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Abstract

Image captioning is conventionally formulated as the

task of generating captions for images that match the dis-

tribution of reference image-caption pairs. However, refer-

ence captions in standard captioning datasets are short and

may not uniquely identify the images they describe. These

problems are further exacerbated when models are trained

directly on image-alt text pairs collected from the inter-

net. In this work, we show that it is possible to generate

more specific captions with minimal changes to the train-

ing process. We implement classifier-free guidance [14]

for an autoregressive captioning model by fine-tuning it to

estimate both conditional and unconditional distributions

over captions. The guidance scale applied at decoding

controls a trade-off between maximizing p(caption|image)
and p(image|caption). Compared to standard greedy de-

coding, decoding with a guidance scale of 2 substantially

improves reference-free metrics such as CLIPScore (0.808

vs. 0.775) and caption→image retrieval performance in

the CLIP embedding space (recall@1 44.6% vs. 26.5%),

but worsens standard reference-based captioning metrics

(e.g., CIDEr 78.6 vs 126.1). We further explore the use of

language models to guide the decoding process, obtaining

small improvements over the Pareto frontier of reference-

free vs. reference-based captioning metrics that arises from

classifier-free guidance, and substantially improving the

quality of captions generated from a model trained only on

minimally curated web data.

1. Introduction

Image captioning is both a difficult task for computer vi-

sion systems to perform and a difficult task to evaluate. Al-

though automated captioning metrics rank the best caption-

ing systems higher than humans, human raters still show a

strong preference for human-generated captions [20], sug-

gesting shortcomings in both captioning models and met-

rics. One shortcoming relates to the lack of specificity

in generated captions. Conventional maximum likelihood-

∗Work performed while at Google.
†Work performed as a student researcher at Google.

γ=1.0 a man riding a blue motorcycle on a dirt road

γ=1.5 a man riding a blue motorcycle on a straw bale

γ=2.0 rider on blue suzuki motorcycle near straw

bales

γ=3.0 racer on blue suzuki motorcycle leaning up

against straw bales

GT A person riding a baby blue motorcycle near

haystacks

Figure 1. Using classifier-free guidance (γ > 1) results in more

specific captions that are farther from the reference distribution.

Left: Example of captions generated at different guidance scales

for a single image. Right: Caption→image recall@1 with CLIP

ViT-B/32 vs. CIDEr score, for captions generated with different

guidance scales γ on MS-COCO. Higher scales improve retrieval

accuracy at the expense of CIDEr.

based image captioning models attempt to generate cap-

tions such that the p(caption|image) is high. However,

captions from the ground truth distribution are often non-

specific, e.g., human annotators will usually describe a Ger-

man Shepard only as a dog. Moreover, previous work

has emphasized “reference-based” captioning metrics that

measure the match between generated captions and human-

provided ground truth captions [28, 23, 42]. These metrics

intrinsically penalize captions that are more specific than

ground truth.

In this work, we explore strategies to guide image cap-

tioning models to produce more specific captions by mod-

ifying the decoding distribution, and explore the trade-

offs in captioning metrics that result. We first investigate

the application of classifier-free guidance (CFG) [14] to

image captioning with autoregressive models. Classifier-

free guidance increases p(image|caption) at the expense

of p(caption|image). Although CFG hurts reference-based

image captioning metrics such as BLEU [28], ROUGE [23],

and CIDEr [42], it improves “reference-free” metrics that

measure captions’ specificity via the similarity between the
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image and the generated caption in the embedding space of

image-text models [13] or caption→image retrieval perfor-

mance. Qualitatively, we find that captions generated with

CFG are more specific than both the ground truth captions

and captions generated without CFG, but they are less gram-

matical, particularly at high CFG scales.

Beyond classifier-free guidance, we experiment with

guiding image captioning models using the probability

distribution obtained from a few shot-prompted language

model (LM). We find that using a language model to

guide a captioning model trained on MS-COCO [24]

with descriptive manually written captions can allow it

to achieve slightly better trade-offs between reference-free

vs. reference-based captioning metrics than those observed

with CFG. LM guidance also substantially improves the

captions produced by a model trained exclusively on min-

imally curated web data. Although this model achieves a

CIDEr score of only 21.8 without guidance, this CIDEr

score improves to 57.4 when guided by a language model

prompted with 20 captions from the MS-COCO training set.

In summary, our contributions are as follows:

• We propose two strategies to guide image captioning

models to produce more specific captions: classifier-free

guidance and language model guidance.

• We demonstrate that classifier-free guidance yields cap-

tions that are closer to the corresponding image in the

embedding space of image-text models, but are farther

from human-provided reference captions.

