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Abstract

We present a method to efficiently generate 3D-aware
high-resolution images that are view-consistent across mul-
tiple target views. The proposed multiplane neural radi-
ance model, named GMNR, consists of a novel α-guided
view-dependent representation (α-VdR) module for learn-
ing view-dependent information. The α-VdR module, facil-
iated by an α-guided pixel sampling technique, computes
the view-dependent representation efficiently by learning
viewing direction and position coefficients. Moreover, we
propose a view-consistency loss to enforce photometric
similarity across multiple views. The GMNR model can
generate 3D-aware high-resolution images that are view-
consistent across multiple camera poses, while maintaining
the computational efficiency in terms of both training and
inference time. Experiments on three datasets demonstrate
the effectiveness of the proposed modules, leading to favor-
able results in terms of both generation quality and infer-
ence time, compared to existing approaches. Our GMNR
model generates 3D-aware images of 1024 × 1024 pix-
els with 17.6 FPS on a single V100. Code : https:
//github.com/VIROBO-15/GMNR

1. Introduction
The advances in generative adversarial networks (GANs)

[21] have resulted in significant progress in the task of high-
resolution photorealistic 2D image generation [27, 28, 30].
The problem of generating 3D-aware images that render an
object in different target views has received increasing inter-
est in the recent years. Learning such 3D-aware image gen-
eration is challenging due to the absence of 3D geometry
supervision or multi-view inputs during training. Further-
more, the synthesized 3D-aware images are desired to be of
high-resolution, generated at extrapolated views (i.e., large
non-frontal views) and consistent across camera views.

In the absence of 3D supervision, existing 3D-aware im-
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age generation approaches [8, 13] typically rely on learn-
ing the 3D geometric constraints by using either implicit
[47, 42, 23, 43] or explicit [35, 51] 3D-aware inductive bi-
ases and a rendering engine. While implicit representations,
e.g., neural radiance fields [40] (NeRF), possess the merits
of better handling complex scenes along with memory ef-
ficiency, their slow querying and sampling generally nega-
tively affects the training duration, inference time as well as
the 3D-aware generation of high-resolution images. On the
other hand, explicit representations, e.g., voxel grid [48],
are typically fast but have large memory footprint lead-
ing to scaling issues at higher resolutions. These issues
are recently addressed [65] by utilizing multiplane images
(MPI) as an explicit representation to transfer the knowl-
edge learned by a 2D GAN to 3D-awareness. In this way,
existing 2D GANs, e.g., StyleGAN [28], can be extended
to obtain the alpha maps conditioned on the plane’s depth,
followed by conditioning the discriminator on a target pose
for training the image synthesis model.

While the aforementioned scheme of avoiding a volu-
metric rendering of pixels enables efficient training and in-
ference, it may lead to inaccurate rendering of object shapes
at extrapolated views due to fewer multiplanes during train-
ing. Moreover, inconsistent artifacts across different views
can occur since such a scheme optimizes the warping from
canonical pose to a single target pose. A straightforward
way to overcome this issue is to increase the resolution in
the disparity space, i.e., more planes. This can likely help
in reducing these artifacts resulting in improved rendering
at extrapolated viewing angles. However, this will result in
significantly increasing the training time as well as memory
overhead. In this work, we show how to collectively ad-
dress the above issues without any significant degradation
of training and inference speed.
Contributions: We propose an efficient approach named
Generative Multiplane Neural Radiance (GMNR), that
learns to synthesize 3D-aware and view-consistent high-
resolution images across difference camera poses. To this
end, we introduce a novel α-guided view-dependent repre-
sentation module (α-VdR) that enables the generator to bet-
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Figure 1. Generated examples using our proposed 3D-aware view-consistent GMNR approach. For each example, we show the generated
canonical view along with the rendered images at two different target poses. Our GMNR efficiently synthesizes 3D-aware high-resolution
(512× 512 in row 2; 1024× 1024 in rows 1 and 3) scenes with detailed geometry along with consistent rendering across multiple views
at a speed of 17.6 frames per second (1024× 1024 pixels) on a single Tesla V100 GPU.

ter learn view-dependent information during training. Our
α-VdR employs a linear combination of learnable image-
specific viewing direction and image-agnostic position co-
efficients along with an α-guided pixel sampling technique
to compute the view-dependent representation efficiently.
The proposed sampling technique ensures that a balanced
set of valid pixel locations from each multiplane is consid-
ered when computing the view-dependent representation,
resulting in 3D-aware high-resolution images with dimin-
ished artifacts in the target poses. Moreover, we employ a
view-consistency loss for enforcing photometric similarity
across multiple rendered views. Consequently, our GMNR
generates 3D-aware high-resolution images that are view
consistent across different camera poses while maintaining
the computational efficiency at inference.

