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Abstract

Most self-supervised methods for representation learn-

ing leverage a cross-view consistency objective i.e. they

maximize the representation similarity of a given image’s

augmented views. Recent work NNCLR goes beyond the

cross-view paradigm and uses positive pairs from different

images obtained via nearest neighbor bootstrapping in a

contrastive setting. We empirically show that as opposed

to the contrastive learning setting which relies on negative

samples, incorporating nearest neighbor bootstrapping in a

self-distillation scheme can lead to a performance drop or

even collapse. We scrutinize the reason for this unexpected

behavior and provide a solution. We propose to adaptively

bootstrap neighbors based on the estimated quality of the

latent space. We report consistent improvements compared

to the naive bootstrapping approach and the original base-

lines. Our approach leads to performance improvements

for various self-distillation method/backbone combinations

and standard downstream tasks. Our code is publicly avail-

able at https://github.com/tileb1/AdaSim.

1. Introduction
Self-supervised learning (SSL) methods have seen a lot

of breakthroughs over the past few years. Most recent
self-supervised methods train features invariant to data aug-
mentation by maximizing the similarity between two aug-
mentations of a single input image. However, this task
is ill-posed as this optimization procedure admits trivial
solutions (resulting in a “collapsed” scenario). Similarity
maximization (or cross-view consistency) SSL methods can
be categorized based on how they avoid trivial solutions.
The most famous subset are contrastive learning methods
[10, 9, 25, 11, 13] in which the collapse is avoided by using
negative pairs. On the one hand, the learning procedure is

* denotes equal contribution.

Figure 1: The selection of positive image pairs used for
cross-view consistency in self-supervised representation
learning is key for good performance. With our method,
given the query (or anchor) image on the left, similar im-
ages are successfully ranked according to p

win(xj |xi) (il-
lustrated as a green bar on the bottom left of each image).
Our algorithm enforces similarity between the query xi and
an image xj sampled from p

win(xj |xi). These results are
non-cherry-picked and obtained at the final epoch (800) of
the pretraining. Best viewed in color and zoomed-in.

robust since collapse avoidance is explicitly modeled in the
training objective, but on the other hand, it requires large
batches to have a sufficient pool of negative samples. This
makes them GPU memory inefficient and limits research to
those who dispose of large distributed computing infrastruc-
ture.
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the final published version of the proceedings is available on IEEE Xplore.
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More recently, self-distillation methods have been gain-
ing traction [12, 8, 24, 33]. These similarity maximiza-
tion algorithms avoid trivial solutions by using asymmetry.
This asymmetry can take the form of an additional predictor
[12, 24] on one branch, using stop-gradients [12, 8, 33, 24],
a momentum encoder [8, 24], etc. These methods are of
particular interest as 1) they do not require large batch
sizes, and 2) they currently show state-of-the-art perfor-
mance [8, 33] on standard downstream tasks.

Orthogonal to the choice of the framework (contrastive
vs self-distillation), one can wonder what is the best way
to obtain positive pairs. Intuitively, similarity maximiza-
tion SSL methods could be improved by using positive pairs
from different images. Indeed if an oracle indicating valid
positive pairs [28, 29] was available, instead of taking two
augmentations from the same image, we could simply take
pairs from the oracle. The features would, therefore, not be
trained to be invariant to handcrafted data augmentations
but invariant to intra-class variation, which would make
them more aligned with most common downstream tasks,
e.g. classification.

In the absence of labels, we can leverage the structure of
the latent space to obtain a proxy for the oracle. Semanti-
cally related images are expected to lie in the vicinity of one
another in the latent space. However, this is a chicken and
egg problem, as this assumption only holds when the qual-
ity of the learned latent space is good enough. If the learned
latent space is not of good quality, bootstrapping the proxy
leads to unwanted gradient flows, e.g., an image of a cat is
pulled closer to the image of a building.

Nevertheless, recent work NNCLR [19] has successfully
incorporated nearest neighbor (NN) bootstrapping in a con-
trastive setting. Considering that self-distillation typically
outperforms contrastive methods, in this work, we explore
how the same can be achieved without explicit use of nega-
tives.

