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Abstract

As the physical size of recent CMOS image sensors (CIS)
gets smaller, the latest mobile cameras adopt unique non-
Bayer color filter array (CFA) patterns (e.g., Quad, Nona,
Q×Q), which consist of homogeneous color units with ad-
jacent pixels. These non-Bayer CFAs are superior to con-
ventional Bayer CFA thanks to their changeable pixel-bin
sizes for different light conditions, but may introduce visual
artifacts during demosaicing due to their inherent pixel pat-
tern structures and sensor hardware characteristics. Previ-
ous demosaicing methods have primarily focused on Bayer
CFA, necessitating distinct reconstruction methods for non-
Bayer CIS with various CFA modes under different lighting
conditions. In this work, we propose an efficient unified de-
mosaicing method that can be applied to both conventional
Bayer RAW and various non-Bayer CFAs’ RAW data in dif-
ferent operation modes. Our Knowledge Learning-based
demosaicing model for Adaptive Patterns, namely KLAP,
utilizes CFA-adaptive filters for only 1% key filters in the
network for each CFA, but still manages to effectively de-
mosaic all the CFAs, yielding comparable performance to
the large-scale models. Furthermore, by employing meta-
learning during inference (KLAP-M), our model is able
to eliminate unknown sensor-generic artifacts in real RAW
data, effectively bridging the gap between synthetic images
and real sensor RAW. Our KLAP and KLAP-M methods
achieved state-of-the-art demosaicing performance in both
synthetic and real RAW data of Bayer and non-Bayer CFAs.

1. Introduction
Demosaicing (DM) is the process of interpolating single-

channel input images into RGB output images within an
embedded Image Signal Processor (ISP). With the grow-
ing demand for high-quality mobile camera images, CMOS
image sensor (CIS) resolution has increased dramatically,
even reaching 200 million pixels in the latest smartphones.

∗ Equal contribution, † Corresponding author.

However, as image sensors cannot infinitely increase in size,
pixel size has been reduced to enhance resolution. Smaller
CISs are more vulnerable to noise and degradation in im-
age restoration capabilities because they are more sensi-
tive to variations in light reception, especially in low-light
condition [13, 23, 38, 39]. As a result, modern high-end
smartphones have started using image sensors that group
adjacent homogeneous pixels, resulting in non-Bayer Quad,
Nona, and Quad-by-Quad (Q×Q) sensors [19, 38, 41],
while still retaining some of the properties of the standard
Bayer CFA [5] pattern. Quad, Nona, and Q×Q sensors
combine the same color pixel arrays of 2×2, 3×3, and 4×4
respectively, resulting in homogeneous pixel units (i.e., Gr,
R, B, and Gb) for each sensor, as shown in Fig. 1(a).

Demosaicing for modern non-Bayer CFAs is more com-
plex and computationally demanding than for standard
Bayer CFAs. This is because as the number of pixel ar-
rays within each unit increases, the distance between the
units becomes greater, requiring interpolation with inaccu-
rate pixel values from distant locations. Therefore, there
is growing interest in using deep learning for demosaicing
methods, leading to active research on both Bayer pattern
demosaicing [64, 42, 12, 7, 56, 1, 34, 62, 45, 18, 26, 17]
and non-Bayer pattern demosaicing [28, 27, 20, 3, 46, 10].

However, the aforementioned methods focus on a sin-
gle CFA DM task and do not cover DM tasks for multiple
CFA patterns. Modern mobile phones with non-Bayer pat-
terned CIS adapt their CFA modes dynamically based on
lighting conditions, controlled by the CIS’s ISP. Using inde-
pendent models (IMs) for each pattern, tailored to different
CFA modes, would demand loading and operating multi-
ple models within the limited circuit space of the CIS. This
would result in excessive memory and power consumption
if the models were kept standby on the mobile application
processor (AP) and switched accordingly. Moreover, the
task of tuning models for each CFA would be laborious.