Extensive qualitative and quantitative experiments are
conducted on three datasets: FFHQ [29], AFHQv2-Cats
[11] and MetFaces [26]. Our GMNR performs favorably
against existing works published in literature. When gen-
erating images of 1024×1024 pixels on FFHQ dataset,
GMNR outperforms the best existing approach [65] by re-

ducing the FID from 7.50 to 6.58, while operating at a com-
parable inference speed of 17.6 frames per second (FPS) on
a single tesla V100. Fig. 1 shows 3D-aware high-resolution
generated scenes from our GMNR exhibiting detailed ge-
ometry and consistent rendering across multiple views.

2. Preliminaries
Problem Statement: In this work, the goal is to learn a 2D
GAN for generating 3D-aware high-resolution images that
are view-consistent, such that the generated images identi-
cally encapsulate the synthesized objects at different target
camera poses pt. Here, multiplane images are generated
to capture the 3D information and are then utilized to ren-
der a view-consistent 2D image at a target camera pose pt.
The multiplane images consist of a set of L fronto-parallel
planes i ∈ {1, · · · , L}, each of size H ×H × 4, i.e., each
plane i comprises an RGB image Ci ∈ RH×H×3 and an
alpha map αi ∈ [0, 1]H×H×1. The distance between the
camera and a plane i is denoted by depth di ∈ R. Next,
we describe our baseline framework for generating view-
consistent 3D-aware high-resolution images.

7389



2.1. Baseline Framework

Our baseline model is motivated by the recent multi-
plane image generation method, GMPI [65], since it fo-
cuses on computationally efficient generation of 3D-aware
images. GMPI extends the StyleGANv2 [30] network with
a branch for obtaining alpha maps and a differentiable ren-
derer for generating 3D images at different target camera
poses. Moreover, the base GMPI framework reuses the
same color-texture across all planes, in turn reducing the
task of StyleGANv2 generator fG(·) to synthesizing a sin-
gle RGB image C and the corresponding per-plane alpha
maps αi, given by

M ≜ {C, {α1, · · · ,αL}} = fG(z, {d1, · · · , dL}), (1)

where z denotes the latent vector input to fG(·). For gener-
ating the alpha maps at a resolution r ∈ {4, 8, · · · }, a single
convolutional layer frToAlpha is first used to generate the α̂ri
from intermediate feature representations F rαi

, given by

α̂ri = frToAlpha(F
r
αi
), (2)

F rαi
=

F r − µ(F r)

σ(F r)
+ fEmb(di, e), (3)

where σ(F r), µ(F r) ∈ Rdimr denote the standard devia-
tion and mean of the feature F r ∈ Rr×r×dimr . The plane
specific embedding fEmb(di, e) is computed using the style
embedding e and depth di of plane i, similar to Style-
GANv2. Note that F rαi

is specific to each plane, while
frToAlpha is shared across all planes. Finally, the alpha maps
αri at different resolutions r are accumulated through an up-
sampling operation that is consistent with the StyleGANv2
design. With this formulation, GMPI introduces a branch to
generate alpha maps conditioned on the plane depths di by
utilizing the intermediate feature representations and condi-
tions the discriminator on the camera poses to make the 2D
StyleGANv2 3D-aware [65].

Our baseline framework extends the existing 2D Style-
GANv2 to make it 3D-aware using implict and explicit rep-
resentations. Moreover, by first generating multiplane im-
ages at canonical view and then warping them to target
poses, it avoids a volumetric rendering leading to an effi-
cient training and inference. However, the baseline model
does not effectively render object images at extrapolated
views, likely due to fewer multiplanes employed to over-
come memory issues during training. Furthermore, since
the baseline optimizes by warping from canonical view to a
single random target pose, it leads to inconsistent artifacts
across multiple views (see Fig. 2). Next, we present our
approach that collectively address the above issues without
any significant change in training and inference time.

Figure 2. Example generated images using the baseline approach
depicting the frontal (canonical) and target views. Here, the base-
line model is trained on FFHQ (rows 1) and AFHQv2-Cats (row
2). While being effective in synthesizing frontal views (col. 1),
the baseline struggles when generating the target views and intro-
duces artifacts during the rendering (col. 2 and 3). In these cases,
the generated images depict repeated textures (highlighted as blue
box) due to the same RGB content in each plane and layered ar-
tifacts (highlighted as green box) due to fewer planes employed
during training. For more examples, see supplementary material.

