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Abstract

Grounding textual expressions on scene objects from
first-person views is a truly demanding capability in de-
veloping agents that are aware of their surroundings and
behave following intuitive text instructions. Such capabil-
ity is of necessity for glass-devices or autonomous robots to
localize referred objects in the real-world. In the conven-
tional referring expression comprehension tasks of images,
however, datasets are mostly constructed based on the web-
crawled data and don’t reflect diverse real-world structures
on the task of grounding textual expressions in diverse ob-
jects in the real world. Recently, a massive-scale egocen-
tric video dataset of Ego4D was proposed. Ego4D cov-
ers around the world diverse real-world scenes including
numerous indoor and outdoor situations such as shopping,
cooking, walking, talking, manufacturing, etc. Based on
egocentric videos of Ego4D, we constructed a broad cov-
erage of the video-based referring expression comprehen-
sion dataset: RefEgo. Our dataset includes more than 12k
video clips and 41 hours for video-based referring expres-
sion comprehension annotation. In experiments, we com-
bine the state-of-the-art 2D referring expression compre-
hension models with the object tracking algorithm, achiev-
ing the video-wise referred object tracking even in difficult
conditions: the referred object becomes out-of-frame in the
middle of the video or multiple similar objects are presented
in the video.

1. Introduction
It is a truly demanding task to identify surrounding ob-

jects in real world scenes from video clips of egocentric
viewpoints with free-form language supervisions. Such a
task is necessary for glass-devices or autonomous robots
that help with daily-life tasks and communicate with us in
language because they need to understand the intuitive ex-
pressions of languages and ground them into the surround-
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Figure 1. Sample frames of RefEgo for “the large white bowl with
broccoli inside that is used to load the pan of broccoli.” The re-
ferred object of the bowl in green and other bowls in brown.

ing world. It is an ultimate goal for the referring expression
comprehension (REC) or shortly “visual grounding” task
because it maps the referred entities in text to the corre-
sponding objects identified and tracked from the observed
sequence of images.

Extensive efforts are being made in 2D image reference
expression comprehension [12, 21, 33, 19]. Recent semi-
supervised approaches contribute to the open-vocabulary
object detection from 2D images [11, 35]. However, com-
pared to these extensive studies on 2D image referring ex-
pression comprehension, we notice that comparably less
efforts are taken in video-based referring expression com-
prehension [16, 13, 24]. Video clips in such datasets are
mostly collected in the Internet and aren’t suitable for the
real-world daily-task understandings. The number of video
clips are also limited. Ideally, video clips for such tasks are
collected in embedded form in our daily lives and cover va-
riety domains such as walking streets, shopping, chatting
with others, staying in indoor, cleaning laundries, or cook-
ing foods, when we pursue general purpose models in our
daily scenes. However, it was nearly prohibitive to create
datasets on such tasks because of the lack of the collection
of real-world setting egocentric videos.

Recently, Ego4D [9], a massive-scale collection of ego-
centric video and annotation is proposed. Ego4D videos are
gathered by 931 unique participants in 74 locations world-
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Video REC Base Dataset # Clips # Object Annotations # Objects # Categories

Lingual OTB99 [16] OTB100 [18] 99 58,733 99 -
Lingual ImageNet Videos [16] ImageNet VID [23] 100 23,855 100 25

Video Object Segmentation Base Dataset # Clips # Object Annotations # Objects # Categories

ReferDAVIS-16 [13] DAVIS [20] 50 3,440 50 -
ReferDAVIS-17 [13] DAVIS [20] 90 13,540 205 -
Refer-Youtube-VOS [24] Youtube-VOS [30] 3,252 133,886 6,048 78

RefEgo (ours) Ego4D [9] (First-person video) 12,038 226,319 12,038 505

Table 1. Comparison of the video-based referring expression comprehension datasets.

REC dataset # Images # Object Annotations

RefCOCO [33] 19,994 50,000
RefCOCO+ [33] 19,992 49,856
RefCOCOg [19] 26,711 54,822

RefEgo (ours) 226,319 226,319

Table 2. Comparison of the RefEgo dataset to 2D REC datasets.
RefCOCO/+/g datasets are based on MSCOCO [5] images while
ours is based on real-world egocentric video of Ego4D.

wide. They are captured by a head-mounted camera device,
intending to capture various daily-life activities in first per-
son vision, covering hundreds of daily life activities includ-
ing various locations: in-store, office-space, houses, wire-
house, street and so on. Based on Ego4D videos, we con-
structed the novel in a margin larger RefEgo video-based
referring expression comprehension dataset with the help of
object detection and human annotation, aiming to ground
intuitive language expressions on various contexts in real-
world first person perception.