Unfortunately, this combination does not work out of the
box. We empirically observe that it can be hurtful and
even lead to collapse. We scrutinize the reason for this
unexpected behavior and provide a solution. We propose
to estimate the quality of the latent space and adaptively
use positive pairs sampled from a ranked set of neighbors
(Fig. 1) if the estimated quality of the latent space is high
enough. This leads to an Adaptive learning algorithm based
on Similarity bootstrapping dubbed AdaSim. The overall
framework is shown in Figure 2. We summarize our contri-
butions as follows:

1. We provide empirical evidence that when combined
with self-distillation, straightforward bootstrapping as
in [19] can lead to a performance drop or even col-
lapse. This is validated for multiple self-distillation
methods and backbone combinations;

2. We propose an adaptive similarity bootstrapping learn-
ing method (AdaSim) in which the amount of boot-
strapping is modulated via a single temperature param-
eter. Using a temperature parameter of 0, AdaSim de-
faults to self-distillation with standard positive image
pairs generated from augmented views of the same im-
age. We show that AdaSim performs best with a non-
zero temperature parameter and outperforms the base-
lines on standard downstream tasks.

2. Related work

Cross-view consistency Early self-supervised methods
make use of pretext tasks such as solving jigsaw puz-
zles [38], image rotation prediction [23] and more [17,
36, 41, 2]. Recently, there has been a shift towards
learning features that are invariant to semantic preserv-
ing data augmentations [8, 12, 25, 10, 11, 13, 50].
These data augmentations include geometric transforms
(e.g. CROP, RESIZE and HORIZONTAL FLIP) and pho-
tometric transforms (e.g. COLOR JITTER, SOLARIZE,
GAUSSIAN BLUR and GRAYSCALE). Stronger semantic
preserving data augmentations lead to better downstream
performance. However, the above-mentioned transforms
lose their semantic preserving nature when they are too
strong, e.g. a very small CROP does not capture the object
or a strong GAUSSIAN BLUR leads to a uniform image.

Dense Cross-view consistency Instead of applying coher-
ence at the global-level, a more granular self-supervision
can be obtained by enforcing cross-view consistency be-
tween matching local regions [27, 32, 39, 44, 47, 46].

Neighbor bootstrapping In order to generate strong se-
mantic positive pairs less reliant on heuristics, NNCLR [19]
proposes to use positive pairs of different images by boot-
strapping nearest neighbors in the latent space. We describe
their method in detail in Section 3.2 as well as the issues
that arise when used in conjunction with a self-distillation
objective, which we try to overcome using adaptivity in
Section 3.3. Similarly, [30] proposes to bootstrap multiple
neighbors for a single query.

Clustering methods Clustering methods [1, 6, 4, 5, 51] also
process multiple different images but do not make use of
positive/negative pairs. They enforce structure in the latent
space by learning prototypes and enforcing clusters to be
compact.

Queues/memory banks Memory banks have mostly been
used in the context of contrastive learning for storing neg-
atives [25, 11, 13] reducing the need for (very) large batch
sizes. [19] uses memory banks for mining positives while
[16] makes use of memory banks for mining both positives
and negatives.
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Figure 2: Overview of AdaSim. Given an input image xi, we obtain the latent representation zi = f(t(xi)). Additionally,
we sample another image xj? in the dataset from p

win(xj |xi) (see Eq. (9) and Eq. (10)) and obtain its latent representation
z

0

j? = f
0(t0(xj?)). A self-distillation loss L is enforced between zi and z

0

j? . For the sake of simplicity, only the scenario
using bootstrapping is illustrated (see Algorithm 1). Data augmentations are represented with grayscale bounding boxes.

3. Method
3.1. Self-distillation vs contrastive learning

Self-distillation and contrastive learning are ubiquitous
within self-supervised learning. Both schemes aim to learn
discriminative features in the absence of labels. This is
mainly done by enforcing similarity constraints between
two augmentations of the same input image. The two meth-
ods are similar in essence but differ in the way they avoid
trivial solutions. Assume we dispose of an encoder f from
which we obtain a latent representation z 2 Z of an im-
age x 2 X , i.e. z = f(x) with Z and X being a latent-
and image space, respectively. Moreover, assume we dis-
pose of an oracle N+ indicating valid positive pairs of im-
ages (x,x+) 2 N+, an oracle N� indicating valid nega-
tive pairs of images (x,x�) 2 N� and a distance metric1

d(· , ·) defined in the latent space Z . Valid positive pairs
are images with the same semantic content and valid nega-
tive pairs are images with no shared semantic content.
Contrastive objective A contrastive learning loss relies on
attraction and repelling mechanisms: the former enforces
similarity between positive pairs and the latter enforces dis-
similarity between the negative pairs. Formally, the attrac-
tion term is of the form d(f(x), f(x+)) and the repelling
terms are of the form d(f(x), f(x�)). Here, we refer to
“term” in its broad sense and therefore do not necessarily
refer to an additive term. Usually, there are many negative
terms for a single positive term. One famous example of
such contrastive loss is the InfoNCE loss [43, 45, 48] de-
fined as:

Lcontra = � log

0

@ exp(s+/⌧)

exp(s+/⌧) +
P
s�

exp(s�/⌧)

1

A (1)

where s
+ = f(x)>f(x+) and s

� = f(x)>f(x�).
(x,x+) is sampled from N+ and (x,x�) are sampled from

1This is an abuse of terminology as d does not necessarily have to sat-
isfy all properties of a mathematical distance.

N�. The distance metric d(· , ·) is defined as the scalar
product h· , ·i. The total contrastive objective is Equa-
tion (1) summed over all training images x.
Self-distillation objective As opposed to the contrastive
scenario, the self-distillation objective does not use nega-
tive image pairs to avoid the collapse to trivial solutions but
uses asymmetry between the two branches. The form the
asymmetry takes (momentum encoder, additional predic-
tor on one branch, using stop-gradients in one branch etc.
[8, 12, 24]) can be abstracted out. Given two encoders f

and f
0, a self-distillation loss only has positive terms of the

form

Ldistil = d(f(x), f 0(x+)) (2)

for a given positive pair (x,x+). The total self-distillation
objective is Equation (2) summed over all positive pairs
(x,x+) 2 N+.

3.2. Bootstrapping neighbors in the latent space

In the absence of oracle N+ and N�, most (if not all)
previous work approximate N� with random image pairs.
Given a distribution T of semantic preserving data augmen-
tations, N+ is usually approximated with pairs of random
augmentations from the same input image, i.e. (t(x), t0(x))
where t and t

0 are sampled from T . The stronger the se-
mantic preserving augmentations t and t

0 are, the better the
learned features become. However, their semantic preserv-
ing nature will be lost if they are made too strong.

To obtain more complex and diverse pairs of positive im-
ages, NNCLR [19] proposes to approximate N+ with pairs
of nearest neighbors. More precisely, given two latent rep-
resentations (z and z0) of the same image x and a FIFO
queue Q of previously computed representations (with
|Q| < |D|), positive pairs are defined as (z0

,NN(z, Q)),
where the nearest neighbor operator is defined as:

NN(z, Q) = argmin
q2Q

kz � qk2 (3)
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Note here that the positive pairs are defined in the latent
space Z and not in the image space. Under the assump-
tion that the latent space properly captures the semantics of
images, these pairs of neighbors are expected to share the
same semantic content but their representation may still be
slightly different. Enforcing similarity constraints between
the two representations would help to learn features that are
invariant to everything but the semantics of the image (e.g.
class label information). However, two issues arise when
relying exclusively on nearest neighbors as positive pairs:

1. Using only neighbors as positive pairs, i.e. not relying
on augmented views as positive pairs, leaves out valu-
able self-supervisory signal. Using standard positive
pairs of augmented views from the same image is de-
sirable to explicitly learn data-augmentation invariant
features, but that is not enforced.

2. The latent space might not capture the semantics of
the image well, i.e. the positive pair is wrong. This
would lead to undesirable gradient flows, e.g. pulling
an image of a cat closer to an image of a building.

Throughout the paper, we refer to the above as issue 1
and issue 2. Using a contrastive objective, the impact of
these issues is limited since informative gradient signal can
still be obtained from the negative pairs which in practice
are almost always correct (random). Using a self-distillation
objective, we empirically observe that the above issues are
problematic to the point that the downstream performance
can be worse than using standard positive pairs using data-
augmentations (Sec. 4, Tab. 2, Tab. 3).