3. Proposed Approach

Overall Architecture: Fig. 3 presents the overview of
our proposed GMNR framework. Within our GMNR, the
RGBα generator adapts a conventional 2D generator by
integrating an α-branch with StyleGANv2, yielding a set
of fronto-parallel alpha maps {αi}Li=1, as in the base-
line. The focus of our design is the introduction of an α-
guided view-dependent representation (α-VdR) that learns
image-specific view-dependent information and modifies
the RGB values at the different planes according to the
view-dependent directions, which is crucial for rendering
images with diminished artifacts in target poses. The α-
VdR module learns a view-dependent pixel representation
using a linear combination of coefficients obtained from
two MLPs by efficiently sampling pixel positions through
an α-guided pixel sampling technique. This enables the
α-VdR module to learn modeling the image-specific view-
dependent 3D characteristics. Moreover, we employ a view-
consistency loss to enforce photometric consistency across
different views of the rendered images. Consequently, 3D-
aware view-consistent images of high-resolution at target
poses are synthesized by the RGBα generator together with
the α-VdR module and renderer at inference.

3.1. α-guided View-dependent Representation

As discussed earlier, the baseline model renders 3D im-
ages using an MPI representation without explicitly utiliz-
ing the view-dependent information during training, which
is desired for 3D-aware view-consistent image genera-
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Figure 3. Overall architecture of our GMNR for generating 3D-aware and view-consistent images at high-resolution. Our GMNR takes a
latent vector z ∈ Rdz and outputs an RGB image at a target view. GMNR comprises an RGBα generator, an α-guided view-dependent
representation (α-VdR) module, a differentiable renderer and a pose-conditioned discriminator. The RGBα generator synthesizes the
RGB image and the alpha maps {αi}Li=1 corresponding to the canonical pose. The generated RGB image that is warped to a target
pose p1 is then input along with the style-code w to the α-VdR module (Sec. 3.1). The α-VdR module learns a view-dependent pixel
representation using a linear combination of coefficients (image-agnostic {gn}Nn=1 and image-specific {hn(w)}Nn=1) computed from the
α-guided sampling positions (x, y, di), viewing direction vp1 and style-code w using two MLP networks Tθ(·) and Mϕ(·), respectively.
Here, the α-guided pixel sampling aids in efficiently sampling the pixel positions for computing the view-dependent representation. As
a result, α-VdR module learns to model the image-specific view-dependent 3D characteristics. Moreover, a view-consistency loss Lvc

(Sec. 3.2) is employed for enhancing the photometric consistency across different views of the rendered images. Consequently, the RGBα
generator along with the α-VdR module and renderer synthesize 3D-aware view-consistent images at target poses during inference.

tion. To learn view-dependent information, we introduce
an α-guided view-dependent representation module (α-
VdR) that comprises two separate MLP networks Tθ(·) and
Mϕ(·). We consider a pixel to be a discrete sample of a radi-
ance function R(q, v) with q, v ∈ R3 as the pixel coordinate
and the target viewing direction. Motivated by [31, 32], we
note that R(q, v) can be approximated by a sum of prod-
ucts gn ·hn. Here, gn and hn are computed using two MLP
networks Tθ(·) and Mϕ(·) with inputs q and v, respectively.

Given the pixel location q = (x, y, di) for a plane depth
di (i ∈ {1, · · · , L}), the MLP Tθ(·) predicts the image-
agnostic position coefficients {gq1, · · · , g

q
N}. Similarly, to

enable image-specific view-dependent modeling, the nor-
malized viewing direction v = (vx, vy, vz) is utilized along
with the style-code w generated by the mapping network
of the StyleGANv2 in the RGBα generator. To this end,
v and w are concatenated and input to the MLP Mϕ(·),
which outputs image-specific viewing direction coefficients
{hv1(w), · · · , hvN (w)}. The color representation sq(v) of a
pixel q for a target viewing direction v is computed using

sq(v) = gq0 +

N∑
n=1

gqn · hvn(w). (4)

Note that g0 is computed by performing a homography

warping operation on the RGB image generated at canon-
ical pose to the target camera pose p1.
α-guided Pixel Sampling: Sampling all the pixels for
color representation learning (Eq. 4) to generate high-
resolution images is cost-prohibitive, since it is infeasible
to compute the view-dependent representation sq(v) of all
the pixels q in an MPI. To alleviate this issue, we introduce a
new sampling technique with the aid of the generated alpha
maps {αi}Li=1, which reduces the volume of points that are
required for sampling while retaining the fine details for co-
efficient learning. To this end, we compute a weight matrix
Ai ∈ RH×H corresponding to the plane i, given by