• We show that language model guidance can alter cap-

tion styles, substantially improving captions produced by

a model trained only on minimal curated web data and

marginally improving the trade-off between captioning

metrics observed with classifier-free guidance.

2. Related work

Measuring specificity of captions. Early work using

neural networks for image captioning found that models

have a propensity to regurgitate captions from their train-

ing data, and as a result, the generated captions are not de-

scriptive enough to uniquely identify images [43, 11]. To

address this shortcoming, Lindh et al. [25] proposed to

use caption→image recall with an image retrieval model

to examine whether images can be retrieved from gener-

ated captions, and further attempt to differentiate through

this retrieval process to train a captioning model. Their

approach marginally improves retrieval accuracy, but wors-

ens reference-based captioning metrics. More recent work

has adopted approaches to evaluate the specificity of cap-

tions based on the CLIP image-text model [30]. Hessel et

al. [13] propose CLIPScore, an image captioning metric

based on the cosine similarity between CLIP embeddings

of the image and the generated caption. Kasai et al. [20] re-

port that CLIPScore-based metrics align better with human

judgments compared to reference-based captioning metrics.

Improving specificity of captions. Recent work has at-

tempted to train caption models to directly maximize the

similarity of captions with corresponding images in the

CLIP embedding space using reinforcement learning. This

work has found that adding such losses worsens standard

reference-based captioning metrics but improve similarity

and retrieval in the CLIP embedding space [16, 6, 51], sim-

ilar to our observations regarding CFG. Wen et al. [44]

attempt to generate prompts for text-to-image generative

models that correspond to specific images without a cap-

tioning model, by directly optimizing the similarity between

the text and image in the CLIP embedding space using a

gradient-based discrete optimization procedure, but the re-

sulting text is not grammatical.

Other work has attempted to generate more descriptive

captions through different means. Dense captioning [46]

aims to detect and caption all objects in an image, but con-

catenating all of these captions leads to long and unnatu-

ral captions, whereas CFG produces single-sentence cap-

tions. The Localized Narratives dataset [29] contains vi-

sually grounded captions for MS-COCO images collected

through voice annotation. These captions are substantially

more descriptive than the captions in the MS-COCO dataset

and can be used for model training. Two recent papers pro-

pose to combine multiple captions from a single model [5]

or outputs of different vision models [34], and then com-

bine them using a language model. The resulting captions

are longer, but achieve greater caption→image recall.

Captioning from uncurated data. In Section 4.2, we

explore the use of LM guidance for captioning with ac-

cess to uncurated image-text data from the web and a small

number of captions but not images from the target distribu-

tion. This setting, which does not rely on aligned images

and captions from the target distribution, is often referred

to as “zero-shot” captioning, and previous work has pur-

sued a number of alternative approaches. Flamingo [3] and

CM3 [1] perform zero-shot captioning by pretraining on in-

terleaved image/text data. MAGIC [39] and ZeroCap [41]

generate captions using a combination of guidance from

CLIP and a large language model. Other recent work adapts

CLIP to perform captioning by training a text decoder using

only captions, with no corresponding images [27, 22].

Classifier-free guidance. CFG is widely used in

diffusion-based and autoregressive text-to-image mod-

els [26, 32, 35, 33, 12, 48]. Because of the popularity of

the combination of CFG and diffusion, previous work that

has performed image captioning with diffusion models has

also examined the use of CFG. This work finds either no

benefit to using CFG [45] or a small and inconsistent ben-

efit that appears to vary with minor changes in training set-

tings [52]. However, these studies do not seek to generate
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more specific captions, and thus measure only reference-

based captioning metrics, which we likewise find do not

benefit from CFG. Concurrently with out work, [36] pro-

pose to use classifier-free guidance to improve prompt fol-

lowing in large language models.

3. Methods

3.1. Classifier-free guidance for image captioning

Let x be an image caption and y be the corresponding im-

age. A standard captioning model aims to model the like-

lihood p(x|y), factorized autoregressively in terms of the

probability of each token given previous tokens

p(x|y) = p(xn|xn−1, . . . x1, y) . . . p(x1|y). (1)

The network is trained so that its output distribution

qθ(xn|xn−1, . . . x1, y)
def

= softmax(fθ(xn−1, . . . x1, y)) ap-

proximates p(xn|xn−1, . . . x1, y). At inference time, one

typically uses beam search or greedy decoding to produce

a caption that has a particularly high probability. In this

work, we use greedy decoding because it is the more com-

mon choice and it is also simpler to implement.