Currently, no existing method can handle dynamically
changing CFA modes in a non-Bayer patterned CIS as a uni-
fied model (UM). Several recent studies have explored the
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Figure 1: (a) Overview of our unified model (UM) for demosaicing all the Bayer and non-Bayer CFAs, called the Knowledge
Learning-based demosaicing model for Adaptive Patterns using Meta-test learning (KLAP-M), even when ground truth is
unavailable and unknown artifacts are present. (b) Comparing CIS RAW demosaicing results of KLAP (KLAP-M without
meta-test learning) and KLAP-M (KLAP with meta-test learning).

concept of all-in-one image restoration, which deals with
multiple types of unknown degradation [31, 9, 30]. How-
ever, these existing methods do not fully account for real
‘unknown’ artifacts in real ‘CIS RAW’ restoration process.
To address this limitation, where ground truth (GT) may
be missing or largely unavailable, we will conduct a com-
prehensive investigation of these methods. Since such un-
known artifacts may fail to yield high-quality photos, we
are motivated to propose a UM with robust meta-learning-
based DM methods that can handle these obstacles.

In this work, we propose efficient unified demosaicing
methods that bridge the gap between synthetic and real CIS
RAW images, enabling various non-Bayer CISs through a
new pipeline. Our proposed Knowledge Learning-based
demosaicing model for Adaptive Patterns (KLAP) is ca-
pable of simultaneously handling multiple CFAs’ demo-
saicing, which consists of two following steps. Firstly,
we train a baseline UM using the two-stage knowledge
learning (TKL) [9], making it more efficient to find Adap-
tive Discriminative filters for each specific CFA Pattern
(ADP). Secondly, after TKL, we further fine-tune the UM
model using ADP, which is a method to identify a small
set of discriminative filters in CNN filters, serving as in-
dependent key parameters for each specific CFA demo-
saicing task. Lastly, we propose KLAP-M, which com-
bines KLAP (TKL+ADP) with Meta-test learning, integrat-
ing self-supervised learning to handle domain gaps between
synthetic RAW and real CIS RAW caused by unknown arti-
facts in real-life scenarios. Our proposed meta-test learning
consists of pixel binning loss based on CIS domain knowl-
edge and self-supervised denoising techniques. Fig. 1(a)
provides an overview of our KLAP-M approach, which
handles both Bayer and Non-Bayer patterns. Additionally,
Fig. 1(b) shows the results of our meta-test learning tech-
nique, addressing the domain gap in real RAW images.

Our contributions are summarized as follows: (1) Our ef-
ficient unified network, KLAP, effectively performs demo-
saicing for multiple CFAs, (2) KLAP-M, a version of KLAP
that incorporates a meta-learning approach, effectively re-
duces unknown visual artifacts in genuine CIS RAW images
that are caused by diverse sensor characteristics and shoot-
ing environments, (3) KLAP and KLAP-M achieve state-
of-the-art performance on the synthetic benchmark dataset
and real CIS RAW samples captured by CIS chips.

2. Related Works
2.1. Deep Learning-based Demosaicing

IMs for DM only. Traditional demosaicing without ap-
plying deep learning techniques either apply a fixed DM
filter to each pixel without considering other parameters
as features or utilize spectral and spatial features available
in neighboring pixels to interpolate the unknown pixel as
closely as possible to the original [36, 15]. Due to the com-
plexity of various CIS CFAs, traditional methods are cum-
bersome, leading to an increasing interest in deep learning-
based demosaicing models. Stojkovic et al. [47] suggested
IMs of each Bayer and Quad demosaicing based on CDM-
Net [11]. Kim et al. [28, 27] applied the duplex pyramid
network structure to Quad CFA and Nona CFA, respec-
tively. Sharif et al. [46] proposed a GAN-based spatial-
asymmetric attention for Nona CFA reconstruction. For
Q×Q CFA, Cho et al. [10] proposed an efficient pyramidal
network using progressive distillation based on PyNet [18].