Ai = αp1i ·
i−1∏
j=1

(1−αp1j ), (5)

where αp1i denotes αi warped to target pose p1. A pixel
location (x, y, di) is a candidate for sampling if the corre-
sponding weight is greater than 0, i.e., if Ai(x, y) > 0.
Note that Eq. 5 ensures that a pixel location (x, y, di) is not
considered during sampling if either αp1i (x, y) = 0 or if
αp1j (x, y) = 1 for any j < i. Furthermore, among the can-
didate locations (x, y, di), a per-plane random sampling is
performed to select only a certain percentage of the candi-
date locations in a plane i. This balanced sampling strat-
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(a)

(b)

Ours: GMNR

Baseline: GMPI

Figure 4. (a) Visualization of view-dependent information inte-
grated by α-VdR module (first row) at various poses of two exam-
ple generated images (second row) (b) Qualitative comparison be-
tween baseline GMPI and our GMNR. Repeated texture artifacts
at extrapolated views are seen in the baseline due to novel regions
being rendered as duplicates of visible areas. These repeated tex-
ture artifacts are reduced at extrapolated views of GMNR due to
the modification of RGB values at different planes by our α-VdR
module, e.g., ear, nose, eyes in the zoomed-in crops.

egy guided by alpha maps ensures that every plane i is ad-
equately represented during the color representation com-
putation (Eq. 4), thereby leading to effective learning of
view-dependent information. This technique of per-plane
α-guided sampling mitigates the issue of under-sampling of
valid pixels in nearby planes, which can arise if sampling is
performed by considering pixels together across all planes.
As such, our α-VdR module outputs a view-dependent
RGB image Cp1(v) at a target pose p1 and incorporates
3D-awareness during image generation. Fig. 4(a) shows the
view-dependent information integrated by α-VdR module
when rendering objects at different views.

As discussed earlier, the standard view-independent MPI
used in GMPI utilizes the same RGB (generated) image
for all the planes resulting in repeated textures at extrap-
olated views due to novel regions being rendered as du-
plicates of visible areas (see nose and ear crops of base-
line in Fig. 4(b)). To address this issue, the proposed α-
guided view-dependent representation (α-VdR) module in
our GMNR modifies the RGB values at different planes ac-
cording to the viewing direction (Eq. 4), thereby reducing
the artifacts (bottom row in Fig 4(b)) without requiring ad-
ditional multi-planes. Furthermore, Fig. 5 shows the im-
pact of α-VdR module on generated examples from FFHQ
and AFHQv2-Cats. Compared to the baseline, our approach
with α-VdR module synthesizes high-resolution images at
target views with diminished artifacts.

Baseline Our Approach

Baseline Our Approach
Figure 5. Synthesized rendered RGB image at a target view (left),
its corresponding canonical view (center) along with the mesh
(right) for the baseline and our GMNR, respectively. Compared to
the baseline, our GMNR better renders the target objects at large
non-frontal views due to learning the view-dependent information
through the α-VdR module. Stretched eyes can be observed in the
case of baseline generated image (row 1, col. 1), while such an
artifact is mitigated by our approach (row 1, col. 4).

3.2. View-consistency Loss

To achieve a better photometric consistency across mul-
tiple views, we employ an image-level optimization loss.
Let Ip1 and Ip2 denote the images rendered at target poses
p1 and p2. Note that only Ip1 is generated by integrating the
view-dependent information from α-VdR module, while
Ip2 is rendered directly from the RGBα generator output, as
shown in Fig. 3. We first warp Ip2 to target pose p1 to obtain
the warped image Iψ . The warping is performed by utilizing
the accumulated depth of the alpha maps. Afterwards, we
employ the image-level optimization loss that enhances the
view-consistency between the primary image Ip1 and the
warped image Iψ in order to satisfy the geometry require-
ments between views. Similar to the image reconstruction
problem [20, 67], we formulate the image-level optimiza-
tion loss as a combination of SSIM [58] and ℓ1 [64], given
by

Lvc =
δ

2
(1−SSIM(Ip1 , Iψ))+(1− δ)||Ip1 − Iψ||1. (6)

3.3. Training and Inference

Training: Our GMNR framework is trained using a pose
conditioned discriminator D, which compares the fake im-
ages generated by the RGBα generator and real training
images Igt. The overall loss formulation, utilizing a non-
saturating GAN loss with R1 penalties [37] and the view-