Classifier-free guidance (CFG) [14] modifies the infer-

ence procedure so it instead aims to achieve high values of

lθ,γ(x, y)
def

= p(x)

(
p(x|y)

p(x)

)γ

∝ p(x)p(y|x)γ , (2)

where proportionality holds because p(x|y)/p(x) =
p(y|x)/p(y) and p(y) is fixed. The parameter γ is called

the guidance scale and controls the trade-off between max-

imization of p(x|y) and p(y|x). When γ = 1, lθ,γ(x, y) =
p(x|y) and guidance has no effect. Setting γ > 1 inflates the

probability of the image given the caption p(y|x) relative to

the unconditional probability of the caption p(x).
Ho and Salimans [14] originally proposed CFG in the

context of diffusion models, which estimate the score func-

tions ∇ log p(x|y) and ∇ log p(x). Although lθ,γ(x, y) fac-

torizes autoregressively, it is not a normalized probabil-

ity distribution, so it is not entirely clear how one should

sample tokens when performing autoregressive generation.

Crowson [8] suggested to sample from

q̃θ,γ(xn|xn−1, . . . , x1, y)
def

= softmax(fθ(xn−1, . . . , x1,0)

+ γ(fθ(xn−1, . . . , x1, y)− fθ(xn−1, . . . , x1,0))), (3)

where fθ(xn−1, . . . , x1,0) are logits generated by the

model without conditioning, usually by passing zeros in

place of the conditioning information. This formulation

has been successfully applied in autoregressive image mod-

els [12, 48]. In our experiments, since we decode greed-

ily, i.e., at each step we take the token that maximizes

q̃θ,γ(xn|xn−1, . . . , x1, y) and thus lθ,γ(x, y), any form of

normalization of the per-step sampling distribution would

produce the same captions. We provide pseudocode in Ap-

pendix A.1. Crucially, the only change required to train-

ing is to learn an unconditional model of captions alongside

the image-conditonal model, which we accomplish by ran-

domly masking the image embeddings.

3.2. Language model guidance

Inspired by classifier-free guidance, we consider lan-

guage model (LM) guidance, which attempts to maximize

l′θ,γ(x, y)
def

= q(x)

(
p(x|y)α

p(x)β

)
, (4)

where p(x) and p(x|y) are obtained from a caption-

ing model as in CFG but q(x) is obtained from a lan-

guage model that was trained independently (but with the

same vocabulary) on a large text corpus. The quantity

p(x|y)/p(x) = p(x, y)/(p(x)p(y)) measures the strength of

the association between a caption and an image; its loga-

rithm is the pointwise mutual information (PMI). LM guid-

ance relies on the assumption that, even for large shifts in

the prior distribution of captions p(x), the shift in PMI will

be small. Empirically, we obtain better results by allow-

ing different exponents for the numerator and denominator,

with α > β. This decoupling resembles PMIk [9], which

reduces the bias of PMI toward rare associations. We pro-

vide a more detailed derivation in Appendix A.2.

We investigate two applications of LM guidance. First,

we combine a captioning model fine-tuned on MS-COCO

with a LM prompted with manually written descriptive cap-

tions to alter the style of the captions the model produces.

The manually written prompts are shown in Appendix A.4.

Second, we combine a captioning model trained only on

low-quality web data with a LM prompted with varying

numbers of examples from the MS-COCO training set to

evaluate the ability of LM guidance to elicit higher-quality

captions without high-quality paired data. We randomly se-

lect a different set of captions for each minibatch of four

test examples. In both cases, we separate the captions with

two newlines. Because this format leads the LM to place

probability mass on the newline token to end the caption,

we transfer the probability mass from the newline token to

the EOS token. See Appendix A.3 for pseudocode.

3.3. Models and training

Our captioning model is a “bottleneck” variant of CoCa-

Base [47], which combines a contrastive loss with a cap-

tioning loss to simultaneously learn aligned image and text

embeddings as well as a captioner. The architecture consists

of an image encoder, a unimodal text decoder, and a mul-

timodal text decoder, each of which are Transformers with

12 layers, 768 hidden dimensions, an MLP of size 3072,

and 12 self-attention heads, matching BERTBASE [10] and

GPT-1 [31]. The image encoder is a ViT-B/18 that pro-

cesses 288 × 288 input and produces an embedding such

that images are embedded close to their corresponding text.
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CoCa’s multimodal text decoder processes the represen-

tations of the image encoder to produce a caption. Whereas

[47] conditions the multimodal text decoder using cross-

attention to pooled representations, our bottleneck variant

uses only the contrastive image embedding. Appendix A.5

shows a diagram of the resulting architecture. We adopt this

bottleneck variant because of its simplicity and the concep-

tual appeal: When CFG is used, the captioner’s role is to

invert the image embedding, providing a caption that, when

embedded by the text encoder, lies close to it. However,

as we show in Appendix B.1, this choice of the bottleneck

model is not critical, and CFG is equally effective with the

standard CoCa architecture with attention pooling.