3.3. Adaptive similarity bootstrapping
3.3.1 Need for standard positive pairs

To avoid issue 1, we adaptively use augmentations of the
same image or of a neighbor to form a positive pair. To
do this, we propose to work with a cache that has the same
size as the dataset D as opposed to using the queue Q from
NNCLR [19]. Using a small queue, it is very unlikely to
encounter a representation originating from the same image.
We denote the cache with Z 2 RN⇥d, where N is the size of
the dataset and d is the dimension of the latent space. At the
end of the forward pass, the current latent representation zi
of an augmentation of the i-th image xi 2 D (i.e. f(t(xi))
with t ⇠ T ) is updated in the cache. As such, Z holds
a latent representation for every image in the dataset at all
times. Given a latent representation zi of the i-th image
and the cache Z, we can define a similarity metric mi(j)
between image i and all images xj :

mi(j) = z>
i Zj (4)

where Zj refers to the latent representation of image j in
the cache. mi(j) can in turn be mapped into a similarity
distribution using a softmax normalization:

si(j) =
exp (mi(j)/ ⌧)P

k2[|D|] exp (mi(k)/⌧)
, i, j 2 [|D|] (5)

where ⌧ is a temperature parameter modulating the sharp-
ness of the distribution (ablation in Tab. 4). We can now
define an isomorphic probability distribution over the im-
ages in the dataset:

p(xj |xi) = si(j), xi,xj 2 D (6)

To approximate the oracle N+ of positive pairs, we pro-
pose to use image i and an image sampled from the sim-
ilarity distribution. That is, we form positive pairs of the
form (t(xi), t0(xj?)) with xj? sampled from p(xj |xi) and
with t and t

0 sampled from T . Note that Z contains fea-
tures for all images, not excluding image xi. Therefore,
we always have a non-zero probability of having a positive
pair generated from the same input image which mitigates
issue 1 from Section 3.2. Sampling positive pairs of the
form (t(xi), t0(xj?)) also allows for the possibility to sam-
ple more diverse and complex pairs of positives compared
to the case when we only consider top-1 neighbors, as can
be seen in Figure 1. This diversity can be increased by in-
creasing the temperature ⌧ .

3.3.2 Need for adaptivity

Recall that issue 2 from Section 3.2 is that the latent space
might not capture the semantics of images properly (espe-
cially at the beginning of the pretraining). That is, neigh-
bors in the latent space might have completely unrelated
semantic content. We propose to estimate the quality of
the latent space by observing how close two different aug-
mentations of the same input image xi are mapped via the
encoder f . If this distance is low compared to that of the
latent representations of other images in the cache Z, then
it means that the encoder f is good at mapping images sim-
ilar to xi close together. In that case, we can expect the
vicinity of the queried image xi to also share semantic con-
tent with image xi and can therefore use elements of the
vicinity to form a positive pair with xi. If this distance is
too high, we default to a standard positive pair composed
of two augmentations of the same input image. Mathemat-
ically, if argmaxxj

p(xj |xi) == xi, then we sample xj?

from p(xj |xi) and use a positive pair (t(xi), t0(xj?)) with
t and t

0 sampled from T . Otherwise, we use a standard
positive pair (t(xi), t0(xi)).

3.3.3 How to rank neighbors?

We propose to extend the adaptive framework to account
for the similarity history over the past epochs. The ratio-
nale behind this is that the similarity between two images
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t(xi) and t
0(xj) can be strongly affected by t and t

0, es-
pecially at the beginning of the pretraining. For example,
given a randomly initialized encoder f , the similarity be-
tween f(t(xi)) and f(t0(xj)) will be mostly determined
by how similar t and t

0 are. Therefore, an image xi and
xj should be considered as semantically close, not only
if f(t(xi)) is close to f(t0(xj)), but if Et⇠T [f(t(xi))] is
close to Et0⇠T [f(t0(xj))].

In practice, we do not have access to the true expecta-
tion and therefore take the empirical mean over the last w
epochs. More precisely, we define the similarity metric for
a given epoch e which we denote with the superscript (e):

m
(e)
i (j) =

�
z>
i Zj

�(e)
(7)

and average this similarity metric over the last w epochs to
obtain a windowed similarity metric for the current epoch
E:

m
win
i (j) =

1

w

X

e2Ww
E

m
(e)
i (j) (8)

where Ww
E = {E � w + 1, E � w + 2, · · ·E} denotes the

set of the previous w epochs with epoch E being the current
epoch. Similarly to Equation (5), we can define:

s
win
i (j) =

exp
�
m

win
i (j)

�
⌧)

P
k2[|D|] exp

�
m

win
i (k)/⌧

� , i, j 2 [|D|]

(9)
where ⌧ is a temperature parameter as in Equation (5). And
similarly to Equation (6), we can define:

p
win(xj |xi) = s

win
i (j), xi,xj 2 D (10)

From here on, we use pwin(xj |xi) instead of p(xj |xi) as
the sampling distribution. At the beginning of the pretrain-
ing, i.e. as long as no w similarity metrics have been com-
puted yet, we default to using standard positive pairs gen-
erated from augmented views of the same image. Note that
for a window of size 1 (w = 1), we fall back to Equation (5)
and Equation (6) from Section 3.3, i.e. si(j) = s

win
i (j) and

p(xj |xi) = p
win(xj |xi).

