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Abstract

Spiking Neural Networks (SNNs) have attracted enor-
mous research interest due to their low-power and biologi-
cally plausible nature. Existing ANN-SNN conversion meth-
ods can achieve lossless conversion by converting a well-
trained Artificial Neural Network (ANN) into an SNN. How-
ever, converted SNN requires a large amount of time steps
to achieve competitive performance with the well-trained
ANN, which means a large latency. In this paper, we pro-
pose an efficient unified ANN-SNN conversion method for
point cloud classification and image classification to sig-
nificantly reduce the time step to meet the fast and loss-
less ANN-SNN transformation. Specifically, we first adap-
tively adjust the threshold according to the activation state
of spiking neurons, ensuring a certain proportion of spik-
ing neurons are activated at each time step to reduce the
time for accumulation of membrane potential. Next, we use
an adaptive firing mechanism to enlarge the range of spik-
ing output, getting more discrimination features in short
time steps. Extensive experimental results on challenging
point cloud and image datasets demonstrate that the sug-
gested approach significantly outmatches state-of-the-art
ANN-SNN conversion based methods.

1. Introduction
Artificial Neural Networks (ANNs) have achieved a phe-

nomenal triumph in many Artificial Intelligence (AI) tasks
such as 3D understanding [18, 30, 28], and image recogni-
tion [25, 6, 11, 8, 31]. However, the trend of significant
growth in computational cost has also emerged with the
rapid development of this field. State-of-the-art ANN mod-
els usually have billions of parameters, which consumes
such a huge amount of computation that renders performing
on-device inference challenging [1, 16]. Such a situation
stimulates the demand for deploying more power-efficient
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Figure 1. The inference conversion rate (%) for 3D classification
and 2D classification. Conversion rate refers to the ratio of the per-
formance of SNN to ANN. (A) presents the experimental results
of Pointnet++ framework on ModelNet-10 data set. SNN Calibra-
tion is our implementation of point cloud classification using the
official open-source code. (B) shows the experimental results us-
ing ResNet20 as the framework on CIFAR-10 dataset.

networks in real-world applications [20]. Therefore, recent
works have paid more attention to SNNs due to their low-
power and biologically plausible nature [7, 9].

SNN transmits information by spike trains, which extend
in the additional time dimension, and each spiking neuron in
SNN triggers a spike when its accumulated membrane po-
tential reaches the given upper bound, otherwise, it would
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remain inactive for the current time step, which leads to
more power-efficient computation by substituting expensive
multiplication with addition [13]. Finally, SNN accumu-
lates the output in all time steps to get the final output. Ex-
isting studies have shown that SNNs can save several orders
of magnitude more energy than ANNs, on some assigned
hardware, [21, 2].

Because of the discontinuity of spikes, we cannot use
the backpropagation algorithm like ANN to train SNN. Two
promising methods for obtaining SNN are the backpropa-
gation with the surrogate gradient method and the weight
conversion from ANNs. Firstly, SNN can be trained di-
rectly by the surrogate gradient, which is realized through
the customized activation function [24, 10]. Based on this
method, SNN can achieve close or even better performance
compared with ANNs. But it is limited to the shallow
SNN structure (usually containing a few hidden layers) and
can not provide consistent results with ANN on complex
large-scale datasets. Another way is by directly transferring
the network parameters of pre-well-trained ANN into SNN,
dubbed as ANN-SNN conversion methods [10, 4, 3, 14].
This method requires that the same network structure of
SNN and the source ANN, and the parameters of SNN are
transformed from ANN through a certain linear transforma-
tion. As shown in Figure 1, some state-of-the-art ANN-
SNN conversion methods [23, 5, 4, 3, 14] achieve com-
petitive accuracy with source ANN methods on complex
datasets, but require huge simulation length, i.e., a large
time step to achieve near-lossless conversion performance
[3, 15]. The time step is proportional to the inference time.
A larger time step means that they need to consume more
time in inference, that is, they have a larger latency.

Recently, SNN has been widely studied in image clas-
sification tasks [27, 23]. However, no relevant work has
been done on 3D understanding tasks. 3D understanding
is increasingly being used in many scenarios, including
remote sensing, AR/VR, robotics, and automatic driving,
these tasks also have the demand for energy saving in prac-
tical applications. Moreover, 2D and 3D are now used in
multi-modal tasks, so it is necessary to introduce spiking
neural networks into 3D understanding tasks. We directly
transfer ANN-SNN conversion methods in image classifi-
cation to point cloud classification tasks, but as shown in
Figure 1, these methods have greater latency due to the un-
structured and sparse for point cloud data.

