Ours) 56.42 55.16 11.69 14.29 57.82 58.41 63.16 65.39 3.636 8.238 73.92 71.08

DPM [31] PVD [65] LION [62] Voxel-GAN [24] Neural
Wavelet[22]

SPAGHETTI
[18]

Diff. of
z

Diff. of
{pi}N

i=1

Gaussians SALAD
(Ours)

Figure 5: Qualitative comparison of the shape generation. Given a query ground truth shape, we retrieve the closest
generated shape by measuring EMD in each method. SALAD produces highly detailed 3D shapes compared to the baselines.

generates the missing part consistent with the surrounding
parts.

5.3. Part Mixing and Refinement

While Hertz et al. [18] demonstrates creating new
shapes by combining parts from existing shapes, naively
mixing part representations is prone to produce failure cases
as illustrated in Figure 7 and Figure 1. Cracks or discontinu-
ities at joint regions are one type of failure case as shown in
row 3 of Figure 7 and (b) of Figure 1. Another type of fail-
ures is the dissonance between combined parts that results
in undesired distortions or the vanishing of parts. SALAD
can remedy this issue by refining both the extrinsic and in-

trinsic vectors through the guided reverse process. Refer to
the supplementary material for more qualitative results.

We also show quantitative results of part mixing in Ta-
ble 3. For evaluation, we use the same metrics and the test
set used in Section 5.1. We randomly select 100 pairs of
shapes from the test set and swap a semantic part, for all
parts that two shapes in a pair have in common. Swapping
a part between two shapes results in two mixed shapes for
each pair. The numbers of the shapes resulting from part
mixing are 606, 670, and 400 for chair, airplane, and table
classes, respectively. The mixed shapes are refined by the
guided reverse process with diffusion timestep t = 10. As
indicated in the metrics reported in Table 3, the quality of
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GT Bounding Box Gaussians ShapeFormer [58] Neural Wavelet [22] SALAD (Ours)

Figure 6: Qualitative comparison of the part completion. We examine SALAD and other baselines in part completion
after ablating semantic parts or regions, highlighted in red in columns 2 and 3. SALAD produces realistic completions for
missing parts. The baselines fail to preserve observed parts or introduce noticeable seams at bounding box boundaries.

Table 2: Quantitative comparison of part completion. The metrics based on CD and EMD are scaled by 103 and 102,
respectively. The result from the pre-trained Neural Wavelet is marked with *.

Method
Chair Airplane

reverse-MMD ↓ Reconstruction ↓
FPD ↓

reverse-MMD ↓ Reconstruction ↓
FPD ↓CD EMD CD EMD CD EMD CD EMD

ShapeFormer [58] 32.83 22.8 55.05 25.49 83.56 5.43 10.87 10.83 11.81 79.18
Neural Wavelet∗ [22] 13.46 15.65 8.72 12.92 18.83 3.81 9.07 3.84 8.85 31.38

Neural Wavelet 11.87 15.07 8.93 12.44 18.78 3.56 8.79 3.90 9.02 36.17

SALAD (Ours) 12.1 14.56 5.45 9.22 16.75 3.55 8.68 2.12 6.53 29.44

Table 3: Quantitative comparison of part mixing. After combining parts from two different shapes, our SALAD further
refines the outputs by adjusting mixed parts. The refinement step brings noticeable improvements in 1-NNA.

Method
Chair Airplane Table

COV ↑ MMD ↓ 1-NNA ↓ COV ↑ MMD ↓ 1-NNA ↓ COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

SPAGHETTI [18] 42.24 44.06 18.18 17.53 73.18 74.26 39.85 42.09 5.34 10.05 80.22 78.88 31.50 32.25 19.68 18.02 86.62 87.62
SALAD (Ours) 40.59 43.89 17.21 16.96 69.97 68.23 40.15 40.75 5.24 9.72 77.61 76.27 44.25 43.25 17.27 16.98 66.25 69.62

mixed shapes are further improved after the refinement step.
We particularly observe noticeable gaps in 1-NNA across all
shape classes.