For CFG experiments, we pretrain our model on an

image-text dataset comprising images from the JFT-5B

dataset [40, 49] paired with their corresponding label names

substituted into a randomly selected prompt from the list

provided by Radford et al. [30], web images paired with

noisy alt text from the ALIGN dataset [17], and a small

amount of data from other sources. We do not mask condi-

tioning information during pretraining.1 We then fine-tune

on the combined MS-COCO train and Karpathy validation

splits [18] using Adam with batch size 128. We linearly

warm up to a learning rate of 1× 10−5 over the first 1, 000
steps and linearly decay to zero over the rest of training. We

vary γ ∈ {1.0, 1.2, 1.5, 2.0, 3.0, 4.0}, conditioning masking

proportion in {0.0, 0.25, 0.5, 0.75}, and numbers of steps

in {5,000, 10,000, 20,000, 50,000}. We report results from

the model trained for 20,000 steps with masking propor-

tion 0.5, which achieves near-optimal results, in Tables 1

and B.4, and sample example captions from it. To ensure

that results generalize across datasets, we also experiment

with a model fine-tuned on Conceptual Captions [37] for

100,000 steps with masking proportion 0.5.

For LM guidance experiments, we pretrain on the JFT-

5B and ALIGN datasets, again following the recipe of

[47]. For zero-shot captioning experiments, we fine-tune

this model on the same datasets for an additional 50,000

steps with conditioning masking proportion of 0.5 to im-

prove our ability to sample unconditionally. For LM guid-

ance on MS-COCO, we first fine-tune on ALIGN, JFT-5B

images backcaptioned by an MS-COCO fine-tuned CoCa-

2B model, and a small amount of internal data before fine-

tuning on MS-COCO. Our language model is a variant of

Primer [38] with 2 billion parameters, trained on a similar

dataset to that used to train PaLM [7].

3.4. Evaluation

We adopt the standard reference-based captioning met-

rics BLEU-4, METEOR, ROUGE, and CIDEr, as well

1We find that passing an all-zero image embedding to the pretrained

model yields samples that resemble the unconditional distribution, sug-

gesting that it implicitly learns to model the unconditional distribution.

as reference-free captioning metrics based on CLIP ViT-

B/32 [30]. The first reference-free captioning metric is

CLIPScore [13], which is defined as CLIP-S(c,v) =
2.5 · max(cos(c,v), 0) where c and v are the CLIP em-

beddings of the caption and image respectively. The second

reference-free metric measures the accuracy with which we

can retrieve an image from the generated caption within a

given test split by taking the k nearest neighbors of the cap-

tion in the CLIP embedding space. Because recall@k for

k > 1 is highly correlated with recall@1 (R@5: r = 0.99,

R@10: r = 0.98), we plot only recall@1. We additionally

report RefOnlyCLIP-S, a reference-based metric that uses

the CLIP text encoder to compute the similarity of CLIP

embeddings of the generated captions with embeddings of

ground truth captions, and RefCLIP-S, which takes the av-

erage of the per-image harmonic means of CLIP-S and

RefOnlyCLIP-S [13]. Unless otherwise stated, all evalua-

tion is performed on the MS-COCO Karpathy test split [18].

4. Results

4.1. Classifier-free guidance

We first investigate the trade-off between reference-

based and reference-free image captioning metrics as a

function of guidance scale. Because different guidance

scales and metrics could conceivably benefit from differ-

ent fine-tuning hyperparameter combinations, we plot all

results from our hyperparameter grid in Figure 2. Al-

though standard greedy decoding (γ = 1.0) produces the

highest CIDEr, METEOR, ROUGE, and BLEU-4 scores,

higher guidance weights consistently yield higher values of

reference-free captioning metrics. In particular, γ = 3.0 of-

fers both the best caption→image recall and the best CLIP-

Score.

Table 1 compares our results, obtained from a single

model evaluated at different guidance scales, with previ-

ous work that reports either CLIPScore or CLIP ViT-B/32

caption→image retrieval performance. Although our model

is trained with standard cross-entropy loss rather than a

CLIP-based loss and our pretraining dataset is distinct from

CLIP’s, sampling from our model with CFG yields higher

CLIPScores than all other models trained without CLIP-

based losses, and better CLIP caption→image retrieval even

when compared with models that use CLIP-based losses.