Multi-tasks joint with DM. There have been propos-
als to combine DM methods with other closely related ISP
tasks, such as denoising (DN) and super-resolution (SR).
Some [12, 54, 7, 34, 22, 29] proposed convolutional neu-
ral networks approach for joint DM and DN to improve
the quality of the restored image. Ma et al. [35] and Xu
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et al. [58] proposed models for simultaneous DM and SR.
Xing et al. [56] introduced a multi-task learning approach to
jointly address three tasks: DM, DN, and SR. Previous stud-
ies mainly concentrate on multi-task approaches for single
CFA demosaicing and known noise sources. In contrast,
our proposed method introduces a unified model that han-
dles both Bayer and non-Bayer CFAs, incorporating meta-
learning to ensure robust performance even in the presence
of unknown noise.

2.2. Image Restoration for Multi-tasks

IMs for multi-tasks. Beyond DM tasks, recent pa-
pers [63, 37, 61, 53, 52, 43, 8] have introduced various ap-
proaches that share a common framework capable of multi-
ple image restoration tasks, including denoising, deblurring,
and deraining. While the mentioned IM excels in individual
tasks, it necessitates multiple network parameters as multi-
ple networks are needed to handle all the required tasks.

Unified model (UM) for multi-tasks. To overcome the
drawbacks of IMs, Chen et al [9] proposed a single UM for
two-stage knowledge learning mechanism based on multi-
teacher and single student approach for multiple degrada-
tions on images that contains rain, haze, and snow. Li et
al. [30] proposed a single UM using a contrastive-based de-
graded encoder, called the degradation-guided restoration
network (DGRN), which adaptively works with three degra-
dations: rain, noise, and blur. Park et al. [40] introduced a
single UM equipped with dedicated filters for degradation,
achieving remarkable results in rain-noise-blur and rain-
snow-haze tasks. To the best of our knowledge, there is
currently no reported method that can handle all Bayer and
non-Bayer demosaicing tasks using a single unified model.

2.3. Meta-learning-based Image Restoration

For image reconstruction, a large number of samples
are usually necessary, but it may not be feasible in many
real-world situations. Meta-learning, also known as learn-
to-learn, provides a promising solution to the problem
of adapting models quickly to new data. This learning
method empowers models to achieve efficient task perfor-
mance even with limited additional incoming data. Finn et
al. [14] proposed an algorithm for model-agonistic meta-
learning that achieved state-of-the-art performance in few-
shot learning tasks. Meta-SR [16] enables super-resolution
for arbitrary scale factors by applying the Meta-Upscale
Module. We propose the use of meta-learning to achieve
robust results, even in the presence of unknown artifacts in
CIS RAW images.

Figure 2: DM scenario in real CIS. For example, in the case
of Q×Q CIS: (a) In low-light conditions, the Q×Q sensor
converts its pattern to either the (1) Quad or (2) Bayer mode
(pixel-binning), sacrificing resolution, and then performs
DM. (b) In normal conditions, the Q×Q sensor can either
re-mosaic the pattern to the Bayer mode and then perform
DM or directly perform Q×Q DM, with full resolution.