There are two main reasons why SNN requires a large
time step to fit the output of ANN. First, the initial value of
the membrane potential is 0, which means that most spik-
ing neurons need a long time to accumulate the membrane
potential to reach the activation threshold from the initial
membrane potential. This results in that almost all spiking
neurons are inactive for a long time step, and the inactive
neurons were more inhibited as the number of layers in-

creased. Therefore, it takes a long period of potential accu-
mulation to make most of the spiking neurons into an active
state. Moreover, the sparsity of point cloud data makes the
output of spiking more sparse, which increases the time of
membrane potential accumulation and leads to greater la-
tency. Secondly, SNN adopts binary output in each time
step and accumulates the output in all time steps to get the
final output. This means that after the spiking train of length
T , the output result of the spiking can only be an integer in
the range of [0, 1], that is, only T + 1 values, which un-
doubtedly greatly reduces the discrimination between fea-
tures compared with the float output of ANN. Therefore, it
is essential to utilize a large time step to expand the value
range of spiking neural network output to increase the dis-
crimination between features and improve the SNN’s final
performance.

To remedy these problems, we propose an efficient
unified point cloud classification and image classification
method based on the SNN, which includes the adaptive dy-
namic activation threshold and the adaptive firing mecha-
nism adapted to the dynamic threshold. To the best of our
knowledge, it is the first spiking neural network for 3D point
cloud classification. Specifically, we first propose to uti-
lize KL divergence to initialize the activation threshold to
reduce the difference in output distribution between ANN
and SNN. Then, an adaptive dynamic threshold based on the
activation state is used to dynamically adjust the threshold
according to the activation state of the spiking neuron and
the transformation of the time step. The dynamic threshold
will converge quickly to the optimal threshold within a few
time steps. Finally, in order to enlarge the range of spiking
output value and increase the discrimination between fea-
tures, we propose an adaptive firing mechanism that fully
fires according to the current dynamic threshold.

The contributions of this work can be summarized as:

• We propose a unified ANN-SNN conversion method
with low latency for point cloud classification and image
classification. It is the first spiking neural network for 3D
point cloud understanding.

•We introduce an adaptive dynamic activation threshold
method, which adaptively adjusts the threshold, enabling
spiking neurons to activate earlier. And an adaptive firing
mechanism is established to enlarge the range of spiking
output, ensuring that there is greater discrimination between
features in short time steps.

• Extensive experimental results demonstrate the ef-
fectiveness of the proposed classification method based
on ANN-SNN conversion. Compared with state-of-the-
art ANN-SNN conversion methods in image classification
tasks, the proposed method also has lower latency.
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Figure 2. The framework of efficient converted SNN. The left part is the ANN to SNN conversion process, including the transfer of
convolution layer parameters, the BN layer transformation, and the threshold initialization using KL divergence. The right part is the
inference process of SNN, including the proposed adaptive adjustment of dynamic threshold according to the activation state of spiking
neurons and adaptive firing mechanism.

2. Preliminaries
Integrate-and-Fire Mechanism. In this paper, we use the
SNN model based on the Integrate-and-Fire (IF) [17] mech-
anism. Specifically, we suppose the input of spiking neu-
rons in lth layer at the time step t is s(l−1)(t) ∈ {0, 1}.
Then, the temporary membrane potential ṽ(l)mem(t) of neu-
ron will be accumulated by

ṽ(l)mem(t) = v(l)mem(t− 1) +W (l)s(l−1)(t), (1)

where W (l) contains the weights and biases of the network
in layer l, respectively. v(l)mem(t− 1) denotes the membrane
potential after firing by the IF mechanism at time step t−1.
Then the spiking output s(l)(t) will be produced by:

s(l)(t) =

{
1, if ṽ

(l)
mem(t) ≥ V

(l)
th

0, otherwise
, (2)

where V (l)
th is a pre-set activation threshold of lth layer. The

final membrane potential v(l)mem(t) at the time step t is up-
dated by soft-reset mechanism as:

v(l)mem(t) = ṽ(l)mem(t)− s(l)(t) · V (l)
th . (3)