We present examples of captions generated at different

CFG scales in Figure 3. Higher CFG strengths lead to more

descriptive captions. At γ = 1.0, the central object in the

top left image is described as a “car” as in the ground truth

caption, whereas at γ > 1.0 it is a “station wagon.” Sim-

ilarly, at low CFG strengths, the birds in the center im-

age are described simply as “birds,” whereas at γ = 2.0
they become “crested cranes.” However, at γ = 3.0, cap-

tions clearly become less grammatical, containing repeated
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Figure 2. Classifier-free guidance controls a trade off between reference-free and reference-based captioning metrics. Each point reflects

a model trained with a different hyperparameter combination; each color represents a γ value used to decode. Models are evaluated with

different guidance scales γ, using reference-free captioning metrics based on CLIP ViT-B/32 (y-axes; top: CLIPScore, bottom: recall@1)

and reference-based captioning metrics (x-axes). The dashed line reflects the value of the reference-free captioning metric for the ground-

truth captions obtained from MS-COCO.

Reference-Based Metrics Reference-Free Metrics

Model BLEU-4 METEOR ROUGE CIDEr RefOnlyCLIP-S CLIP-S R@1 R@5 R@10 RefCLIP-S

Models trained with CLIP features or losses:

CLIP-Captioner [4] 38.7 29.3 58.6 126.0 0.811 0.754 0.814

UMT-BITG [16] 37.3 28.2 57.9 122.6 0.772

X-LAN+SCST+GEG [51] 36.5 28.7 57.5 121.7 28.1 50.3 67.2

CIDEr + CLIP-S Reward [6] 37.7 28.8 58.3 124.6 0.772 24.4 50.2 63.1

CLIP-S Reward [6] 6.2 18.7 31.6 11.2 0.860 42.5 71.6 82.2

ZeroCap [41] 2.6 11.5 14.6 0.87 0.79

Models trained without access to CLIP:

UMT-BITG w/o CLIP loss [16] 37.6 28.3 58.1 122.5 0.725

VinVL-large [50] 41.0 30.9 59.4∗ 140.9 0.91∗ 0.78∗ 0.84∗

Ours (γ = 1.0) 36.1 30.5 58.2 126.1 0.900 0.775 26.5 51.9 64.1 0.830

Ours (γ = 1.2) 35.1 30.0 57.5 124.1 0.899 0.785 31.3 57.4 69.3 0.835

Ours (γ = 1.5) 31.5 28.4 54.4 113.2 0.891 0.796 36.6 64.0 75.0 0.838

Ours (γ = 2.0) 20.9 23.3 43.0 78.6 0.862 0.808 44.6 71.7 81.7 0.831

Ours (γ = 3.0) 11.5 17.1 29.4 41.7 0.820 0.808 49.4 75.7 84.7 0.811

Ours (γ = 4.0) 6.5 12.3 18.4 17.3 0.766 0.782 44.7 71.3 80.9 0.771

Table 1. Quantitative comparison of our approach with results from previous work that reports CLIP-based metrics. For VinVL-large, ∗

indicates metrics from [19].

γ=1.0: a car with a surfboard on

top of it parked next to a

car

γ=1.5: a vintage station wagon

with a surfboard on top

γ=2.0: antique station wagons

and a car buick station-

wagon

γ=3.0: buick woody woody sta-

tionwagon and surf green

station wagon parked in

front of car show estab-

lishment

GT: An old green and brown

car with chrome trim.

γ=1.0: a knife is sitting on a cut-

ting board next to a sliced

carrot

γ=1.5: a knife is sitting on a

cutting board next to an

orange

γ=2.0: knife sitting on cutting

board next to whole one

γ=3.0: knife sitting on cutting

board next to misshappi

carrot on cutting board

GT: A knife sticking out of the

side of a block of cheese.

γ=1.0: a herd of sheep grazing

on a grass covered road

γ=1.5: sheep grazing on a high-

way with a truck on the

road

γ=2.0: sheep graze on freeway

medians where grass is

grown

γ=3.0: grazing trucks block-

ing sheep on roadway

grazing grass

GT: A large herd of sheep are

grazing by the busy road.

γ=1.0: two birds standing in a

cage with their heads in

the air

γ=1.5: two birds standing inside

of a cage in a zoo

γ=2.0: two crested cranes inside

a wire cage

γ=3.0: crested tantalus cranes

caged together in bird-

cage enclosure

GT: Two birds who are looking

out of the cage they are

in.

γ=1.0: a view of a city with a

clock tower in the back-

ground

γ=1.5: a city with steeples and

trees and buildings

γ=2.0: spires of churches line a

city skyline

γ=3.0: spires steeples buildings

trees church spires and

trees

GT: A clock that is on the side

of a tower.