3.4. Memory and compute overhead
Memory overhead In practice storing w versions of
m

(e)
i (j) with e 2 Ww

E is not feasible when the dataset is
large as it would require storing w entries for each pair of
images. In the case of ImageNet-1k [15], that would re-
quire about (1.3M)2 ⇥ 4 ⇥ w ⇠ 300TB which is infeasi-
ble2. However, since we sample from the similarity distri-
bution to form positive pairs, we are only interested in the

21.3M refers to the size of the dataset and 4 bytes are required to store
a single float entry of 32 bits.

Algorithm 1 AdaSim: Adaptive Similarity Bootstrapping
framework
Input: D: an unlabeled dataset, T : a distribution over the
possible augmentations, f : an encoder parametrized with
weights ✓, OPTIMIZER: an optimizer, Z 2 RN⇥d: a zero-
initialized cache (N = |D| and d is the dimension of the
latent space), w: window size, L: self-distillation loss
Output: Trained weights

1: for e 2 {1, 2, · · ·NB EPOCHS} do
2: for i 2 [|D|] do
3: Sample t and t

0 from T
4: zi = f(t(xi))

5: m
(e)
i (j) =

�
z>
i Zj

�(e)
. Eq. (7)

6: update(Z, zi) . Update cache with zi
7: if e  w then
8: L = L(t(xi), t0(xi))
9: else

10: m
win
i (j) = 1

w

P
e02Ww

e

m
(e0)
i (j) . Eq. (8)

11: s
win
i (j) =

exp (mwin
i (j)/⌧)

P
k exp (mwin

i (k)/⌧)
. Eq. (9)

12: p
win(xj |xi) = s

win
i (j) . Eq. (10)

13: if xi == argmax
xj

p
win(xj |xi) then

14: Sample xj? from p
win

15: L = L(t(xi), t0(xj?))

9
>>>>>>=

>>>>>>;

Adaptive
sampling

16: else
17: L = L(t(xi), t0(xi))
18: end if
19: end if
20: ✓  OPTIMIZER(✓,r✓L)
21: end for
22: end for
23: return ✓

most similar images. Therefore, we can restrict the sup-
port of m(e)

i (j) to the K highest elements. We denote this
new support as S(e) with |S(e)| = K. Note that for every
epoch e, the support of m(e)

i (j) is different. The similarity
metric m

win
i (j) from Equation (8) with restricted domain is

obtained as follows:

m
win
i (j) =

1

w

X

e2Ww
E

{j2S(e)}m
(e)
i (j) (11)

where denotes the indicator function and with j 2 Sunion
and Sunion =

S
e2Ww

E
S(e). The only difference for the sim-

ilarity distribution from Equation (9) is that its support is
limited to Sunion. Similarly for Equation (10), the only dif-
ference is that its support is limited to Swin = {xj : j 2
Sunion}. Taking all the above into consideration, the final
algorithm AdaSim is illustrated in Algorithm 1.
Compute overhead The compute overhead is limited to the
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Table 1: Supervised oracle. p indicates the probability to
sample a standard positive pair (1 � p is the probability to
sample a supervised positive pair, see Sec. 4.4).

p k-NN (top-1) k-NN (top-5) linear (top-1) linear (top-5)

0 74.3 90.5 75.8 92.7
0.5 74.9 90.9 76.3 93.0

projection of a representation z onto the cache Z which is
embarrassingly parallelizable on GPU. This requires about
d|D| = 0.5B operations (for ViT-S/16) which is much less
than the 4.6B FLOPs in the backbone (see Appendix C).

4. Results
4.1. Rationale of the experiment design

The goal of the paper is 1) to show that bootstrapping
neighbors using a self-distillation objective can hinder the
performance or 2) even lead to collapse and 3) ultimately
propose an adaptive bootstrapping scheme which not only
solves the above-mentioned issues but also improves on
the baselines using standard positive pairs. To achieve this
goal, we compare two self-distillation methods (SimSiam
[12] and DINO [8]) with different backbones (ViT-S/16
[18] and ResNet-50 [26]) in a simple controlled setup (pre-
training on ImageNet-1k [15], same hyperparameters, using
only 2 global crops). For every evaluation, we compare 1)
the baseline with 2) the baseline + straightforward nearest
neighbor bootstrapping [19] and 3) the baseline + AdaSim.