3. Deep Demosaicing for Each Non-Bayer CFA
3.1. Operating Principles of Non-Bayer Sensors

With the decreasing size of camera sensors, the physical
area of light captured by a pixel has been reduced. Con-
sequently, the introduction of non-Bayer sensors allows for
capturing more light. In case of Q×Q as an example, when
there is sufficient light, as scenario (3) and (4) in Fig. 2,
Q×Q sensors can handle the entire resolution with Bayer
DM (after ‘re-mosaicing’) and direct Q×Q DM. On the
other hand, especially in low-light conditions, Q×Q CIS
pixels have the advantage of using ‘pixel binning’ to en-
hance their light sensitivity and reduce the noise [65, 60],
sacrificing their resolution (but still acceptable), resulting
in clear image quality with reduced noise (shown as sce-
nario (1) and (2) in Fig. 2). Pixel binning is the merg-
ing of neighboring pixels in an image through summation
or averaging in ISP, typically done by the ISP after pixel-
readout. Quad DM or Bayer DM methods are specifically
required in such cases. In recent non-Bayer CIS, support-
ing diverse CFA pattern modes is crucial; however, using
separate DM networks for each pattern increases network
parameters, leading to a larger CIS chip area, and multiple
DM models require frequent switching, consuming more
memory and power in mobile environments. Our proposed
unified DM model handles all non-Bayer sensor patterns,
including standard Bayer sensors, providing effective so-
lutions for this issue. It offers flexibility for different CIS
product lines and CFA pattern modes, reducing product de-
velopment time with minimal fine-tuning required for spe-
cific product characteristics.

3.2. Data Synthesis for Demosaicing All CFAs

To train input images resembling real CIS RAW, we pro-
pose a data synthesis pipeline that generates realistic RAW-
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Figure 3: Overview of our realistic RAW image synthesis
pipeline for Bayer and Non-Bayer demosaicing. The r-CM
(reverse Color-related Mapping functions) towards RAW-
like synthesis consists of invertible linear operations that re-
late RGB color spaces.

like images. Using a high-quality sRGB dataset, we follow
the front-end of Fig. 3 to generate synthetic RAW-like im-
ages. This involves applying four reverse color-related map-
ping functions (r-CM) from the ISP chain, including color
tone degradation, inverse gamma correction, inverse color
correction, and inverse auto white balance correction func-
tions. We analyzed and adjusted the previous ISP chains,
resulting in a pipeline structure similar to previous meth-
ods. [51, 50, 44, 6, 57]. Using this method, we generate
RGB synthetic GT labels for demosaicing training. Further-
more, we add Gaussian and Poisson noise to simulate vari-
ous types of real noise [44, 13, 6, 57]. Each image is then
converted into a mosaic pattern for Bayer, Quad, Nona, and
Q×Q CFA, as depicted in the bottom row of Fig. 3. This
process generates the training inputs. The reverse color
mapping (r-CM) consists of linear operations and can be
easily "re-reversed" to obtain the original color mapping
(CM). CM generates final output images that resemble real-
istic images as perceived by humans. Our proposed data
synthesis pipeline considers demosaicing for both Bayer
and Non-Bayer patterns and incorporates a realistic noise
that combines Gaussian and Poisson noise. More detailed
information is Sec. S.1 in the supplementary material.

3.3. Domain Gap in Synthetic and Real CIS RAW

Synthetic data-trained models often struggle with real
data due to the domain gap issue, a persistent problem
in image restoration tasks [44, 6, 21]. The domain gap
arises from variations in sensor hardware characteristics
due to differences in circuit structure, manufacturing pro-
cesses, and component variations across CIS brands and
product lines. The upper image in Fig. 1(b) shows visual
artifacts in real CIS RAW, mainly caused by crosstalk ef-
fects [24, 25, 32] between inner and outer pixels (details in
Sec. S.2 in the supplementary). Moreover, unknown ar-
tifacts can emerge in different shooting environments and
vary across CIS types. To address this, we propose a meta-
learning method to minimize the domain gap, enabling the
effective handling of unexpected unknown artifacts.

4. Unified Deep Demosaicing for Multiple
Bayer and Non-Bayer CFAs

Fig. 4 displays the proposed single unified DM method
for all Bayer and non-Bayer sensor patterns (KLAP) and
its additional meta-learning during inference framework for
robustness (KLAP-M). In Step 1 as Fig. 4(a), our approach
augments the network capacity of the integrated model us-
ing the Two-stage Knowledge Learning [9] (TKL). This
maximize the effectiveness of the Adaptive Discriminative
filters for each specific CFA Pattern (ADP) discovered in
the subsequent step. In Step 2 as Fig. 4(b), we further en-
hance the UM using a small number of specialized network
kernels for each DM task. Lastly, as Fig. 4(c), we introduce
a meta-test framework that ensures robust DM output in the
presence of unknown artifacts.