Our RefEgo dataset exhibits unique characteristics that
make it challenging to localize the textually referred ob-
jects. It is based on egocentric videos and hence includes
frequent motions in video clips. The referred objects are
often surrounded by other similar objects of the same class.
The referred object may appear at the edge of the image
frame or even goes out-of-frame in some frames, requiring
models to discriminate images that contain and don’t con-
tain the referred object. Fig. 1 presents the selective frames
from a single video clip with a referred expression of “the
large white bowl with broccoli inside that is used to load
the pan of broccoli.” There are several other bowls in image
frames and the referred object goes out-of-frame in the fifth
frame. In this case, the models are expected to predict that
the referred object is not presented in the image, illustrating
the challenging characteristics of the proposed RefEgo.

We prepared valuable baseline models from multiple ap-
proaches for RefEgo. We applied the state-of-the-art REC
models of MDETR [11] and OFA [28] for RefEgo. We in-
troduced MDETR models trained with all images includ-
ing image frames with no annotated referred objects, and
observed it performs better at discriminating images with-

out referred objects than other models. We also introduce
MDETR with a special binary head to discriminate images
without the referred object presented. We finally apply the
object tracking of ByteTrack [34] for combining multiple
detection results, allowing the models to spatio-temporal lo-
calization of the referred object.

2. Related Work
2.1. Referring expression comprehension

Grounding textual expressions in objects is a key com-
ponent in vision-and-language studies. It includes sev-
eral formalism depending on the data type of visual in-
formation reflecting the spatial and temporal diversity of
the real-world data: a single image, sequence of images
or video clips, and 3D reconstructed data. Referring ex-
pression comprehension in image, or simply visual ground-
ing, is a task to localize objects in an image from open
vocabulary texts [12, 21, 33, 19, 17, 29]. This is one of
the most active research field in the vision and language
field and many advanced approaches are proposed in these
years [32, 15, 11, 28]. However, as these studies are limited
to a given single image and hence these REC models have
limited knowledge of the referred object and its surrounding
environments. 3D-scene based approaches for referring ex-
pression are also another major branch in real-worlds scene
grounding [4, 27, 22, 7, 1]. Although there are numerous
benefits in 2D and 3D referring expression comprehension
datasets, these spatial datasets lack of the temporal localiza-
tion in the real-world.

2.2. Video-based REC

Language-based object tracking Video based localiza-
tion is a both temporal and spatial localization of objects
in video frames. These datasets are often provided as a
language-annotation extension to the existing dataset and
changes the core concept to determine what object to track.
Lingual OTB99 and ImageNet Videos [16] are language-
based object tracking datasets that are based on existing ob-
ject tracking dataset [18, 23]. Here language annotation is
attached for first image to specify the object to track in later
frames. For limited domain sets, person category annotation
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is performed [31]. VID-Sentence dataset [6] also annotated
in a part of the ImageNet VID dataset. Co-grounding net-
work [25] and DCNet [2] is proposed for these video-based
REC dataset. It is also notable that while multi-object track-
ing datasets [14] tend to cover limited object classes, the
object tracking dataset of TAO [8] includes 894 objects of
345 free-form text classes in a part of their dataset.

Language-based video object segmentation Video
object segmentation (VOS) is the segmentation task of
a target object in a video clip [13, 24]. These tasks are
constructed on the existing VOS datasets [20, 30]. In
conventional setting, the target object is specified by a
pixel-accurate mask, while the language-based localization
annotation was proposed [13, 24] for language-based
specification instead of the pixel masks.

Our dataset is based on first-person videos and have spe-
cific characteristics discussed in Sec. 3.1. We provide fur-
ther detailed comparisons with language-based object track-
ing and video segmentation datasets in Table 1 and the scale
comparisons with the conventional 2D REC datasets in Ta-
ble 2. Our dataset is in a magnitude larger than the existing
REC datasets in terms of the number of the total object an-
notations and the unique objects tracked.