Converting BN Layers. Because SNN generates a binary
output, so there is no corresponding module in SNN for
Batch Normalization (BN) layers. To better migrate the pre-
sentation capability of ANN and reduce the effect of remov-
ing the BN layer, Rueckauer et al. [22] propose to absorb
the BN parameters to the weight and bias, which can be
represented by:

W ←W
γ

σ
, b← β + (b− µ)

γ

σ
, (4)

where µ, σ are the running mean and standard deviation,
and γ, β are the transformation parameters in the BN layer.
Output Calculation of SNN. Compared with ANN, SNN
employs binary activation (i.e. spikes) at each layer. To
compensate for the loss in representation capacity, re-
searchers introduce the time dimension to SNN by repeating
the forwarding pass T times to get final results S(l) as:

S(l) =
1

T

T∑
1

s(l)(i). (5)

The Adjustment of Bias. To convert ANN into SNN, if
only an appropriate threshold is found, there may still be
a large deviation between the two outputs. Therefore, in-
spired by [14], we further adjust the network bias. First, we
define a reduced mean function:

x̄ =
1

BN

B∑
i=1

N∑
j=1

xij , (6)

where B and N represent the batch size and the number of
points in the point cloud respectively. Then we can define
the output error of ANN and SNN as:

ē = ō(l) − S(l). (7)

Finally, the bias is adjusted directly according to the error
as b(l) ← b(l) + ē.
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Algorithm 1 Conversion process.
Input: Pretrained ANN model; simulation length T

1: Folding BN Layers into Conv Layers
2: for all l = 1, 2, ..., Lth layers in ANN do
3: Sample 10 batches training data to initialize

threshold V
(l)
th with Eq. (8)

4: Sample 10 batches training data to compute output
error ē with Eq. (7)

5: Adjust bias b(l)

6: end for
Output: Converted SNN model

Algorithm 2 Inference process.
Input: Converted SNN model; simulation length T; Initial-
ize threshold V

(l)
th for each layer

1: for each data do
2: Set v(l)mem(0) = 0, s(l)(0) = 0, S(L) = 0
3: for t = 1, 2, ..., T do
4: for all l = 1, 2, ..., Lth layers in SNN do
5: Cumulative membrane potential with Eq. (1)
6: Compute dynamic threshold Ṽ

(l)
th (t) with Eq.

(9) - Eq. (11)
7: Compute spiking output with Eq. (13) and (14)
8: end for
9: Cumulative spiking output S(L) ← S(L)+s(L)(t)

10: end for
11: end for
Output: S(L) for each training data

3. Method
3.1. Overall Framework

The framework of our proposed unified ANN-SNN con-
version method is shown in Figure 2. To obtain an SNN, it is
necessary to transfer the parameters of a well-trained ANN,
and fold BN layers into convolution layers. Then, initialize
the threshold and adjust the bias parameters of each layer,
the specific steps can be shown in Algorithm 1. Follow-
ing the previous methods, in order to reduce the calculation
cost, we only select 10 batches of samples to represent the
entire dataset for initializing the threshold and computing
output error. In the inference stage, the threshold of each
layer is adjusted adaptively in real-time according to the ac-
tivation state of spiking neurons of each layer for different
samples, and the number of firing is determined by the dy-
namic threshold. The specific inference process is shown in
Algorithm 2.

3.2. Adaptive Dynamic Activation Threshold

Initialize Threshold by KL Divergence. Although ANN
and SNN have the same network structure and related net-

work parameters, the output results of ANN and SNN are
very different due to different inputs and activation mech-
anism. The output of ANN at each layer is a feature map,
and the output of SNN is the activation of the spike. For
classification tasks, we do not need to ensure that the out-
puts of ANN and SNN after activation are consistent, we
only need to pay attention to the output distribution of the
two networks. As long as the two networks can maintain a
consistent output distribution, the same classification results
can be obtained. In an effort to better enable the output of
ANN and SNN to be distributed consistently, we use KL di-
vergence to obtain the initialized layer-wise threshold V

(l)
th .