4.1. Step 1: Two-stage Knowledge Learning

This step aims to train the unified DM model for all
CFAs using the two-stage knowledge learning [9] (TKL),
with independent DM models for each CFA (IMs). The
IMs, with the same network architecture, have indepen-
dent network parameters ({θi}ki=1) dependent on each CFA-
specific DM task (i), where k represents the total number of
tasks, which is 4 in our case. θum represents the network ar-
chitecture and its network parameters of UM. IM achieves
high performance as a specialized model for each task, but
requires a model k times larger than UM (θum).

First, we pre-train each individual IM based on
NAFNet [8] since its IMs outperform existing DM methods,
as shown in IMs’ comparison in Tab 1. Then, in the knowl-
edge collection (KC) stage, set the IMs specialized for each
CFA DM task as the teacher network and UM as the student
network to learn and collect knowledge from the teacher. In
the knowledge examination (KE) stage after KC, train only
using the student network and GT labels without guidance
from the teacher network. We applied TKL method to in-
crease the model’s capacity after feature-level guidance for
each CFA pattern, in order to maximize the effect of top
filter detection in the next step (see ‘TKL’ results in Tab. 1).

4.2. Step 2: Adaptive Discriminative Filters for each
specific CFA Pattern

Xie et al. [55] proposed FAIG, which can detect discrim-
inative filters of specific degradation. FAIG measures inte-
grated gradient (IG) [48, 49] between baseline and target
models. Inspired by FAIG and its application in another
domain [40], we applied CNN for Adaptive Discriminant
filters for each specific CFA Pattern (ADP) using the lever-
aged FAIG method. FAIG score is as follows : FSj =

FAIGj(θ
j
um, θji , xi), for multiple CFA filters i = 1, . . . , k

and kernel index j. Once the FAIG scores are computed,
they are then ranked in descending order. The top q% of
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Figure 4: The overview of our proposed unified DM model, Knowledge Learning-based demosaicing model for Adaptive
Pattern (KLAP) and KLAP with Meta-test learning (KLAP-M). KLAP consists of 2 steps: (a) two-stage knowledge learning
(TKL) for training baselines, (b) fine-tuning using Adaptive Discriminant filters for each specific CFA Pattern (ADP). (c)
KLAP-M employs meta-learning to reduce unknown artifacts in real RAW images during inference.

kernels are selected for each demosaicing process, with q
representing a fixed value between 0.5 and 5.

We propose ADP, implemented by the masks Mc that
are selected kernels using FAIG as illustrated in Fig. 4 and
defined as follows:

θjadp = θjum +

k∑
i=1

αiθ
j
i ∗M

j
i (1)

where j is kernel index, ∗ is point-wise multiplication, θjum
refers to the pre-trained integrated model in Step 1, and αi is
a coefficient for a specific CFA pattern and is set up either
as 1 or 0. Note that in a real non-Bayer CIS on a mobile
device, the pattern mode αi is determined by the mobile
AP after detecting the lighting conditions. Also θji is an
additional kernel for specific CFA pattern. The ratio q in
the mask is determined empirically to be 1%. For example,
the ratio of 1% in the mask is 1% for 4 demosaicing types,
our proposed method uses an additional 4% of the entire
network parameters as compared to the baseline UM. More
detailed information is in the supplementary Sec. S.3. Our
proposed KLAP, a combination of TKL and ADP, achieves
state-of-the-art performance in various CFA DM tasks by
replacing only relevant CNN kernels in UM from TKL.

4.3. Meta-learning during Inference

As shown in Fig. 4, we propose meta-learning during in-
ference (meta-test learning) to mitigate unknown artifacts
caused by sensor characteristics or shooting environments.