2.3. Ego4D episodic memory benchmark

The Ego4D dataset provides the episodic memory
benchmark that aims to query videos and localize the an-
swer of the query. They provide the visual query-based
VQ2D and VQ3D tasks, the natural language queries-
based NLQ task for determining the temporal window of
the video history where the query answer is evident, and the
moments queries of MQ task for localizing all instances of
the given activity name. Among these tasks, the NLQ task
is based on the flexible natural language query. However,
there are steep differences between NLQ and our task: in
the NLQ task, models localize the temporal window of the
occurrence (e.g., “What did I put in the drawer?”), while
in our dataset, models localize the directly referred object
(e.g., “the cushion on the right end of the sofa”) in spa-
tial and temporal manner. As it requires explicit spatial lo-
calization and tracking for all temporal frames where the
referred object is presented, the video clips of our dataset
become shorter than NLQ. Our focus is on creating a com-
prehensive dataset for first-person video-based referring ex-
pression comprehension, which aims to not only concen-
trate on the different aspects from the Ego4D episodic mem-
ory benchmarks, but also contribute them by providing rich
annotated data for natural language-based object localiza-
tion and tracking.

3. RefEgo Dataset

3.1. Task

Our task is to localize a textually referred object in a
sequence of images from an egocentric video. Given a
single phrase of a referring expression for one target ob-
ject referred, the model predicts bounding boxes for the
referred object in a sequence of images drawn from the
Ego4D videos. As the first-person videos include high
viewpoint motions, the referred objects sometimes locate
out of frames for some images. Therefore, we introduce
the task of discriminating images that do not include the re-
ferred object from other images that include the referred ob-
ject when the models are given a sequence of images. This
is in addition to the conventional object localization task by
predicting a single bounding box of the referred object for
images that include the referred object. We summarize the
special conditions that make our RefEgo dataset plausible
in real-world experiments as follows.
Frequent viewpoint motion Ego4D videos are captured by
wearable cameras and hence experience a number of view-
point motions. The frequent viewpoint motion makes it
challenging to identify the same objects in distinct frames.
Here, we assume the REC models can help the object track-
ing methods as the tracking-by-detection approach. If REC
models are accurate enough, it can successfully ground the
single target object in images onto the unique referred ex-
pressions, therefore they simultaneously solve the visual
grounding and object tracking problems, independent of the
frequent viewpoint motion.
Detection of the no-referred-object images In existing re-
ferring expression comprehension tasks, the target object al-
ways appears in the given image. This is, however, unrealis-
tic and uncommonly happens when we develop some glass-
devices or autonomous robots that move around in scenes,
capture images and search for the referred objects. There-
fore our annotation includes images where the referred ob-
ject does not appear in them in the video video clips. This
imposes the referring expression comprehension models on
practical and ambitious experimental settings: the models
are required to discriminate images that include the referred
objects from other images in the sequence of images of the
video clip. Our dataset includes 295,530 images in total and
226,319 images (76.6% of the total images) contains the an-
notated bounding box of the referred target object in them.
We also confirmed that at least four images in a single video
clip have a target object annotation. The lack of the target
object from some frames is common in egocentric videos
and becomes one of the greatest challenges for the conven-
tional image-based REC models because such models are
trained with images that surely include the target objects.
Multiple similar objects in scenes In previous referring
expression comprehension datasets, it sometimes happens
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Figure 2. The process of attaching the bounding box for the blue pillow placed far distant in a Ego4D video clip. The annotated referring
expression is “a square bright blue pillow on the chair in front of the ottoman.”

that some object classes are unique in one image and hence
easy to localize the referred object just from the object class.
We consider this is due to the lack of the diverseness of the
same-class objects in the same scene: if there is only one
mug in some room, it is easy to select a mug from other
objects just from an object class name. However, it is much
more rigorous to localize a single mug cup on a shelf full of
mug cups from referring expressions. We therefore choose
the objects when there are multiple same-class of objects
for them in the video clip for further annotation. We select
temporal scenes of video clips that include many objects
for annotation. The average number of detected objects in
images is 22.1, and the average number of the same class
objects present in the images with the target object is 3.5
for all splits 1.

3.2. Dataset creation

Video clip extraction from Ego4D We firstly extracted im-
ages from all of the original Ego4d videos and then applied
the object detection model of Detic [35] trained with the
LVIS [10] dataset to automatically detect object bounding
boxes for the extracted images. Based on the object de-
tection results, we sampled video clips that include many
detected objects in frames. We did this because detecting
and localizing objects from images with multiple objects
can be challenging. We also choose video clips that have
motions, avoiding video clips with less motion. We also
avoided stereo videos for annotations because they have
special depth treatments and hence require additional anno-

1We used Detic for this statistics.

tation costs in later steps. The frames of the sampled video
clips consist of 10 to 40 images. For preserving a wide vari-
ety of Ego4D dataset, we ensured the extracted video clips
cover the most of activity themes annotated in Ego4D. The
detected bounding boxes are also used to provide bound-
ing box candidates of possible target objects for later hu-
man annotation on Amazon Mechanical Turk (MTurk). We
chose 2 frames per second image extraction for the annota-
tion, considering the annotation cost for longer video clips
and the ability of tracking the same object in video clips of
the existing object tracking datasets, such as TAO [8] where
frames are sampled in 1 frame per second.