Here we use a layer-wise optimization method like [3] to
initialize our layer-wise thresholds. First, we normalize the
output results of ANN and SNN by channel-wise respec-
tively to get õ(l) = norm(o(l)) and S̃(l) = norm(S(l)).
Then, we calculate the KL divergence for both distributions
to find the best initial threshold as:

min
V

(l)
th

∑
õ(l)log õ(l)

S̃(l)
, (8)

where o(l) = Relu(W (l)x(l) + b(l)) is the output of the ith

layer of ANN.
Equ. (8) takes a lot of time to accurately initialize the

threshold layer by layer in the way of backpropagation, but
in fact we do not need to be so precise for threshold initial-
ization. Given that there is a clear upper and lower bound on
the activation threshold, we sample some training samples
and use grid search to find the V (l)

th that minimizes the objec-
tive function. Specifically, we uniformly sample N grids be-
tween [0.05·max(S̃(l)), max(S̃(l))] to find the lowest KL
divergence, where N is set to 95 empirically.
Adaptive Dynamic Threshold Based on Activation State.
In order to reduce the time step for each spiking neuron to
reach the activation threshold from the initial membrane po-
tential and ensure that a certain number of spiking neurons
are in the activated state in each time step, we introduce
an adaptive dynamic threshold based on the activation state,
which dynamically adjusts the threshold according to the
activation state of the spiking neuron and the transforma-
tion of the time step.

At the lth layer spiking neural network at time step t, we
first estimated the unactivated proportion τ (l)(t) of spiking
neuron according to the temporary membrane potential:

τ (l)(t) = 1−
|ṽ(l)mem(t) ≥ Ṽ

(l)
th (t)|num

|ṽ(l)mem(t)|num
. (9)

where |ṽ(l)mem(t) ≥ Ṽ
(l)
th (t)|num and |ṽ(l)mem(t)|num repre-

sent the number of spiking neurons activated at the current
threshold and the total number of spiking neurons, respec-
tively. We first lower the threshold to induce some spiking
neurons to activate in advance, and then we expected the
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threshold to return to the optimal threshold solved by KL
divergence as the spiking sequence progressed. At the same
time, we hope to determine the amplitude of threshold ad-
justment according to the firing state of the spiking neuron.
So, we integrated the temporal variation with the spiking
neuron activation state to get our activation threshold ad-
justment factor ω:

ω(l)(t) = 1− α · e−(t−1) · τ (l)(t), (10)

where α is the lower bound of the threshold adjustment fac-
tor, i.e., minω(l)(t) = α, which is a quantitative parameter
set according to the memory size of the spiking activation
value storage, and it will be explained in detail in the exper-
iment section. According to the adjustment factor of For-
mula 10, we can get the dynamic threshold Ṽ

(l)
th (t) of each

time as:
Ṽ

(l)
th (t) = ω(l)(t) · V (l)

th , (11)

In Formula 10, since α is a fixed value, and τ (l)(t) ∈
[0, 1] is a variable with upper and lower bounds according
to Formula 9, we can deduce:

lim
t→∞

ω(l)(t) = 1− lim
t→∞

α · e−(t−1) · τ (l)(t) = 1. (12)

Therefore, we can prove theoretically that the dynamic
threshold Ṽ

(l)
th (t) will eventually converge to the optimal

threshold V
(l)
th solved by KL divergence, that is, we can re-

duce the threshold adaptively at the beginning of the spiking
sequence according to the activation of the spiking neuron,
but with the passage of the sequence, the dynamic thresh-
old will eventually return to our initial threshold. In this
way, when the initial membrane potential is 0, the thresh-
old can be reduced adaptively through the activation state
of spiking neurons, inducing some spiking neurons to ac-
tivate in advance, reducing the accumulation time of mem-
brane potential from 0 to the activation limit, and improving
the activation efficiency of spiking neurons. At the same
time, after inducing SNN to enter the active state in ad-
vance, we rapidly converge the dynamic threshold to the
optimal threshold, which ensures the stability of the SNN
conversion performance. The dynamic threshold adaptive
based on the activation state also makes the method more
generalized.

3.3. Adaptive Firing Adapted to Dynamic Thresh-
old

As shown in Figure. 3, after using the dynamic thresh-
old, we can adaptively lower the threshold according to the
activation state, but using the original IF firing mechanism
will result in the insufficient firing of some spiking neurons,
resulting in a backlog of membrane potential. At the same
time, in order to expand the output range of spiking neu-
rons and make them have a larger value range in a short

Figure 3. Fig(a) shows the membrane potential as a function of the
spiking using IF activation, and Fig(b) shows the membrane po-
tential as a function of the spiking train using the adaptive firing
mechanism. The black and red lines represent two different spik-
ing neurons

time step to increase the discrimination between features,
we introduce an adaptive firing mechanism adapted to the
dynamic threshold.