By performing a few network updates during inference,
this approach produces robust results. Our proposed meta-
learning during inference consists of pixel binning loss and
Noise2Self [4] (N2S) loss, one of the self-supervised de-
noising techniques. As mentioned in Sec. 3.1, pixel binning
compensates for resolution loss by increasing the light sen-
sitivity, thus reducing noise. Based on CIS domain knowl-
edge, we propose a self-supervised denoising method using
a pixel binning loss to remove unknown artifacts.

Lpix = |G(xJc , θadp)− U(G(m(xJc), θadp′))| , (2)

where x and Jc denote the CIS RAW data and mask used
by N2S, m and U represent average-based pixel-binning
operation and up-sampling operation, respectively. G is a
unified network structure and θadp is network parameters
of ADP. θadp′ is the initial network parameters that are not
updated.

Additionally, we apply modified N2S loss to maintain
robustness against noise (Poisson and Gaussian noise) that
may occur depending on the shooting environment and to
prevent blur caused by pixel binning loss:

LN2S = |G(xJc , θadp)J − xJ | (3)

where xJ and xc
J are represent independent images using

the mask scheme. Additional information about the pixel
binning loss and N2S loss can be found in the supplemen-
tary material.
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The total loss for meta-learning during inference is as
follows:

Ltotal = λpixLpix + λN2SLN2S (4)

where λpix and λN2S are used to balance different loss con-
ditions and is experimentally found through visualization.

5. Experimental Results
As stated in Sec. 3.2, we generate synthetic DF2K Bayer

and Non-Bayer CIS (DF2K-CIS) dataset, a combination of
two open source datasets, DIV2K [2] and Flickr2K [33].
The training set comprises 2,500 images, with a validation
set of 50 images and a test set of 1,000 images. Further-
more, we propose to use the DF2K-CIS test dataset with
strong noise to evaluate the effectiveness of our proposed
meta-test learning in generating robust results. The DF2K-
CIS strong noise test dataset comprises 200 images with
noise parameters four times larger than those used in train-
ing. Then, we evaluate our proposed meta-learning method,
KLAP-M, using 7 Q×Q CIS RAW images (48MP) with a
resolution of 8000×6000, Quad CIS RAW images [59] with
a resolution of 1200× 1600, and 3 Bayer CIS RAW images
(50MP) with a resolution of 8192 × 6144, all of which are
10-bit images captured directly by each type of CIS chip.
In the meta-test learning, KLAP-M is trained using the loss
function in Eq.(4) with λpix = 1 and λN2S = 0.02. Note
that Meta-test (KLAP-M) does not utilize IMs but instead
employs a unified model, and we conducted KLAP-M eval-
uations on each new full image for each sensor type. More
implementation details and demosaicing RAW results can
be found in the supplementary materials Sec. S.5 and S.6.

5.1. Results on Synthetic RAW Dataset

5.1.1 Comparison of Ablation Studies and KLAP with
Other Methods

Ablation study for KLAP. We perform ablation studies
on the proposed KLAP approach based on NAFNet [8], in-
cluding TKL and ADP, as shown in Fig. 4 (a) and (b), using
the DF2K-CIS test dataset. Tab. 1 summarized the perfor-
mance of PSNR (dB) and the number of parameters (Mil-
lion). Baseline UM is a simple integrated model trained
on all tasks, while IMs require 4 times more network pa-
rameters than Baseline UM. Baseline UM-Large (Baseline
UM-L) refers to a modified version of NAFNet [8] with in-
creased network blocks. In TKL and ADP in the table, each
step is independently applied to the baseline UM. TKL-to-
IM refers to the fine-tuned IMs after applying TKL.