Human annotation We used Amazon Mechanical Turk
(MTurk) for collecting annotations to massive scale ex-
tracted video clips of 12,038. We asked MTurk workers
for choosing the same object in frames, editing the detected
bounding box of the tracked object, and writing the referred
expressions for the target object. For this purpose, we devel-
oped an interactive visualization website that presents im-
ages that include candidates of bounding boxes from Detic
drawn from the sampled video clips. Workers are asked to
select the same object in images and write down a referring
expression to specify the object. They are also asked to edit
the bounding box of the target object by clicking the edges
of them to fit the object. Workers are asked to compose a
referential expression that is enough detailed to localize the
target object by observing all frames in the video clips. We
further collected supplementary annotations of the referred
object. The further details of the video clip selection and
annotation process are in S.M.
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Split # Clips # Images # Images with BBox

Train 9,172 225,500 173,183
Val. 1,549 38,470 29,322
Test 1,317 31,560 23,814

Table 3. Dataset statistics.

3.3. Dataset statistics

We finally gathered annotations on 12,038 video clips.
The total length of the video clip is 147,765 seconds and
the averaged length is 12.3 seconds. Each clip has two dif-
ferent referring expression writings for one annotated ob-
ject. The Ego4D dataset has its own video clips for episodic
memory, hands and objects and audio-visual diarization &
social tasks. We assumed our annotation serves supplemen-
tary roles for these existing tasks. Therefore, for dataset
splitting, we followed these existing splits as much as pos-
sible, namely, the Forecasting + Hands & Objects (FHO)
splitting. For some video clips without FHO, we follow
Episodic Memory(EM) splitting. The remaining videos are
for the training set. Table 3 presents the statistics for each
split. We make sure that clips sampled from the same video
are assigned to the same split. The further detailed dataset
statistics, including human accuracy of the REC task, and
construction details of the annotations are in the S.M.

4. Model

4.1. Referring expression comprehension models

We first apply the conventional image-based referring
expression comprehension models of MDETR [11] and
OFA [28] for a sequence of images from video clips.
MDETR MDETR is an end-to-end text-modulated detec-
tor based on the DETR [3], state-of-the-art detection frame-
works. MDETR archived high performance on the REC
benchmark, such as RefCOCO/+/g [33, 19]. It uses the
soft token prediction to ground parts of textual expressions
and detected regions in images through N learnable embed-
dings, called object queries, given to the MDETR decoder.
Each bounding box prediction is also paired with a special
token that represents that the bounding box is not grounded
to the given textual phrase. For prediction of each token t∗n
of the referred expression with L tokens, the MDETR de-
coder derives the probability sin that i-th token is paired to
n-th object query as sin =

exp tin∑L+1
j=1 exp tjn

. Here i is a whole

number and 1 ≤ i ≤ L + 1. sL+1
n is the special token pre-

diction for “no object”, of the n-th object query. We use
(1 − sL+1

n ) as the confidence score for the bounding box
prediction from the n-th object query.
MDETR with all images In contrast to existing REC
datasets, some image frames in video clips don’t include
the referred objects in the RefEgo dataset. When we train

MDETR only with images that include the referred object,
MDETR tends to predict bounding boxes with high confi-
dence even if there are no referred objects in the images. To
assign low confidence scores for no referred object images,
we trained a MDETR model with all images by treating all
predicted bounding boxes as negative samples for images
without referred objects during training.
MDETR+BH For better confidence scores to discriminate
images without referred objects, we also expand the existing
MDETR and add an additional object query to the existing
prediction heads of MDETR. This additional object query
is combined with a binary head (BH) to perform the binary
classification trained with the binary cross-entropy loss by
determining whether referred objects are in images or not.
OFA OFA [28] is the unifying architecture for various vi-
sion and language tasks, e.g., image captioning, visual ques-
tion answering and visual grounding. Unlike existing object
detection models, OFA predicts a bounding box by directly
determining the region position in ⟨x1, y1, x2, y2⟩-order
with an autoregressive language model prediction. This na-
ture, however, makes it difficult to obtain the “confidence
score” for the predicted bounding box. We use the predic-
tion probability of the sequence of ⟨x1, y1, x2, y2⟩ tokens
as “confidence score” for the confidence of the prediction.
Similar to the original MDETR, we used extracted images
that include the bounding box annotations for training.
No-referred-object images detection In RefEgo, models
are required to discriminate images that don’t contain the
referred object. For this purpose, we use the confidence
scores of the predicted bounding boxes by simply assigning
a threshold on it to determine whether images include the
referred object or not.