The purpose of using the adaptive firing mechanism is to
enable the spiking neuron to fire several times according to
the current dynamic threshold until the membrane potential
is below the dynamic threshold. In this way, it can break
binary output limit, and reduce the time step required for
the spiking network to achieve lossless conversion. Specif-
ically, the firing process can be expressed as:

s(l)(t) =

 ⌊ ṽ
(l)
mem(t)

Ṽ
(l)
th (t)

⌋, if ṽ
(l)
mem(t) ≥ Ṽ

(l)
th (t)

0, otherwise

. (13)

Considering that the original spiking neural network has
the hardware advantage of low memory consumption in
practical applications, expanding the spiking output range
will increase the memory overhead, so we further limit the
spiking output range to reduce the memory usage as much
as possible on the premise of not affecting the performance
of the adaptive firing mechanism. According to Equ.(13),
we perform a truncation of the spiking output:

s(l)(t) = clip
(
s(l)(t), 0, 2n − 1

)
, (14)

where clip (a, b, c) denotes that limiting the range of a to
between b and c, n is a positive integer. In this way, the
output of the spiking only needs n bits of space to be stored.
In order to minimize the triggering of the truncation mech-
anism and allow the spiking neurons to fully fire, we use
the parameter α in Equ.(10) to limit the adjustment factor,
so that the original value of s(l)(t) falls within the interval
[0, 2n − 1] as much as possible. According to Equ. (10),

minω(l)(t) = 1−α. So, max s(l)(t) ⩾
1

1− α
. We assume
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Table 1. Accuracy loss (%) and time steps due to ANN-SNN con-
version on ModelNet-10 dataset. T means time step, which is
proportional to inference time, i.e., the larger the T , the greater the
latency. Loss (%) represents the difference between the classifica-
tion accuracy of SNN and ANN, i.e., the classification accuracy of
ANN minus the classification accuracy of SNN. Rate (%) means
conversion rate, i.e., the classification accuracy of ANN divided
by the classification accuracy of SNN, which refers to the ratio of
the performance of SNN to ANN

Arch. Method ANN T SNN Loss Rate

Po
in

tN
et

Baseline 92.81 4 78.81 14.00 84.9
Ours 92.81 4 92.38 0.43 99.5

Baseline 92.81 8 88.52 4.29 95.4
Ours 92.81 8 92.59 0.22 99.8

Baseline 92.81 16 91.08 1.73 98.1
Ours 92.81 16 92.75 0.06 >99.9

Po
in

tN
et

++

Baseline 93.54 4 74.02 19.52 79.1
Ours 93.54 4 93.18 0.36 99.6

Baseline 93.54 8 82.04 11.50 87.7
Ours 93.54 8 93.54 <0.01 100

Baseline 93.54 16 82.31 11.23 88.0
Ours 93.54 16 93.54 <0.01 100

that most spiking output s(l)(t) does not exceed
1

1− α
+1,

so to satisfy that most spiking output falls in the interval

[0, 2n − 1], α can be set as 1− 1

2n − 2
.

Using this adaptive firing mechanism adapted to the dy-
namic threshold, sufficient firing can be achieved at each
time step, reducing the gap between the total input and total
output in the entire time series, thereby effectively reduc-
ing the loss of information. At the same time, in each time
step, we expand the output range of the spiking, which can
increase the discrimination between the outputs in a finite
time step.

4. Experiments
4.1. Experimental Details

Datasets and ANN. To evaluate the effectiveness and the
efficiency of the suggested method in this paper, we adopt
five challenging benchmarks: (1) ModelNet-10, ModelNet-
40 [29] and ScanObject[26] for 3D point cloud classifi-
cation, (2) CIFAR-10 and CIFAR-100 [12] for 2D image
classification with extremely low simulation length. We
selected two representative point cloud classification net-
works PointNet [18] and Pointnet++ [19] and two repre-
sentative image classification networks VGG-16 [25] and
ResNet-20 [6] as ANN of the experiment. In the ANN-
SNN conversion method, using Maxpooling will not work.
To better match SNN conversion, the Maxpooling layer in
ANN needs to be replaced with Avgpooling layer.
Implementation Details. In the experiment part, all exper-

Table 2. Accuracy loss (%) and time steps due to ANN-SNN con-
version on ModelNet-40 dataset