7392



consistency loss Lvc is given by

L =EIpt ,pt [f(logQ(Ipt , pt))] + EIgt,pt [f(logQ(Igt, pt))]

+η|∇Igt logP (y = real|Igt, pt)|2] + λLvc, (7)

where Q(I, pt) = P (y = real|I, pt) denotes the proba-
bility that image I from a camera pose pt is real, f(x) =
− log(1 + exp(−x)) and η = 10.0.
Inference: During inference, we use the RGBα generator
to synthesize RGB image C and alpha maps αi. The α-
VdR module takes the semantic information w generated
by the StyleGANv2 along with target viewing direction vt
as inputs, and computes an image-specific view-dependent
representation Cpt(vt) ∈ RH×W×3×L (based on Eq. 4).
This Cpt(vt) together with αi are used to obtain multiplane
images, which are then input to the MPI renderer. The ren-
derer warps them to the target pose pt followed by alpha
composition for combining the planes to obtain the desired
3D-aware and view-consistent image Ipt . Note that while
the image-specific coefficients {hn(w)} in Eq. 4 are com-
puted once for an image, the image-agnostic coefficients
{gqn} are computed only once, leading to minimal compu-
tational overhead during inference.

4. Experiments
Datasets: The proposed GMNR is evaluated on three
datasets: FFHQ, AFHQv2 and MetFaces. The FFHQ [29]
dataset comprises 70, 000 high-quality images of real peo-
ple’s faces at 1024× 1024 resolution captured from various
angles. The AFHQv2-Cats [11, 27] dataset has 5, 065 im-
ages (512 × 512 size) of cat faces at various angles. The
MetFaces [26] dataset consists of 1, 336 high-quality face
images extracted from the Metropolitan Museum of Art’s
collection. While an off-the-shelf pose estimator [14] is
employed to compute a face’s pose required for the pose
conditioning for FFHQ and MetFaces, a cat face landmark
predictor [3] along with OpenCV [1] perspective-n-point
technique are used to compute the pose for AFHQv2-Cats
images. Furthermore, horizontal flips are used as augmen-
tation for AFHQv2-Cats and MetFaces.
Evaluation Metrics: In this work, five metrics are em-
ployed for quantitatively comparing the generated image
quality, as in [65]. The Frechet Inception Distance (FID)
[25] and Kernel Inception Distance (KID) [5] are computed
between 50K generated images rendered at different ran-
dom poses and (a) 50K real images for FFHQ; (b) 5, 065
real images with flip augmentation for AFHQv2-Cats. The
multi-view facial identity consistency (ID) is computed by
first generating 1, 024 MPI representations and then em-
ploying the mean Arcface [12] cosine similarity score be-
tween pairs of rendered views at random poses for the
same face. The depth accuracy (Depth) is measured as the
MSE between the rendered depth and the pseudo ground-

truth depth obtained from a pre-trained face reconstruction
model [14] on the face mask area. Similarly, the 3D pose
accuracy (Pose) is computed by comparing the pose input
used for rendering and the yaw, pitch and roll predicted
by [14] for the rendered image.

4.1. Implementation Details

Within our GMNR, the MLP Tθ(·) comprises 4 fully-
connected (FC) layers with hidden size of 384, while Mϕ(·)
has 3 FC layers with hidden size 64. Here, Leaky-ReLU
activation is used in both MLPs. We add sinusoidal posi-
tional encodings to the pixel location and the viewing di-
rection inputs, as in [40]. While the batch size is set to 32
for AFHQv2-Cats, it equals 64, 32 and 16 for FFHQ256,
FFHQ512 and FFHQ1024, respectively. We set δ in Lvc
loss to 0.85 and λ to 0.5. For α-guided pixel sampling,
6% of valid pixels are sampled from each plane for FFHQ
(2562, 5122 sizes) and AFHQv2-Cats, while it is 4% for
Metfaces and FFHQ (1024 × 1024). The learning rate for
training our GMNR is set to 2 × 10−3. As in [65], we use
32 planes during training and 96 for inference in all exper-
iments. Near and far depth of the MPI are set as 0.95/1.12
(FFHQ and Metfaces), 2.55/2.8 (AFHQv2-Cats). Depth
normalization is performed as in [65]. Our model is trained
using 8 Tesla V100 GPUs using PyTorch-1.9 [45]. In our
framework, we refer to the Lth plane as the background
plane of the MPI representation. To color the background
plane, we use the leftmost and rightmost 5% pixels of the
synthesized image C as the left and right boundaries, re-
spectively. The RGB values of the remaining pixels in the
background plane are linearly interpolated between the left
and right boundaries. For generating the mesh cubes, we
use the marching cube algorithm [37] implemented in PyM-
Cubes [2] and utilize a smoothing function to have the better
visualization.