4.2. Object tracking

Unlike conventional referring expression comprehension
on 2D images, RefEgo is a video-based REC dataset where
an object is localized through the video frames. Images in
video frames often become worse because of motion blur
and occlusion. Therefore it is difficult for REC models to
consistently find the referred object in all image frames in
sequence. In addition, because of the temporal movement
of objects in videos, REC models often detect totally differ-
ent objects in some frames, resulting in inconsistent object
tracking in video frames. To reduce inconsistent localiza-
tion across video frames, We took the tracking-by-detection
approach with attaching a tracking algorithm to the image-
based REC models. We applied ByteTrack [34] for the
results from MDETR prediction. ByteTrack is a state-of-
the-art tracking algorithm that tracks objects based on the
overlap between adjacent frames. Because both the cam-
era and objects can be in motion, ByteTrack calculates the
overlap after predicting positions in the next frame with the
Kalman filter. We first extracted 30 frame per second im-
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Figure 3. Image frames and STIoU overview. STIoU is defined
with the intersection area (green) over the sum of the predicted
(purple) and annotated (cyan) object boxes through time frames.

ages from the RefEgo video clips and obtained the MDETR
predictions on them. We used ByteTrack for these MDETR
prediction results and obtained the candidates of multiple
tracked objects. We then introduced a simple heuristics to
score the sequences of bounding boxes of the tracked ob-
jects with the confidence score from MDETR, and update
the predicted bounding boxes from MDETR if the confi-
dence score of the tracked bounding boxes are higher than
the original MDETR confidence score. We consider this
heuristics-based approach serves as the baseline of the ob-
ject tracking over referring expression comprehension mod-
els. We didn’t apply object tracking for OFA results be-
cause OFA always predicts a single object in each frame.
Thus there are no chances for object tracking to select better
bounding boxes. Please see S.M. for further details of the
implementation and hyper parameters of the object tracking
over referring expression comprehension models.

5. Experiments
5.1. Evaluation metric

In 2D referring expression comprehension, the mean
intersection-over-union overlap (mIoU) is commonly used
for the quality of the target object selection. Following
the widely used metric for referring expression comprehen-
sion [19, 33], we count IoU > 0.5 cases for positive cases
and otherwise negative cases for AP@50. AP@50 is not
sensitive to the details of the shape of the predicted bound-
ing boxes but the selection of the objects from other sim-
ilar objects. These metrics, however, are applicable only
when the target object is presented in the images. We apply
the traditional mIoU and AP@50 for images that include
the annotated target object bounding box, ignoring image
frames that don’t contain the referred objects.

As the video-based object tracking task, the target object
can be invisible or out-of-frame in the sequence of image
frames. This is a major difference of this task compared
with the existing object tracking datasets. We therefore ex-
pand the existing mean IoU metric for the video-based eval-
uation including frames that don’t contain the target object:
mean Spatio-Temporal IoU (mSTIoU) and mean IoU with
negative prediction (mIoU+n).

Suppose we have a single video clip that consists of N
frames in the frame-per-second evaluated. For i-th image
frame in N frames include an annotated bounding box ti
where its area size is given by |ti|. Among N frames, M
frames include the target object and hence |ti| > 0 while
|ti| = 0 for the remaining M∩N frames (here 0 ≤ |M| ≤
|N |). For each image frame, models predict a bounding
box pi that may become size-0 (|pi| ≥ 0), suggesting that
the image frame doesn’t contain the referred object in it for
|pi| = 0 case. The conventional mIoU only for images that
include the target object is:

mIoU =
1

|M|
∑
M

|pi ∩ ti|
|pi ∪ ti|

. (1)

This is an image-wise metric, ignoring images that don’t
contain the target object (M∩N ).