Arch. Method ANN T SNN Loss Rate

Po
in

tN
et

Baseline 88.17 4 64.96 23.22 73.7
Ours 88.17 4 87.95 0.22 99.8

Baseline 88.17 8 79.98 8.19 90.7
Ours 88.17 8 87.99 0.18 99.8

Baseline 88.17 16 84.17 4.00 95.5
Ours 88.17 16 88.17 <0.01 100

Po
in

tN
et

++

Baseline 89.45 4 62.10 27.35 69.4
Ours 89.45 4 89.37 0.08 99.9

Baseline 89.45 8 72.87 16.58 81.5
Ours 89.45 8 89.43 0.02 >99.9

Baseline 89.45 16 78.26 11.19 87.5
Ours 89.45 16 89.45 <0.01 100

iments are performed on a single NVIDIA GeForce GTX
2080 with Pytorch 1.8.1. The SGD optimizer is adopted
for training ANN with an initial learning rate of 0.05 and
momentum of 0.9 while the batch size is kept fixed at 16.
In the process of converting ANN to SNN, we sample 5
batches of training samples and compute the KL divergence
to initialize the threshold. And 5 batch point cloud samples
are selected for adjustment. In all experiments, we set the
hyperparameters α = 0.5 and n = 2. The Baseline is the
vanilla version without the adaptive dynamic threshold and
adaptive firing mechanism.

4.2. Experiment Results in 3D Classification

In this section, we compare our proposed method with
baseline under different time steps, and the results are
shown in Table 1-3. It should be noted that it is the first
time for us to introduce spiking neural network in 3D point
cloud classification. Compared with the spiking neural net-
work in 2D image classification, we have lower conversion
loss and lower latency of network inference. In all experi-
ments, our method only needs 8 steps to achieve a lossless
or nearly lossless performance compared to ANNs.

We can see that in ModelNet-10, when PointNet was
used as ANN to convert SNN, the performance of our SNN
basically reached that of ANN at the time step of T = 8.
More surprisingly, for the more complex network Point-
Net++, we achieve a complete lossless conversion at the
time step of T = 8. It can be seen that the Baseline, under
the extreme condition of T = 4, only has a conversion rate
of about 80%, while the method we proposed has achieved
a conversion rate of more than 99%.

ModelNet-40 has more classification categories than
ModelNet-10, so the classification difficulty is improved,
which results in the decline of ANN’s classification perfor-
mance, and the conversion rate of Baseline at T = 4 is
further reduced to about 70%. However, it can be witnessed
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Table 3. Accuracy loss (%) and time steps due to ANN-SNN con-
version on ScanObject dataset

Arch. Method ANN T SNN Loss Rate

Po
in

tN
et

Baseline 66.56 4 43.34 23.22 65.1
Ours 66.56 4 65.16 1.40 97.9

Baseline 66.56 8 58.37 8.19 87.7
Ours 66.56 8 65.94 0.62 99.1

Baseline 66.56 16 62.56 4.00 94.0
Ours 66.56 16 66.56 <0.01 >99.9

Po
in

tN
et

++

Baseline 69.22 4 49.70 19.52 71.8
Ours 69.22 4 68.91 0.31 99.6

Baseline 69.22 8 57.72 11.50 83.4
Ours 69.22 8 69.06 0.16 99.8

Baseline 69.22 16 57.99 11.23 83.8
Ours 69.22 16 69.22 <0.01 100

that under the setting of T = 4, the presented method can
achieve a conversion rate of 99.8% or above for both kinds
of ANN. This demonstrates the effectiveness and robustness
of our proposed method.

As can be seen from ANN’s performance, the ScanOb-
ject dataset has higher classification difficulty. However,
the good news is that our method can still maintain a high
conversion rate at a time step of 4 while ensuring lossless
conversion at T = 16.

4.3. Experiment Results in 2D Classification

From Table 4, we can see that in CIFAR-10, our method
achieves comparable performance to SpikeConverter [15]
in conversion loss using the same time step, but our infer-
ence accuracy can be higher than it. Furthermore, com-
pared to other methods, we only need 1/4 or 1/128 time
steps to achieve higher inference accuracy and lower con-
version loss than them. Our proposed adaptive ANN-SNN
conversion method can achieve a lossless or nearly lossless
conversion performance at T = 8. Compared to the Base-
line, after using the adaptive dynamic threshold and adap-
tive firing mechanism the conversion performance achieves
significantly improved with the same time step.