γ=1.0: a kitchen with a mi-

crowave and a refrigerator

γ=1.5: a kitchen with a mi-

crowave and a refrigerator

γ=2.0: a kitchen with red ap-

pliances and white cup-

boards

γ=3.0: appliances sit in a small

empty dingroomy red and

white kitchen

GT: A kitchen that has a tile

floor, a refrigerator, a

microwave, and a toaster.

γ=1.0: a bathroom with a large

mirror and a bathtub

γ=1.5: a bathroom with a large

mirror and a bathtub

γ=2.0: a spacious bathroom with

a large mirror and a large

tub

γ=3.0: spacious bathroom with

chandelier over tub mir-

rors and tv

GT: A bathroom with a tub,

sinks, lights and a televi-

sion.

Figure 3. Caption descriptiveness increases with CFG strength, but high CFG strengths produce agrammatical captions. Here we show

examples of captions generated with different classifier-free guidance scales, for randomly selected images without human faces from the

MS-COCO Karpathy test split. Captions labeled γ = 1.0 are obtained without CFG; γ > 1 uses CFG; GT = ground truth.
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words (“woody woody”) and nonsense words (“misshappi”,

“dingroomy”). Figure 4 shows captions obtained with and

without CFG next to the top 5 closest images in the embed-

ding space of CoCa 2B [47],2 where it is clear that CFG

adds details to captions that help to distinguish them from

other captions in the test split. We provide additional exam-

ples in Appendix C.

To provide additional quantitative assessments of the

specificity of elicited captions, we perform two additional

evaluations, described further in Appendix B.2. First, we

generate captions for the Stanford Dogs [21] test set, which

consists of 8,580 images in total of 120 breeds of dogs, and

examine their properties. Without guidance, only 1.9% of

captions contain one of the 120 breed names, whereas at

γ = 2.0, 42.4% do. The percentage of these breed names

that are correct changes little, from 61.7% without guid-

ance to 58.5% at γ = 2.0. Second, we performed a human

evaluation comparing captions of MS-COCO test set im-

ages obtained without guidance and at γ = 2.0. We asked

subjects to select the caption that is “better” and “more de-

scriptive” or to indicate that they are both equal. When

we asked these questions separately, we found that the two

sets of captions are statistically indistinguishable. However,

when asking both questions on the same survey, we found

that captions generated without guidance are slightly “bet-

ter” (50.5% vs. 46.6%, p = 0.006, binomial test) but cap-

tions generated at γ = 2.0 are “more descriptive” (52.7%

vs. 45.8%, p = 1× 10−6).

To validate the reliability of our results, we further

measure the impact of CFG on three additional datasets,

nocaps [2], Flickr-8k [15], and Conceptual Captions

(CC3M) [37], as well as with alternative retrieval models.

nocaps is a test set for captioning models with objects

not present in MS-COCO; Flickr-8k is a small caption-

ing dataset collected using a different procedure than MS-

COCO; and Conceptual Captions is a set of 3.3M captions

collected from filtered alt-text. We fine-tune the bottleneck

CoCa-Base model directly on CC3M, and use our model

fine-tuned on MS-COCO to caption images on nocaps

and Flickr-8K. As shown in Figure 5, we find trade-offs be-

tween reference-based and reference-free captioning met-

rics similar to those above. In Appendix B.3, we report

reference-free captioning metrics on MS-COCO computed

with two additional retrieval models: the pretrained CoCa

2B model from [47] and the fine-tuned CoCa Base model

that we use to generate captions. With both models, CFG

substantially increases recall, in line with results obtained

with CLIP ViT-B/32.

Although CFG produces captions that are more suc-

cessful at uniquely identifying images than decoding from

the conditional distribution, caption lengths are similar for

2We use CoCa 2B rather than CLIP because, quantitatively and quali-

tatively, it provides better retrieval results both with and without guidance.

Figure 4. Captions generated with CFG contain specific details that

improve retrieval. For each reference image (far left), we show

captions at γ = 1.0 (no guidance) and γ = 2.0. To the right, we

show the closest images to each caption in the CoCa embedding

space. Reference images are selected at random subject to the con-

straints that the closest image differs between γ values and there

are no identifiable human faces.

Figure 5. CFG also yields trade-offs between captioning metrics

on nocaps, Flickr-8K, and CC3M.
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γ Words Characters

1.0 9.6± 1.4 44.2± 7.2

1.2 9.6± 1.4 44.7± 7.4

1.5 9.4± 1.4 45.7± 7.8

2.0 9.3± 2.4 50.3± 18.6

3.0 10.7± 7.6 69.0± 56.1

4.0 19.9± 16.9 161.2± 140.0

Table 2. Moderate CFG scales do not substantially change cap-

tion lengths, although higher CFG scales result in longer captions.

Numbers are mean ± standard deviation.