We introduce the Spatio-Temporal IoU (STIoU) as the
multi-frame summation of the intersection and union of
IoUs over a single video clip of N frames:

STIoU =

∑
N |pi ∩ ti|∑
N |pi ∪ ti|

. (2)

STIoU satisfies 0 ≤ STIoU ≤ 1 where STIoU = 1 for
the exact math in all frames while STIoU = 0 for complete
mismatch of all annotated and predicted bounding boxes.
When |ti| = 0, STIoU is not penalized if |pi| = 0 while it
decreases due to the larger denominator of |pi ∪ ti| = |pi| if
|pi| > 0. We use mean STIoU (mSTIoU) where the STIoU
is calculated in each video clip and then we take the mean
of STIoU inside the validation and test splits.

For Eq. 5.1, we cannot replace M with N without any
assumptions because |pi∪ti| can become 0 for |ti| = 0 case.
However, for |ti| = 0 case, |pi ∩ ti| is always 0 for any |pi|.
Therefore, we extend the conventional IoU metric for N
under an assumption that for |ti| → 0 and |pi| → 0 case,
|pi∩ti|
|pi∪ti| → 1. We call this IoU+n as IoU with the negative
prediciton. IoU+n can be expressed in the following simple
form:

IoU + n =

{
|pi∩ti|
|pi∪ti| (|pi| > 0 or |ti| > 0)

1 (|pi| = 0 and |ti| = 0)
(3)

Unlike simple IoU, IoU+n includes the detection of images
without the target object. Similar to IoU, we take mean of
IoU+n for images and video-clips (mIoU+n), and similar to
AP@50, we also introduce AP@50+n where we count the
IoU + n > 0.5 cases. Fig. 3 visualize the STIoU metric as
an IoU extension for time sequences.

Here, the introduced STIoU and IoU+n are video-wised
evaluation metrics. STIoU is penalized for predicting finite-
sized bounding boxes for images without target objects
while IoU+n is rewarded for predicting images without the
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RefEgo Val RefEgo Test

All images Images w/ targets All images Images w/ targets

Model mSTIoU mIoU+n mAP@50+n mIoU mAP@50 mSTIoU mIoU+n mAP@50+n mIoU mAP@50

From Pretrained
OFA 33.9 44.8 47.8 53.2 58.4 32.9 44.9 47.8 51.9 56.8
MDETR 36.2 42.1 47.9 46.0 53.3 35.4 42.4 48.0 45.0 52.3

+Object tracking 36.3 42.2 47.8 46.1 53.4 35.5 42.4 48.1 45.2 52.4
MDETR (all) 37.2 45.6 51.2 45.0 52.3 36.1 45.0 50.5 44.0 51.1

+Object tracking 37.5 45.5 51.2 45.3 52.6 36.5 45.1 50.7 44.1 51.3
MDETR+BH (all) 37.5 46.3 52.0 45.2 52.6 36.5 45.6 51.0 45.4 52.7

+Object tracking 37.9 46.1 51.9 45.4 52.9 36.9 45.7 51.1 45.7 53.0

From RefCOCOg
OFA† 16.9 30.2 30.8 30.0 29.6 15.4 28.9 29.3 27.8 27.1
OFA‡ 32.7 44.5 47.7 52.3 57.7 31.7 44.4 47.5 51.0 56.2
MDETR† 17.4 27.4 28.3 25.1 25.2 15.4 25.6 26.4 22.9 22.8

+Object tracking 17.5 27.3 28.3 25.2 25.2 15.5 25.6 26.3 23.0 22.9
MDETR‡ 36.6 42.0 47.6 46.6 53.6 35.8 41.4 46.8 45.8 52.5

+Object tracking 36.7 41.9 47.5 46.7 53.7 35.9 41.3 46.7 45.9 52.7
MDETR‡ (all) 37.9 45.3 50.9 46.4 53.5 37.2 45.0 50.4 45.7 52.6

+Object tracking 38.2 45.3 50.9 46.6 53.8 37.5 45.0 50.4 45.9 52.9
MDETR+BH‡ (all) 37.5 46.1 51.6 46.4 53.6 36.9 45.7 51.1 45.7 53.0

+Object tracking 38.4 46.0 51.6 46.8 54.1 37.6 45.4 51.0 46.0 53.4

Table 4. Experimental results on RefEgo validation and test sets. (†) : the off-the-shelf RefCOCOg model performance. (‡) : models are
trained with RefEgo from the off-the-shelf RefCOCOg model. Other models are trained with RefEgo from the pretrained checkpoints.