Using TKL and ADP independently leads to only a
marginal improvement of 0.05 dB and 0.11 dB, respec-
tively, compared to Baseline UM. Our proposed KLAP
(TKL+ADP) further improved performance by 0.4 dB with
a slightly increased number of network parameters com-
pared to Baseline UM. Notably, Our KLAP achieved signif-

Table 1: Ablation studies and quantitative performance
comparison (PyNetQ×Q [10], Kim [27], Uformer [53],
Chen [9] and Li [30]) for KLAP (TKL+ADP) on DF2K-CIS
test dataset. PyNetQ×Q [10], Kim [27] and Uformer [53]
are independent models, while Chen [9] and Li [30] are
unified models. The methods highlighted in purple are
based on NAFNet [8]. Baseline-UM is a simple unified
model. TKL refers to the TKL-applied Baseline UM,
and ADP refers to the ADP-applied Baseline UM indepen-
dently. TKL-to-IM refers to the fine-tuned IM using TKL.
Avg. denotes mean of all CFA’s PSNR (dB), and Par. de-
notes the required number of parameters (Million).

Method Ba. Qu. No. QxQ Avg. Par.
PyNetQxQ [10] 37.08 37.38 36.65 36.44 36.89 4.2

Kim [27] 41.33 40.81 39.85 37.02 39.75 13.8
Uformer [53] 41.89 41.19 40.60 40.74 41.11 83.0

IM 42.18 41.80 41.14 41.42 41.64 68.4
TKL-to-IM 42.36 41.89 41.58 41.60 41.86 68.4

Baseline UM 41.90 41.40 41.03 41.09 41.35 17.1
Baseline UM-L 41.95 41.44 41.08 41.13 41.40 19.4

Chen [9] 41.43 40.89 40.54 40.49 40.84 28.7
Li [30] 38.28 38.08 38.23 36.94 37.88 7.6
TKL 41.89 41.44 41.11 41.15 41.40 17.1
ADP 42.06 41.50 41.14 41.16 41.46 17.8

KLAP (Ours) 42.25 41.75 41.42 41.41 41.71 17.8

icantly higher performance than Baseline UM-L (41.71dB
vs. 41.40dB) with fewer parameters (17.8M vs. 19.4M). In
addition, fine-tuning each IM with pre-trained TKL resulted
in a notable improvement compared to the original IMs, at-
tributed to the inclusion of contrastive learning loss in TKL.
Our proposed KLAP method significantly improves demo-
saicing performance for all CFAs with small parameters.

Comparisons among other unifying methods. We
evaluate the performance of our KLAP with NAFNet [8]
on a DF2K-CIS test dataset and summarize the results in
Tab. 1 in terms of PSNR (dB) and the number of parame-
ters. We use the official codes provided by the authors of
Airnet [30] and Chen [9]. The Chen [9] method uses the
MSBDN-based TKL method. Despite a slight increase in
network parameters by 0.7M (about 4%) in NAFNet, our
KLAP yields significantly improved performance by 0.4 dB
compared to the IM method. Notably, our KLAP yields the
highest PSNR among all-in-one methods [9, 30] while us-
ing smaller network parameters compared to existing meth-
ods applied to NAFNet networks. Fig. 5 shows DM results
on synthetic datasets for visual comparisons. We adjust CM
in Sec. 3.2 for better visualization. The images on the 1st
to 4th rows are input synthetic RAW images and their DM
outputs of UM, Chen [9], Li [30], and our KLAP are on the
2nd, 3rd, 4th, 5th column of Fig. 5, respectively. This shows
that our KLAP outperforms other state-of-the-art unifying
methods on DF2K-CIS test datasets.
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Figure 5: Comparison of demosaiced results (top) and their difference maps (bottom) on the synthetic RAW (DF2K-CIS)
test set produced by different methods. The PSNR (dB) values displayed in the top-left corner are for the entire image. As
shown, our proposed KLAP demonstrates the best performance. Note that CM is applied to the DM outputs for visualization.