4.2. Experimental Results

4.2.1 Baseline Comparison

We first present a quantitative and qualitative comparison
of our GMNR approach with the baseline GMPI on both
FFHQ and AFHQv2-Cats datasets. Tab. 1 shows the com-
parison in terms of FID, KID, ID, Depth, Pose metrics and
training time. As in the baseline GMPI [65], the compari-
son is presented at three different resolutions: 256 × 256,
512× 512 and 1024× 1024. Compared to the baseline, our
GMNR achieves consistent improvement in performance on
all metrics, without any significant degradation in the train-
ing time and inference speed. In the case of 5122 resolu-
tion, the baseline obtains FID scores of 8.29 and 7.79 on
FFHQ and AFHQv2-Cats datasets, respectively. In compar-
ison, our GMNR achieves favorable performance with FID
scores of 6.81 and 6.01, respectively. Similarly, GMNR
obtains improved performance by reducing the Depth er-

7393



Table 1. Comparisons between the baseline and our GMNR on FFHQ and AFHQv2-Cats. We also report the training time when utilizing 8
Tesla V100 GPUs. Our GMNR achieves consistent improvement in performance on all metrics and different resolutions, compared to the
baseline. Furthermore, this improvement in performance over the baseline is achieved without any significant degradation in the training
time and the inference speed of the model.

Method FFHQ AFHQv2-Cats

FID↓ KID ↓ ID↑ Depth↓ Pose↓ Train Time↓ Infer Speed↑ FID↓ KID ↓

2562
Baseline 11.4 0.738 0.700 0.53 0.0040 3h 328 FPS n/a n/a
Ours: GMNR 9.20 0.720 0.730 0.39 0.0032 3h 33m 313 FPS n/a n/a

5122
Baseline 8.29 0.454 0.740 0.46 0.0060 5h 83.5 FPS 7.79 0.474
Ours: GMNR 6.81 0.370 0.760 0.40 0.0052 5h 42m 78.9 FPS 6.01 0.450

10242
Baseline 7.50 0.407 0.750 0.54 0.0070 11h 19.4 FPS n/a n/a
Ours: GMNR 6.58 0.351 0.769 0.43 0.0064 12h 17.6 FPS n/a n/a

Table 2. Effect of progressively integrating our proposed contribu-
tions into the baseline on FFHQ dataset with 5122 resolution. The
introduction of the proposed α-VdR (Sec. 3.1) into the baseline
results in a consistent improvement in performance on all metrics.
The results are further improved when integrating the proposed
view-consistency loss Lvc (Sec. 3.2).

Method FID↓ KID ↓ ID↑ Depth↓ Pose↓
Baseline 8.29 0.454 0.740 0.457 0.0060
Baseline + α-VdR 7.01 0.381 0.751 0.412 0.0054
Baseline + α-VdR + Lvc 6.81 0.370 0.760 0.400 0.0052

ror from 0.46 to 0.40 and KID from 0.454 to 0.370 on the
FFHQ dataset, compared to the baseline.

4.2.2 Ablation Study

Tab. 2 shows the impact of progressively introducing each
of our contributions into the baseline on the FFHQ dataset
at 5122 resolution. When integrating the proposed α-VdR
(Sec. 3.1) into the baseline framework, we observe a con-
sistent improvement in results highlighting the importance
of learning view-dependent information during training to
render images with diminished artifacts in target poses. No-
tably, the FID scores reduce from 8.29 to 7.01, and the
KID scores from 0.454 to 0.370. The results are further
improved by the introduction of the view-consistency loss
Lvc (Sec. 3.2), leading to a consistent gain on all met-
rics. Our final approach (row 3) that generates 3D-aware
view-consistent images achieves an absolute improvement
of 1.48 in terms of FID score over the baseline.

We further conduct an experiment to ablate the pixel
sampling rate in our proposed plane-specific sampling
within the α-VdR of our GMNR. Here, we ablate the rate
from 1% to 6%, since 6% is the maximum rate that can be
accommodated during our GMNR training under the same
batch size setting as the baseline. We observe the results
to consistently improve when increasing the sampling rate
(1%: 8.32, 3%: 7.53, 6%: 6.81 in terms of FID score). As a
next step, we also compare our plane-specific sampling with
random sampling across planes at the optimal sampling rate

(6%). The random sampling scheme obtains FID and KID
scores of 7.68 and 0.39. In comparison, our plane-specific
sampling-based GMNR improves the results, achieving FID
and KID scores of 6.81 and 0.37, respectively.