The referred object in the im
ages

Blue colored strainer
inside the kitchen sink

MDETR: 0.110 MDETR: 0.908

MDETR: 0.998 MDETR: 0.991

The referred object is difficult to detect

The brown box with red
writing, sitting on top of a blue
box on the table

Figure 4. Example bounding box annotated in green, predicted by
OFA‡ in orange and MDETR‡ (all) in purple in two images in
two columns from the same video clips. When the referred ob-
ject doesn’t exist in the images (below), both OFA‡ and MDETR‡

models detect bounding boxes of other objects.

targets. Among these, STIoU is the prime video-wised
metric of the video-based referring expression compre-
hension because it is based on the entire video-clip cov-
erage of the referred object. It is notable that IoU+n is too
sensitive to the corner cases where the small fragment of the
referred object is presented at the edge of the image frame
and detecting such fragments becomes a subtle but critical
problem for IoU+n. STIoU is robust to such corner cases

‡

‡

‡

‡

Model AUC

(Chance rate) 50.0

OFA‡ 64.9
MDETR‡ 70.7
MDETR‡ (all) 78.8
MDETR+BH‡ (all) 80.5

Figure 5. Left: ROC curves for detection of the no-referred-object
images. Right: AUC for the prediction whether the referred ob-
jects are in images or not.

because STIoU isn’t affected too much by small bounding
boxes of the predictions and annotations.

5.2. Video-based REC in RefEgo

We used the state-of-the-art pretrained REC models of
OFA-Large [28] and MDETR [11] for our experiments. For
MDETR, EfficientNet-B3 [26] is used the visual backbone
network in experiments. We prepared OFA, MDETR and
MDETR (all) models. OFA and MDETR models use ex-
tracted image frames that include the annotated bounding
boxes while MDETR (all) uses all image frames including
images that do not contain the referred object bounding box
as described in Sec. 4. We trained OFA and MDETR mod-
els with RefEgo from the pretrained checkpoints of these
models. We also prepare OFA‡ and MDETR‡ models from
the off-the-shelf models of OFA†and MDETR† trained with
RefCOCOg [19].
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There have 
white colored 
hot box in the 
shelf of the 
room

A bowl of 
chopped 
potato in the 
sink

A green bowl 
next to the 
water heater 
jug

Figure 6. Qualitative analyses for three video clips. Selective images from left-top (past) to right bottom (future). The green, dotted red
and dotted cyan bounding boxes are annotated, predicted by ByteTrack and predicted by REC with the top-1 confidence score, respectively.
The texts at the left of images are the referring expressions.

Table 4 presents the performance of the REC models in
RefEgo validation and test sets. The current state-of-the-art
referring expression comprehension models somehow suc-
cessfully localize objects in images when the target object is
surely in the given image as the OFA models exhibit strong
performances in AP@50 of the widely used REC metrics in
the validation set. The MDETR‡ (all) and MDETR+BH‡

(all) models, however, achieve better performance in the
all images metrics of mSTIoU, mIoU and AP@50+n. This
suggests that the confidence scores of these models are more
effective in determining the presence or absence of the re-
ferred object in the image compared to other models, as-
suming that this is because the MDETR‡ (all), trained with
all images, learns the images that do not include the referred
object through contrastive learning. Overall, OFA models
are good at predicting accurate bounding boxes when the re-
ferred objects are in the images while MDETR models are
good at predicting both the bounding boxes and discrimi-
nating images without the referred objects.

We also applied ByteTrack-based object tracking for
MDETR models as described in Sec. 4.2. In Table 4, we
observed the object tracking slightly improves performance
especially in mSTIoU and mIoU while it is less effective for
mIoU+n. We noticed that the performance with mIoU+n
sometimes slightly degrades with object tracking because
of the lower discrimination of images without the referred

objects. We will take a close look in the quantitative anal-
yses on the comparison between REC and object tracking
results.

5.3. Discriminating images without referred objects

It is a difficult task to discriminate images without the re-
ferred objects from image frames of the video clips. When
the referred objects are out-of-images or not visible, the
models have a tendency to predict bounding boxes on ob-
jects that appear similar to the referenced expression but
are not the correct ones. Fig. 4 presents the predictions of
bounding boxes for both models for cases where the tar-
get object is in the image (top) and the referred object is
difficult to detect or isn’t visible in the images due to occlu-
sion caused by other objects.(bottom). We further investi-
gate how accurately REC models discriminate images with-
out referred objects by metrics used for binary classification
evaluations under various thresholds on the top-1 bound-
ing box confidence scores. Fig. 5 presents AUC (Area Un-
der the ROC Curve) for ROC. MDETR‡ (all) outperforms
OFA‡ and MDETR‡ models in AUC, suggesting better per-
formance in determining images that include the referred
object. The binary head of MDETR+BH‡ (all) further con-
tributes discriminating images without referred objects.
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RefEgo Val RefEgo Test