5.1.2 Performance and Selected Filter Locations

To demonstrate the superiority of FAIG [55] over ran-
dom selection, we evaluate various mask selection strate-

Figure 6: Performance comparisons among different filter
location selections (0%, 0.1%, 0.5%, 1%, 3%, and 5%, re-
spectively) for UM with ADP: Random selection method
and FAIG adjusting ADP on DF2K CIS test dataset.

gies in our ADP method on synthetic datasets with both
Bayer and non-Bayer patterns. The mask selection ratios
are set to 0.1%, 0.5%, 1%, 3%, and 5%. After TKL, we add
adaptive network kernels in proportion to the q ratio. Two
mask selection methods are investigated: random selection
and the FAIG method introduced in Sec. 4.2. Fig. 6 summa-
rizes our results, indicating that our ADP outperforms ran-
dom filter selection, underscoring the effectiveness of se-
lecting discriminative filters for each CFA DM task. This
implies that discriminative filters can be defined as task-
specific filters, rather than randomly selected filters.

5.1.3 Analysis of Robustness in Strong Noise

To assess KLAP-M’s robustness, we evaluate it on the
DF2K-CIS ‘strong noise’ test dataset (4 times larger noise
parameters than the training set) and present the results in
Tab. 2. KLAP exhibits slightly better performance than ex-
isting methods, and with KLAP-M, we observe an average
improvement of 1.8 dB in PSNR with just 10 iterations.

5.2. Results on Real CIS RAW

We evaluate the performance of our KLAP with meta-
learning on a real CIS RAW dataset and present the results
in Fig. 7. The number of iterations for meta-learning is fixed
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Figure 7: Qualitative DM results on the real CIS RAW. Note that KLAP with meta-test learning (KLAP-M) shows robust
performance in real CIS RAW, despite of existence of sensor-generic unknown artifacts. Note that CM is applied to the DM
outputs for visualization.

Table 2: Performance comparisons among different meth-
ods to assess robustness on the DF2K-CIS test dataset with
strong noise. The noise parameters used here are four times
larger than those used in the training, and KLAP-M em-
ploys a fixed number of 10 meta-test iterations.

CFA Chen [9] Li [30] KLAP KLAP-M
Bayer 32.60 31.61 32.98 33.32
Quad 32.48 31.58 32.93 35.41
Nona 32.44 31.64 32.88 35.06
Q× Q 32.45 31.38 32.86 35.41

Figure 8: Ablation study of KLAP-M. The comparison
shows the effect of each component in meta-test learning.

at 45. Note that CM (as mentioned in Sec. 3.2) is applied
to the inference outputs after DM model inference solely
for better visualization. In the Bayer case, our method, as
well as Chen [9] and Li [30]’s methods, show robust re-
sults on real data. However, In the case of demosaicing
Q×Q, Chen and Li’s methods are unable to alleviate ar-
tifacts, while our method significantly mitigates resulting
artifacts during inference by reducing domain gap through
meta-learning. Fig. 8 shows the ablation study of KLAP-M
and demonstrates superior performance compared to other
method combinations. Note that the Bayer output is an
image that has been squared by 0.7 from the original out-
puts for visual comparison purposes. We represent the two

Q×Q output images, with their pixel values (range of 0 to 1)
cubed, to compare the artifact mitigation performance with
other models. More demosaicing RAW results can be found
in the supplementary materials S.6

5.3. Limitations

Deep learning-based DM models for CIS can be lim-
ited by specialized circuits with embedded AI accelera-
tors. Thorough HW design validation, considering power,
performance, and silicon area (PPA), is crucial for on-
sensor implementation. Nonetheless, our unified demosaic-
ing model for multiple CFAs is a significant first step to-
wards practical CIS applications.

6. Conclusion
Our proposed method employs knowledge distilling and

task-specific kernels to demosaic multiple CFAs, integrat-
ing a meta-testing framework for efficiency and robustness,
resulting in low computational complexity, resilience to
unknown artifacts, and high-quality demosaiced images.
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