Similarly, to see the effect of λ, we set it to a high value
(λ=20) for Lvc which improves the ID score to 0.732 at the
cost of FID 9.70 for 256 × 256 resolution, leading to sub-
optimal generation. Furthermore, we observe that setting
p2 = 0 throughout the experiment for the view-consistency
loss leads to the sub-optimal FID of 9.63 for 256 × 256
resolution.

4.2.3 Comparison with Existing Approaches

Here, we present the comparison of our GMNR with exist-
ing works published in literature. Tab. 3 presents the com-
parison on FFHQ and AFHQv2-Cats datasets. The results
are reported with 256 × 256, 512 × 512 and 1024 × 1024
images. Both the GMPI and our GMNR approach utilize 96
planes during the test time and do not employ any trunca-
tion tricks [6, 28]. Among existing works, the recent GMPI
obtains comparable performance to other methods in liter-
ature with faster training, when evaluating on 2562 resolu-
tion images. For instance, the training time of GMPI for
2562 resolution is 3 hours (using 8 Tesla V100 GPUs), ex-
cluding the StyleGANv2 pre-training time [65]. Compared
to the GMPI training duration (including both StyleGANv2
pre-training and GMPI training), other existing methods in-
cluding EG3D, GRAM, and StyleNeRF require a longer
training time. Moreover, GMPI demonstrates the ability
to generate high-resolution images of 1024 × 1024 reso-
lutions, where most other existing works struggle to gen-
erate. When comparing with GMPI approach, our GMNR
achieves consistently improved performance on all metrics
at different resolutions, without any significant degradation
in training time as well as operating at a comparable infer-
ence speed. For the high-resolution of 1024 × 1024, our
GMNR achieves FID score of 6.58 on the FFHQ dataset,
performing favorably against existing published works in
the literature while operating at an inference speed of 17.6
FPS on a single Tesla V100. Fig. 6 presents a compari-
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Table 3. Comparisons with existing approaches. Here, both GMPI and our approach use 96 planes during inference and without applying
any truncation tricks [6, 28]. Further, the KID score is reported in KID×100. In case the corresponding work does not report the results, we
denote it as ‘-’. We report the results of GIRAFFE, pi-GAN and LiftedGAN from the EG3D paper. Results reported on the entire AFHQv2
dataset instead of cats only are denoted by ‘*’. For 256×256 and 1024×1024 resolutions, no results are reported on AFHQv2-Cats for
both GMPI and our GMNR since the corresponding pre-trained StyleGANv2 checkpoints are unavailable. Compared to the recent GMPI,
our GMNR achieves consistent improvement in performance, while running at comparable inference speed (FPS). Particularly, GMNR
better generates high-resolution (1024×1024) images where most existing works struggle to operate demonstrating its flexibility. Further,
GMNR achieves consistent improvement on all metrics and significantly reduces the FID from 7.50 to 6.58 on FFHQ, compared to GMPI.

Method Infer Speed↑ FFHQ AFHQv2-Cats

FID↓ KID ↓ ID↑ Depth↓ Pose↓ FID↓ KID ↓

2562

GIRAFFE [42] 250 31.5 1.992 0.64 0.94 0.0890 16.1 2.723
pi-GAN 1282 [9] 1.63 29.9 3.573 0.67 0.44 0.0210 16.0 1.492
LiftedGAN [49] 25 29.8 - 0.58 0.40 0.0230 - -
GRAM [13] 180 29.8 1.160 - - - - -
StyleSDF [43] - 11.5 0.265 - - - 12.8∗ 0.447∗

StyleNeRF [23] 16 8.00 0.370 - - - 14.0∗ 0.350∗

CIPS-3D [66] - 6.97 0.287 - - - - -
EG3D [8] 36 4.80 0.149 0.76 0.31 0.0050 3.88 0.091
GMPI [65] 328 11.4 0.738 0.70 0.53 0.0040 n/a n/a
Ours: GMNR 313 9.20 0.720 0.73 0.39 0.0032 n/a n/a

5122

EG3D [8] 35 4.70 0.132 0.77 0.39 0.0050 2.77 0.041
StyleNeRF [23] 14 7.80 0.220 - - - 13.2∗ 0.360∗