We report results on the linear and k-NN benchmarks of
ImageNet-1k which are industry standard evaluation pro-
tocols for self-supervised methods (Sec. 4.5). To evalu-
ate how generalizable the learned features are, we further
compare all methods on few-shot transfer downstream tasks
(Sec. 4.6). Then, we run an ablation study on AdaSim-
specific hyperparameters (Sec. 4.7) and finish with some
interesting training metrics that are helpful to understand
AdaSim intuitively (Sec. 4.8). The main takeaway from this
section is that AdaSim avoids issues 1 and 2 incurred by
straightforward nearest neighbor bootstrapping and shows
performance improvements on all downstream tasks.

4.2. Evaluation benchmarks
Linear evaluation A linear layer is stacked on top of the
frozen features and trained on the training set of the down-
stream task. We report the top-1 accuracy on the test set.
For each setting, we use the evaluation protocol (e.g. choice
of optimizer, number of training epochs etc.) from the cor-
responding baseline (SimSiam [12] or DINO [8]). To eval-
uate the intrinsic quality of representations, the downstream
evaluation should ideally not require many learnable param-
eters. In the case of ResNet-50, the number of parameters
in the linear layer is 1000 ⇤ d where d = 2048 which is

Table 2: Linear evaluation and k-NN benchmarks on
ImageNet-1k [15]. We report the performance of the pro-
posed bootstrapping scheme in conjunction with various
self-distillation methods and backbones. AdaSim is system-
atically compared against the settings where no bootstrap-
ping occurs and the one using straightforward bootstrapping
(+NN). “-” denotes a failure to converge.

Method Model Epochs k-NN Linear

SimSiam [12] ResNet-50 100 57.1 68.0
SimSiam + NN ResNet-50 100 56.2 (- 0.9) 65.9 (- 2.1)
SimSiam + AdaSim ResNet-50 100 57.9 (+ 0.8) 68.1 (+ 0.1)

DINO-2 [8] ResNet-50 100 50.2 60.0
DINO-2 + NN ResNet-50 100 - -
DINO-2 + AdaSim ResNet-50 100 50.7 (+ 0.5) 60.1 (+ 0.1)

DINO-2 [8] ViT-S/16 800 68.4 71.9
DINO-2 + NN ViT-S/16 800 - -
DINO-2 + AdaSim ViT-S/16 800 70.1 (+ 1.7) 73.3 (+ 1.4)

DINO-2 ViT-B/16 800 69.2 73.5
DINO-2 + NN ViT-B/16 800 - -
DINO-2 + AdaSim ViT-B/16 800 72.7 (+ 3.5) 75.0 (+ 1.5)

about 2 million parameters. The following evaluations do
not have any learnable parameters and are thus better suited
to evaluate the intrinsic quality of the pretraining.
k-NN evaluation The representation z of each image in
both the training and test set is computed. Then each image
in the test set gets a label assigned based on votes from the
nearest neighbors in the training set. We use k = 20 to stay
consistent with previous work and report the top-1 accuracy.
Few-Shot transfer This evaluation uses a nearest-centroid
classifier (Prototypical Networks [42]). We use the code
and datasets (except CIFAR-10 and CIFAR-100 because the
images are only 32x32) from [20]. We consider 5-way 5-
shot transfer with a query set of 15 images and average re-
sults over 600 randomly sampled few-shot episodes.

4.3. Implementation details
For both DINO and SimSiam, the same hyperparame-

ters are used as reported on their GitHub. To make sure
the size of the queue/cache does not impact the results, we
implement the “baseline + NN” entries in Table 2 and Ta-
ble 3 with a cache that has the size of the whole dataset. To
confirm the fact that standard positive pairs are needed (see
issue 1), we implement the querying of the nearest neighbor
such that it cannot originate from the same image xi 2 D
(as is the case with a queue of small size). More implemen-
tation details can be found in Section 4.3.