Figure 6. Language model guidance produces captions that

slightly exceed the Pareto frontier of CIDEr vs. caption→image

retrieval accuracy on MS-COCO.

γ ∈ [1, 2], as shown in Table 2. Thus, at low guidance

strengths, CFG improves recall by making more efficient

use of words, rather than by producing more verbose cap-

tions. Higher CFG strengths lead to longer captions but, as

described above, these captions are agrammatical and con-

tain nonsense words.

4.2. Language model guidance

We first experiment with guiding a captioning model

fine-tuned on MS-COCO to produce more descriptive

captions using a language model prompted with man-

ually written prompts. We first manually wrote a

prompt containing 10 descriptive captions of COCO

test set images (Appendix A.4). We then sweep

over α ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15} and β ∈
{0, α/4, α/2, 3/4α, α}, and compare the resulting re-

trieval/CIDEr trade-off to that produced by the same model

with CFG. We observe that it is possible to obtain small im-

provements upon the Pareto frontier provided by CFG, as

shown in Figure 6. With α = 5, β = −5/2, LM guid-

ance achieves CLIP ViT-B/32 R@1 of 39.6% and CIDEr of

114.4, whereas CFG with γ = 1.6 is worse on both metrics,

achieving R@1 of 39.0% and CIDEr of 109.3.

We further experiment with using prompting to con-

trol the captioner using a manually written prompt of 25

captions in the form of “a photo of NUMBER OBJECTS”

(e.g., “a photo of eight apples”; see Appendix A.4). With

α = β = 1, the guided model is able to match this format

and counts the number of objects in images (Figure 7).

We next investigate whether language model guidance

can elicit better captions from a model trained only on

a photo of two dogs a photo of one bird a photo of four suitcases a photo of five sheep

Figure 7. Captions generated with LM guidance with a prompt

of 25 captions in the form of “a photo of NUMBER OBJECTS”.

Examples are selected to show different numbers of objects.

Figure 8. LM guidance substantially improves CIDEr and retrieval

scores of a model trained solely on minimally curated web data

and evaluated on MS-COCO. The x-axis shows the number of cap-

tions used to prompt the LM; we do not prompt with images.

low-quality data. Here, we use a CoCa model that is pre-

trained on image-alt text pairs from the web (the ALIGN

dataset [17]) and classification labels converted to text (the

JFT-5B dataset [49]), without any additional fine-tuning.

Because the data distribution places higher probability mass

on short, non-descriptive captions than on longer captions,

the resulting model is of limited utility for captioning, and

would generally need to be fine-tuned on another dataset

such as MS-COCO before being applied to a captioning

task. Rather than fine-tune, we use LM guidance to prompt

the model with captions from the MS-COCO training set.

LM guidance substantially improves the quality of the

captions produced by the original pretrained CoCa model

without any clean parallel data. With LM guidance, we

achieve CIDEr scores of 48.6 with 5 shots and 59.7 with 50

shots, far exceeding the CIDEr score of 21.8 obtained with

no guidance. Figure 8 shows CIDEr and CLIP recall@1

scores for LM guidance of this pretrained CoCa model as a

function of the number of shots, with α = β = 1. Table 3

compares classifier-free guidance and LM guidance. CFG

yields higher CLIP-Scores and retrieval accuracy than LM

guidance with α = β = 1, but LM guidance provides much

higher CIDEr scores.

We compare captions generated with CFG to those gen-

erated with LM guidance for four images in Figure 9. In

general, CFG produces agrammatical captions, whereas

LM guidance produces grammatical captions but halluci-

nates details. For example, the image in the upper left shows

two elephants and no zebras, but LM guidance leads to the

caption “an elephant and a zebra in a field.”
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Reference-Based Metrics Reference-Free Metrics

Model BLEU-4 METEOR ROUGE CIDEr RefOnlyCLIP-S CLIP-S R@1 R@5 R@10 RefCLIP-S

Classifier-free guidance:

γ = 1.0 8.2 8.3 21.8 21.8 0.766 0.694 9.0 19.5 26.1 0.725

γ = 1.2 8.6 9.5 24.5 25.0 0.781 0.718 12.7 27.2 35.1 0.745

γ = 1.5 8.9 10.0 25.6 25.2 0.780 0.728 16.7 33.8 43.0 0.750

γ = 2.0 8.1 9.7 23.9 22.9 0.777 0.741 21.2 40.8 51.1 0.755

γ = 3.0 7.1 8.7 20.0 18.5 0.767 0.753 25.8 47.8 58.3 0.756

γ = 4.0 6.4 7.5 16.3 13.9 0.749 0.743 27.3 48.5 58.1 0.742

Language model guidance with α = β = 1:

2 captions 12.7 14.6 34.7 39.3 0.806 0.688 10.0 23.7 32.4 0.740

5 captions 15.0 16.6 39.1 48.6 0.827 0.712 12.4 27.5 37.5 0.763

10 captions 16.2 17.7 40.5 53.1 0.835 0.723 13.0 30.5 41.0 0.773

20 captions 17.4 18.4 41.6 57.4 0.839 0.728 14.4 32.2 42.7 0.777

50 captions 18.1 19.1 42.5 59.7 0.840 0.729 13.4 32.5 43.9 0.778

Other models trained without aligned MS-COCO images and captions:

ZeroCap [41] 2.6 11.5 14.6 0.87 0.79

MAGIC [39] 12.9 17.4 39.9 49.3

Flamingo [3] 84.3

DeCap (560 captions) [22] 51.4

DeCap (full train set) [22] 24.7 25.0 91.2

CapDec (full train set) [27] 26.4 25.1 51.8 91.8

Table 3. Comparison of decoding strategies for a captioning model trained only on minimally curated web data (JFT-5B and ALIGN)

and evaluated on MS-COCO. At the bottom, we report metrics for other models trained without aligned MS-COCO images and captions.

These models may not be directly comparable since they use different pretraining data. DeCap and CapDec use all 560K captions in the

MS-COCO training set to train their decoders; we include CIDEr for DeCap with 560 captions (0.1% of the training data) for comparison.

γ=1.0: a photo of the

small elephant.

γ=2.0: elephants in the

ruaha national park

γ=3.0: elephants chobe

np

LM: a elephant and a

zebra in a field

GT: Two elephants

standing on a

grassy field next to

a tree.

γ=1.0: a photo of the

small coffee.

γ=2.0: a coffee in a video

game.

γ=3.0: a banana in a

video game.

LM: a banana with a

cup of coffee

GT: A close up of a

banana next to a

cup with liquid.

γ=1.0: a photo of the large

windsurfing.

γ=2.0: windsurfing in tarifa

γ=3.0: windsurfing wallpa-

pers 1200x1024

LM: a windsurfer in the

water

GT: A man riding a

wind sail in the

ocean filled with

waves.

γ=1.0: a photo of the large

giraffe.

γ=2.0: a giraffe in a video

game.

γ=3.0: giraffe standing

photo 1

LM: a giraffe standing

in a tall tree

GT: A giraffe in a dry

savannah with dry

shrubs

Figure 9. Examples of captions generated from a model pretrained

only on minimally curated data, for randomly selected images

without human faces. Captions labeled γ = 1.0 are obtained

without CFG; γ > 1 uses CFG; LM indicates LM guidance with

α = β = 1 and 20 shots; GT indicates ground truth.

5. Conclusion

Our study indicates that it is possible to substantially im-

prove the extent to which generated captions uniquely de-

scribe the images they correspond to, raising questions re-

garding the goal of image captioning and how it should be

evaluated. As it is conventionally formulated, image cap-

tioning aims not to provide text that can substitute for an im-

age, but to write the text that a human annotator would have

written. This formulation penalizes captions that are more

descriptive than ground truth, even when a human might

prefer them. On the other hand, treating image captioning

as a problem of generating a caption that lies close to the

image in the embedding space of an image-text model is

also inadequate, because captions that lie close to the image

need not be grammatical and may contain gibberish. Our

proposed methods leveraging classifier-free guidance and

language model guidance modulate the trade-offs between

these two goals, as captured by various reference-based and

reference-free metrics.

There are several possible extensions to our work. First,

our present experiments use only greedy decoding. Al-

though greedy decoding appears to perform reasonably well

in our setup, it may be suboptimal for LM guidance with

prompts that impose greater structure upon the captions. If

the LM is prompted to output either “there is a person in

this image” or “there is no person this image”, greedy de-

coding is likely to fail even if the captioner properly scores

the two possible captions, because when choosing between

the tokens “a” and “no”, the captioner has no knowledge

of the structure that the LM will impose on future tokens.

Since beam search could explore both tokens, it may offer

better results in this scenario. Second, our method could

be combined with RL-based methods to increase similarity

in a contrastive embedding space, which may further im-

prove retrieval performance and CLIPScore. Finally, with a

perfect captioning model, p(image|caption) should increase

with γ. However, in practice we find that γ > 3 leads to

a decrease in retrieval performance. This discrepancy sug-

gests that the difference between the conditional and uncon-

ditional model distributions may be a noisy estimator of the

pointwise mutual information. Although selecting γ is one

way to regularize this estimator, there may also be strategies

to regularize p(x|y)/p(x) at training time.
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