5.4. Text-Guided Shape Generation

We further demonstrate SALAD can perform condi-
tional generation, specifically generating 3D shapes given
an input text. To condition a text to the model, we concate-
nate a language feature and an input of AdaLN, γ(t), and
optionally E(ei). We experiment with the text and shape
pair dataset from ShapeGlot [2] and compare the gener-
ation quality of our text-conditioned model with the one

by AutoSDF [36], which is the SotA text-to-shape gener-
ative model. The train-test split used in AutoSDF is used.
Also, following AutoSDF, we measure the following three
metrics for the evaluation: CLIP-Similarity-Score (CLIP-
S) [48], Neural-Evaluator-Preference (NEP), and Fréchet
Point Cloud Distance (FPD) [51].

NEP proposed by Mittal et al. [36] is a preference rate
obtained from a neural evaluator. The neural evaluator is
pre-trained on a text-conditioned binary classification task
where the model distinguishes the target shape correspond-
ing to the input text. Since the neural evaluator used in
AutoSDF has not publicly been released, we train our neu-
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Shape A Shape B A→B A→B
Refined

Figure 7: Qualitative results of part mixing and refine-
ment. SALAD improves quality of part mixing outputs.

Text AutoSDF [36] SALAD (Ours)

“chair has round
arms and wheels.”

“its the one
with gaps

in the back.”

Figure 8: Qualitative comparison of text-guided genera-
tion. SALAD generates high-quality 3D shapes conform-
ing to the input texts compared to AutoSDF [36].

Table 4: Quantitative comparison of text-guided gener-
ation. Overall, SALAD achieves better performance than
AutoSDF. Specifically, it improves FPD by a large margin.

Methods CLIP-S ↑ NEP ↑ FPD ↓

AutoSDF [36] 30.98 38.98 31.53
SALAD (Ours) 30.92 42.22 4.043

ral evaluator based on PartGlot [25], a simpler architecture
trained only on point clouds without images. More details
of the experiment setup is in the supplementary material.

As shown in Table 4, our generated shapes are more pre-
ferred by the neural evaluator over the shapes generated
by AutoSDF. Also, Figure 8 and FPD results reflect that
SALAD produces more plausible shapes, and our gener-
ated shapes conform to given texts more than the shapes of
AutoSDF.

“four legs and
two arms.”

“solid back.”

Figure 9: Qualitative results of text-guided part comple-
tion. The part of the left mesh selected by GAUSSGLOT,
highlighted by red, is completed to fit a given text by a re-
verse process of text-guided SALAD.

5.5. Text-Guided Part Completion

We further demonstrate how SALAD can be integrated
with a text-driven semantic part segmentation network to
aid user interactive shape editing. Following PartGlot [25]
architecture, we design GAUSSGLOT, a model that uses
{ei}Ni=1 as a part representation and predicts semantic part
labels of those from texts. More details of GAUSSGLOT
architecture and training results can be found in the sup-
plementary material. Figure 9 shows examples that the
parts of input shapes selected by GAUSSGLOT are com-
pleted according to given texts by a reverse process of
text-conditioned SALAD introduced in Section 5.4. It
demonstrates that users can freely manipulate 3D shapes
with texts in an end-to-end manner by leveraging SALAD
with GAUSSGLOT.

6. Conclusion

We presented SALAD, a cascaded 3D diffusion model
for part-level implicit representation. Compared with other
3D diffusion models, our model achieves the best quality
in shape generation and also is versatile to be exploited in
diverse part-level shape manipulation tasks such as com-
pleting, mixing, and text-guided editing. Diffusion on the
disentangled representation that allows picking individual
parts without specifying a bounding region in the 3D space
was the key to fully utilizing the zero-shot manipulation ca-
pability of the diffusion models. In future work, we plan to
further investigate the diffusion models on part-level repre-
sentations with different primitives and parametrization for
parts.
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