The experimental results in the CIFAR-100 dataset are
shown in Table 5. Under ResNet20 and VGG16 frame-
works, lossless conversion can be basically achieved by us-
ing time step 8. We have achieved a slight advantage over
SpikeConverter in terms of conversion losses, as well as a
lead in the final inference performance of SNN, especially
in the VGG16 framework. We get better performance with
much fewer time steps than other methods except Spike-
Converter. Likewise, we have achieved a great improve-
ment over the Baseline in a small time step.

Table 4. Accuracy loss (%) and time steps due to ANN-SNN con-
version of the state-of-the-art SNNs on CIFAR-10 dataset

Arch. Method ANN T SNN Loss

R
es

N
et

-2
0

Spike-Norm [23] 89.10 2048 87.46 1.64
RMP [5] 91.47 2048 91.36 0.11
TSC [4] 91.47 2048 91.42 0.05
Opt. [3] 92.14 128 90,89 1.25

SpikeConverter [15] 91.47 16 91.47 <0.01
Baseline 94.23 8 85.63 8.60

Ours 94.23 8 94.16 0.07
Baseline 94.23 16 90.52 3.71

Ours 94.23 16 94.19 0.04

V
G

G
-1

6

Spike-Norm [23] 91.70 2048 91.55 0.15
RMP [5] 93.63 2048 93.63 <0.01
TSC [4] 93.63 2048 93.63 <0.01

SpikeConverter [15] 93.63 16 93.71 ↑0.08
Baseline 94.31 8 87.31 7.00

Ours 94.31 8 94.26 0.05
Baseline 94.31 16 91.11 3.20

Ours 94.31 16 94.30 0.01

Table 5. Accuracy loss (%) and time steps due to ANN-SNN con-
version of the state-of-the-art SNNs on CIFAR-100 dataset

Arch. Method ANN T SNN Loss
R

es
N

et
-2

0

Spike-Norm [23] 68.72 2048 64.09 4.63
RMP [5] 68.72 2048 67.82 0.90
TSC [4] 68.72 2048 68.18 0.54

SpikeConverter [15] 68.72 16 68.69 0.03
Baseline 68.75 8 47.46 21.29

Ours 68.75 8 68.67 0.08
Baseline 68.75 16 60.28 8.07

Ours 68.75 16 68.73 0.02

V
G

G
-1

6

Spike-Norm [23] 71.22 2048 70.77 0.45
RMP [5] 71.22 2048 70.93 0.29
TSC [4] 71.22 2048 70.97 0.25

SpikeConverter [15] 71.22 16 71.22 <0.01
Baseline 73.40 8 53.11 20.29

Ours 73.40 8 73.36 0.04
Baseline 73.40 16 62.45 10.95

Ours 73.40 16 73.39 <0.01

4.4. Ablation Study

We verify the design threshold initialization by KL di-
vergence, the adaptive dynamic threshold based on the acti-
vation state, and the adaptive firing adapted to the dynamic
threshold mechanism. In all ablation experiments, we test
PointNet and PointNet++ on ModelNet-10 and set the time
step as 16. The results are shown in Table 6.
Effectiveness of Threshold Initialization (Initia.). For the
threshold initialization, we compare two initialization meth-
ods: the initialization method using the max value of the
feature map as the initialization threshold, and the initial-
ization method based on the KL divergence proposed in this
paper. From #1→ #2 and #5→ #6, we can find that using
the KL-based method, the performance of SNN has been
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Table 6. Result of ablation study on ModelNet-10 dataset using
PointNet and PointNet++ with time step as 16

Baseline Initia. DT Firing PN PN++
#1 ✓ Max 88.52 82.04
#2 ✓ KL 89.56 83.31
#3 ✓ KL ✓ 86.59 77.48
#4 ✓ KL ✓ 91.67 83.54
#5 ✓ Max ✓ ✓ 92.18 91.90
#6 ✓ KL ✓ ✓ 92.75 93.54
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The average of adjustment factor
The maximum of adjustment factor
The minimum of the adjustment factor