All images Images w/ targets All images Images w/ targets

Model mSTIoU mIoU+n mAP@50+n mIoU mAP@50 mSTIoU mIoU+n mAP@50+n mIoU mAP@50

Single object of same-class (easy)
OFA‡ 36.5 48.0 51.4 58.2 63.9 35.6 48.2 51.6 56.6 62.4
MDETR+BH‡ (all) 43.9 51.9 58.1 52.3 60.3 42.4 51.3 57.2 51.3 59.2

+object tracking 44.9 51.9 58.2 52.8 60.9 43.1 51.1 57.2 51.5 59.4

Multiple objects of same-class (hard)
OFA‡ 29.3 41.4 44.5 47.2 52.3 28.8 41.5 44.5 46.7 51.6
MDETR+BH‡ (all) 32.0 41.2 46.0 41.3 47.8 32.8 40.9 45.8 41.7 48.3

+object tracking 32.8 41.5 46.6 41.6 48.4 33.6 41.2 46.5 42.0 49.0
Static object (easy)
OFA‡ 32.9 44.7 48.0 52.6 58.2 32.9 45.5 48.8 51.9 57.4
MDETR+BH‡ (all) 37.8 46.6 52.2 46.9 54.3 37.8 46.6 52.2 46.8 54.2

+object tracking 38.6 46.4 52.2 47.3 54.9 38.5 46.4 52.1 47.0 54.6

Moving object (hard)
OFA‡ 31.3 43.1 46.0 50.4 54.9 25.9 38.8 41.3 45.9 50.2
MDETR+BH‡ (all) 35.9 43.5 48.0 43.8 49.6 32.4 40.7 45.6 40.6 46.7

+object tracking 36.9 43.6 48.2 44.1 50.0 33.1 40.6 45.7 41.1 47.4

Table 5. The performance difference due to the the object-class uniqueness and referred object movement during prediction. Top: single
(easy) and multiple (hard) objects of the same-class in image frames. Bottom: static (easy) and moving (hard) referred object.

5.4. Qualitative analysis

Figure 6 shows the results of MDETR+BH‡ (all) and its
object tracking counterparts. In the first two rows of the im-
ages, the referred object of the green bowl often goes at the
edge of the frames or even out-of-frames in the video clip,
making it a challenging scenario for conventional object
tracking methods. However, we found that the ByteTrack-
based object tracking mode, with the assistance of the REC
results, was able to successfully combine the tracked object
of the green bowl in many frames. In the images in the third
and fourth rows, the REC model makes incorrect bound-
ing box predictions in the middle of these two video clips.
However, the object tracking method successfully continues
to track the same object. These video clips include multiple
objects of the same class, which may cause confusion for
the REC models.

5.5. Detailed performance analyses

We present detailed analyses on the object-class unique-
ness and referred object movement. If there are multiple
objects of the same class in one video clip, it becomes more
difficult to track the identical object. Similarly, if the re-
ferred object is moved to another place during the video
clip, it is challenging to precisely localize the referred object
in images frames. Based on the OFA‡ and MDETR+BH‡

(all) models, we derived the detailed scores for the follow-
ing four cases in the RefEgo validation and test sets in
Table 5, confirming that the model performance degrades
when the objects are moved or multiple similar objects ex-
ist in the scenes.

6. Conclusion

Based on the wide-variety world-wide first-person per-
ception dataset of Ego4D, we constructed the RefEgo
dataset for the real-world and egocentric video-based re-
ferring expression comprehension. This dataset is not only
larger than existing REC datasets in terms of images with
annotated bounding boxes, but it is also grounded on the
real-world egocentric videos, making it a valuable and chal-
lenging task for precisely grounding natural languages in
real-world contexts. In experiments, we combined the REC
and object tracking approaches to spatio-temporally local-
ize referred objects even in challenging conditions, such as
when the referred object goes out-of-frames in the middle
of the clips or the REC model makes several incorrect pre-
dictions. This approach provides a precious baseline for
first-person video-based REC datasets.

Limitations We have annotated our dataset using images
from the Ego4D first-person video dataset. As a result, our
usage terminology and limitations for videos and images
align with those of the original Ego4D dataset. Our dataset
encompasses diverse video domains, including indoor and
outdoor scenes. However, it is important to note that we
haven’t included videos from domains rarely found in the
Ego4D dataset.
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