GMPI [65] 83.5 8.29 0.454 0.74 0.46 0.0060 7.79 0.474
Ours: GMNR 78.9 6.81 0.370 0.76 0.40 0.0052 6.01 0.450

10242

CIPS-3D [66] - 12.3 0.774 - - - - -
StyleNeRF [23] 11 8.10 0.240 - - - - -
GMPI [65] 19.4 7.50 0.407 0.75 0.54 0.0070 n/a n/a
Ours: GMNR 17.6 6.58 0.351 0.76 0.43 0.0064 n/a n/a

son of StyleNeRF[23] and GMPI[65] with GMNR in terms
of high-resolution generated image quality at various target
views. We show six sets of images that are generated at
high-resolution (1024 × 1024) for each method. For each
set, we show a generated face at a canonical view in the cen-
ter as well as the four non-frontal views at different angles.
Additional results are presented in supplementary.

5. Related Work

Several works have explored rendering 2D multi-view
images [18, 53, 61, 62, 63] as neural representations of 3D
scenes that are differentiable and 3D-aware[4, 7, 10, 16, 22,
38, 39, 55]. Based on the scene geometry used, represen-
tations can be implicit or explicit. Explicit representations,
such as voxel grid and multiplane images have been em-
ployed to render novel views in [52, 35, 68, 53, 57, 19, 33]
for their speed. However, these representations often en-
counter memory overheads, making it challenging to scale
to high-resolutions. Differently, approaches [38, 40, 50, 56]
employing implicit 3D representation, such as neural radi-
ance fields [40] (NeRF) are memory efficient and can han-
dle complex scenes. However, these approaches struggle
with slow rendering limiting the resolution of rendered im-

ages. Few works [15, 34, 36, 46, 8] have also explored in-
tegrating the merits of these two representations.
In the context of 3D-aware 2D GAN-based image gener-
ation, earlier works adopted 3D representations such as,
voxel [17, 24, 41, 59, 69] and mesh [54] for 2D image
synthesis. The voxel-based methods are difficult to train
on higher-resolution images due to memory requirements
of voxel grids and computational overhead of 3D convo-
lution. While [42] partially alleviates this issue via low-
resolution rendering followed by 2D upsampling, it strug-
gles to synthesize view-consistent images due to the lack
of 3D inductive biases. Furthermore, few works [9, 47, 44]
utilize neural radiance fields (NeRF) [40] to generate 3D-
aware images, constrained by the slow querying and inef-
ficient GAN training. Recent NeRF-based works such as,
StyleSDF[43], StyleNeRF[23], CIPS3D[66], GRAM[13],
VolumeGAN[60] and EG3D[8] attempt to generate high-
resolution images. However, these NeRF-based approaches
still require significant training time to achieve conver-
gence. In contrast, the recent GMPI method [65] adopts
an MPI-based representation and obtains fast training and
rendering speed. However, it struggles to accurately render
object shapes at extrapolated views, leading to inconsistent
artifacts cross multiple views. Our GMNR addresses these
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Figure 6. Qualitative comparison of StyleNeRF [23], GMPI [65] and GMNR on FFHQ. For each method, six sets of example images
generated at high-resolution (1024 × 1024) are shown. Each set comprises a generated face at canonical view in the center along with
four non-frontal views at various angles. StyleNeRF-generated images exhibit inconsistent geometry across views, e.g., hair style variation
(rows 1, 2, 4 and 5), pupil distortion (row 4), varying artifacts on hat (row 6). On the other hand, GMPI generates near-frontal views of
images reasonably well (rows 2 and 4), while artifacts occur at large non-frontal views (rows 1, 3 and 5). Compared to both methods, we
observe our GMNR to generate images with enhanced view-consistency and diminished artifacts even at large non-frontal views.

issues by learning a view-dependent representation to gen-
erate 3D-aware high-resolution images without degrading
the training efficiency and inference speed.

6. Conclusion

We introduced an approach, named GMNR, that focuses
at efficiently generating 3D-aware high-resolution images
that are view-consistent across multiple camera poses. To
this end, the proposed GMNR introduces a novel α-VdR
module that computes the view-dependent representation
in an efficient manner by learning viewing direction and
position coefficients. Additionally, we employ a view-
consistency loss that aims at improving the photometric
consistency across multiple views. Qualitative and quan-
titative experiments on three datasets demonstrate the mer-
its of our contributions, leading to favorable performance in
terms of image generation quality and computational effi-
ciency, compared to existing works.
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