Figure 4. In inference process, the average, maximum, and mini-
mum of adjustment factor in each time step

improved to a certain extent in both network structures.
Effectiveness of Adaptive Dynamic Threshold (DT) and
Adaptive Firing Machine (Firing). Compare with #2 →
#3, #2→ #4, #3→ #6 and #4→ #6, it can be seen that the
performance is improved to a certain extent when the adap-
tive firing mechanism is used alone, but the conversion per-
formance deteriorates when the adaptive dynamic threshold
is used alone. The combined use of the dynamic threshold
and the adaptive firing mechanism can significantly improve
performance. This indicates that using of dynamic thresh-
old alone can activate the spiking in advance by reducing
the threshold, if there is no matching firing mechanism, the
membrane potential cannot be fully released and will con-
tinue to accumulate, resulting in a large gap between the
total input and total output after the end of the sequence,
which leads to the degradation of performance. On the con-
trary, the output range of the spiking neural network can
be extended by using the adaptive firing mechanism, which
can also reduce the delay to a certain extent. This fully ver-
ifies that dynamic threshold and adaptive firing machine are
complementary, the best performance is achieved when the
two are used together.

4.5. Analysis

The Convergence of the Adjustment Factor. We ran-
domly selected 20 batches of training samples for the ex-

Table 7. Results on different parameters α and n on ModelNet-10
dataset using PointNet architecture and PointNet++ architecture.

Arch. α n ANN
T

2 4 8 16

Po
in

tN
et 0.10 1

92.81

91.44 92.19 92.56 92.73
0.50 2 91.57 92.38 92.79 92.80
0.83 3 91.76 92.68 92.81 92.81
0.93 4 91.98 92.75 92.81 92.81

Po
in

tN
et

++ 0.10 1

93.54

92.70 92.90 93.06 92.38
0.50 2 93.06 93.18 93.54 93.54
0.83 3 93.21 93.54 93.54 93.54
0.93 4 93.27 93.54 93.54 93.54

Table 8. The comparison of computational costs of theoretical
hardware-deployed between ANN and SNN

Operations ANN SNN
Addition N × (D − 1) N × (D − 1)× T

Multiplication N ×D 0

periment. In the experiment, we set the hyperparameters
α = 0.5 and n = 2. Finally, the threshold of the first layer
in the network was selected for statistical analysis. Figure
4 shows the trend of the maximum, minimum, and aver-
age values of the adjustment factors overtime during the
inference process. As can be seen from Figure 4, as time
progresses, the maximum and minimum values tend to be
close, and the value of the adjustment factor finally con-
verges to 1. This verifies the convergence of the adjustment
factor and also shows that after the threshold value is re-
duced briefly to promote the early activation of the spiking
neuron, it can quickly recover to the optimal threshold ob-
tained by the KL divergence, which can reduce the delay
and ensure the conversion effect.
Parameter Sensitivity Experiment. We further verify pa-
rameter α of Formula 10 and parameter n of Formula 14.
We change the value of n and calculate the corresponding
value of α according to the method in Section 3.3. We use
PointNet as ANN to conduct experiments on the ModelNet-
10 dataset and set the time step as 8 during the experiment.
The experimental results are shown in Table 7.
Inference Computation Cost. In most Artificial Neural
Network workloads, the computational effort is focused on
general matrix-matrix multiplication, which often occurs
in forward processes. For a more intuitive comparison, in
this section, we use vector-matrix multiplication (VMM) to
evaluate the computational cost, since vectors are a special
case of matrices. The size of the point cloud of each scene
is N ×D, where N is the number of points in one scene, D
is the feature dimension of each point cloud, and the size of
the convolution kernel is D × 1. Therefore, the dimensions
of vector-matrix multiplications is (N×D)×(D×1). In the
ANN, N × (D − 1) additions and N × D multiplications
are performed to compute a VMM. In the converted SNN
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model, it is unnecessary to perform multiplication anymore,
but only N × (D − 1)× T additions, where T denotes the
number of time steps. The comparison of computation be-
tween ANN and converted SNN is shown in Table 8.

5. Conclusion
We propose a unified and efficient adaptive SNN con-

version method, which can significantly reduce latency for
SNN to achieve lossless performance compared to source
ANN. This huge boost comes from two mechanisms: the
adaptive dynamic threshold and the adaptive firing mecha-
nism. The former reduces the time required for membrane
potential to accumulate by adaptively adjusting the thresh-
old based on the activation state of the spiking neuron at
each time step. The latter enlarges the range of the spiking
output and makes the greater discrimination of features in
a short time step. Extensive experimental results on point
cloud and image datasets demonstrate the effectiveness of
our proposed method.
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