4.4. Supervised oracle
As a starter, to confirm our intuition that better positive

pairs lead to better performance on downstream tasks, we
approximate the oracle of positive pairs N+ using the la-
bels from ImageNet-1k [15]. We sample a positive pair as
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Table 3: Few-shot transfer (5-way 5-shot) using prototypical networks [42] on multiple standard datasets. The reported
metrics are top-1 accuracy for Food, SUN397, Cars, DTD and mean per-class accuracy for the other datasets. “-” denotes
that the training objective does not converge, e.g. due to collapse. Rows corresponding to AdaSim are highlighted. Bold text
is used for the best performing row within each block.

Method Model Epochs Aircraft [35] Caltech101 [22] Cars [31] DTD [14] Flowers [37] Food [3] Pets [40] SUN397 [49] Avg

SimSiam [12] Resnet-50 100 44.13 94.88 51.46 78.94 94.19 68.12 88.27 91.12 76.39
SimSiam + NN Resnet-50 100 43.44 94.4 50.52 76.69 93.85 67.04 88.66 90.41 75.63 (- 0.76)
SimSiam + AdaSim Resnet-50 100 45.71 94.91 51.71 78.87 94.54 68.38 88.91 91.0 76.75 (+ 0.36)

DINO-2 [8] Resnet-50 100 40.19 92.65 45.84 79.58 90.00 63.22 80.35 90.58 72.80
DINO-2 + NN Resnet-50 100 - - - - - - - - -
DINO-2 + AdaSim Resnet-50 100 38.80 92.69 46.58 79.54 89.68 64.52 81.52 90.41 72.97 (+ 0.17)

DINO-2 [8] ViT-S/16 800 52.78 98.4 56.42 81.87 96.54 76.06 96.04 94.26 81.55
DINO-2 + NN ViT-S/16 800 - - - - - - - - -
DINO-2 + AdaSim ViT-S/16 800 56.54 98.93 58.04 82.35 96.96 77.23 96.54 94.78 82.67 (+ 1.12)

Supervised Resnet-50 58.35 97.61 73.68 80.83 94.19 76.23 97.45 93.78 84.02

two random images from the same class, on top of which we
still apply augmentations. Empirically, we observe that the
convergence (speed) is much worse than using standard pos-
itive pairs. To speed up the convergence, we sample stan-
dard positive pairs with a certain probability. Given that it
makes sense for this probability to be high at the beginning
of the pretraining, we simply try a linear schedule going
from 1 to p. Results for p = 0 and p = 0.5 can be found
in Table 1. It can be observed that p = 0.5 performs better
which corroborates our reasoning related to issue 1.

4.5. ImageNet-1k benchmarks
The k-NN and linear evaluation results on ImageNet-1k

[15] are reported in Table 2. The last block in blue shows
the best performing setting (⌧ = 0.2, w = 50, K = 10)
from the ablation in Table 4 with a long pretraining sched-
ule of 800 epochs. The first 2 blocks of rows are trained
with a window size of w = 1 (and ⌧ = 0.2, K = 10)
to confirm that AdaSim does not require a large window
to improve the baseline and avoid collapse. DINO-2 de-
notes DINO with only 2 global crops. First, we can ob-
serve that with DINO-2 [8], straightforward nearest neigh-
bor bootstrapping (NN) does not converge (illustrated with
“-”). This is confirmed for different backbones and training
schedules. DINO-2 + AdaSim does converge and improves
the baselines. The training objective of SimSiam [12] + NN
does converge but suffers from a performance impact.

4.6. Few-shot transfer
The results of the few-shot transfer are shown in Ta-

ble 3. Conclusions analogous to Section 4.5 can be drawn:
AdaSim improves the downstream performance on most
datasets and on average (last column). For a point of com-
parison, Table 3 contains a row “Supervised” taken from
[20] which is obtained with the weights from the supervised
ResNet-50 in torchvision. Interestingly, DINO-2+AdaSim
performs much better than the baseline DINO-2 on datasets
where the supervised method also performs better e.g. Cars

[31] (+5.06) or Aircraft [35] (+2.54). This is because
AdaSim bootstraps neighbors in the latent space which acts
as a sort of self-labeling and therefore shares some proper-
ties with the supervised method.

4.7. Ablations
An ablation study over AdaSim specific hyperparame-

ters (⌧ , w, K) can be found in Table 4. The best hyper-
parameters are highlighted in bold. These bold parameters
are used for all runs, except for the parameter that is being
varied. Importantly, for a temperature ⌧ = 0, AdaSim be-
haves like a standard self-distillation method using pos-
itive pairs of the form (t(x), t0(x)). A performance im-
provement can be observed for increasing temperature val-
ues which shows the merits of AdaSim.

4.8. Under the hood analysis
Multiple training metrics are shown in Figure 3 with

varying temperature values. Such plots are useful to build
intuition on the internal mechanisms of AdaSim.
Neighbor bootstrapping ratio indicates the percentage of
positive pairs (t(xi), t0(xj?)) where the augmentations are
from different images. The higher the temperature, the
higher the percentage is. In the limit when ⌧ ! 0, it can
be observed that this percentage goes to 0, and AdaSim
defaults to standard self-distillation. This is only possi-
ble thanks to the adaptive sampling of positive pairs in
AdaSim (lines 13 to 18 in Algorithm 1). Without the adap-
tive sampling, a low temperature would lead to a positive
pair (t(xi), t0(xj?)) where xj? = argmax pwin(xj |xi) but
there is no guarantee that xi = xj? . The adaptivity of the
proposed method can be observed in Figure 3.a. Indeed, at
epoch 50, the window is filled and nearest neighbor boot-
strapping is allowed to occur. As the quality of the latent
space is low, so is that of the resulting gradients, which
temporarily hurts the learned representations. Thanks to the
adaptivity criterion, the bootstrapping ratio is automatically
reduced to avoid collapse.
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Table 4: Ablation study over AdaSim specific hyperparameters. The ablation is run over 800 epochs. If not otherwise
specified, the values of the hyperparameters are (⌧, w,K) = (0.2, 10, 3).

Temperature (⌧ ) Window size (w) Support size (K)

0.0 0.05 0.1 0.2 0.4 1 10 50 2 3 5 10 20

k-NN 68.4 68.8 69.0 70.1 69.8 69.3 70.1 69.4 69.4 70.1 70.1 69.1 68.4
linear 71.9 72.4 72.6 73.3 73.2 72.6 73.3 72.7 72.8 73.3 73.0 72.5 72.2

NN top-1 training accuracy shows how often the query
image xi and its “nearest neighbor” xj? are from the same
class. Here we observe that a higher temperature leads to
a lower accuracy which makes sense because the “nearest
neighbor” can be the same image and, therefore, would triv-
ially be in the same class. Note that before epoch 50, all
temperature values use the same positive pairs as w = 50
similarity metrics are being computed.

2-NN top-1 training accuracy shows if the
query image xi and its second “nearest neighbor”
argmaxxj 6=xj?

p
win(xj |xi) are from the same class. This

metric is a better indicator of the downstream general-
izability of the learned features. It can be observed that
higher temperature values (more neighbor bootstrapping)
are initially worse but start to become advantageous as the
training progresses. This is intuitive because bootstrapping
neighbors is only useful when they are semantically related,
which only happens as the network learns.

Visualization of positive pairs To get an understanding of
the positive pairs which are formed by AdaSim, we visual-
ize multiple query images xi along with the sampling dis-
tribution p

win(xj |xi) (overlayed in green) and its associated
support Swin in Figure 1. In this example, all “nearest neigh-
bors” are the same as the query image, and all neighbors
seem to share semantic content. In Appendix F, we explic-
itly search for query images where the neighbors are from
different classes. These results show evidence of wrongly
labeled or duplicate images in ImageNet-1k [15].

5. Conclusion
Self-distillation is becoming the go-to self-supervised

learning paradigm due to its simplicity and state-of-the-art
performance. However, non-explicit processing of negative
pairs makes it less robust and more prone to collapse to
trivial solutions than contrastive learning. Used in conjunc-
tion with bootstrapped positive pairs of neighbors, we em-
pirically observe that self-distillation methods can perform
worse than their vanilla baseline and in some cases even col-
lapse. We propose an adaptive bootstrapping scheme that
stabilizes the training and improves on the baselines. We
also observe that long training schedules and larger back-
bones are particularly beneficial for AdaSim (better repre-
sentations lead to better bootstrapping).
Limitations All results in the paper do not include multi-
crop [7] for simplicity. In practice, not using multi-crop
requires the use of more diverse random cropping (e.g. with
scale sampled in [0.1, 1]) but we have not changed any hy-
perparameters from DINO and stuck with [0.25, 1].
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Figure 3: Visualization of multiple training metrics for different temperature ⌧ values.
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Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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