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Figure 1: Generated images from in-the-wild sounds. We propose an novel approach to generate realistic images from wild sounds.

Our model is capable of representing wild sounds as images without large paired datasets of sound and image.

Abstract

Representing wild sounds as images is an important but

challenging task due to the lack of paired datasets between

sound and images and the significant differences in the

characteristics of these two modalities. Previous studies

have focused on generating images from sound in limited

categories or music. In this paper, we propose a novel ap-

proach to generate images from in-the-wild sounds. First,

we convert sound into text using audio captioning. Sec-

ond, we propose audio attention and sentence attention to

represent the rich characteristics of sound and visualize

the sound. Lastly, we propose a direct sound optimiza-

tion with CLIPscore and AudioCLIP and generate images

with a diffusion-based model. In experiments, it shows that

our model is able to generate high quality images from wild

sounds and outperforms baselines in both quantitative and

qualitative evaluations on wild audio datasets.

1. Introduction

Sound is one of the most important senses for humans,

along with vision. Its dynamic and time-changing charac-

teristics make it a more rich and complex modality than

text or image [21]. Therefore, generating corresponding

images given sounds has many applications such as back-

ground picture generation used in movies and visualization

[45] and explanation of sound to help people with hearing

impairment [3]. However, because of differences in modal-

ities and the lack of paired datasets between sound and im-

age, representing wild sounds as images is a challenging

task. For these reasons, previous studies [12, 20, 22, 37, 42]

have generated images within limited sound categories or

through music. But generating images in limited sound cat-

egories has limitations in representing the wild sounds. It is

difficult to represent the complex sounds of multi-domain.

Music is composed of elements such as melody and rhythm

and contains rich information [15], but it is fundamentally

different from wild sounds that encompass diverse environ-

ments and multi-domains. In addition, the quality of images

generated from sound by previous studies [12, 37, 42, 43] is

significantly inferior compared to that of text-guided image

generation models [29, 32, 33].

To solve these problems, we propose a novel approach

that uses a pre-trained Audio Captioning Transformer

(ACT) [23] and a diffusion-based model called Stable Dif-

fusion [32]. Unlike previous studies [12, 21, 42] that at-

tempted to generate images from sound by mapping it into

limited categories such as dogs or humans, we describe

sounds in greater detail by converting them into audio cap-

tions by using the ACT [23] model. Then, we generate im-
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ages using a pre-trained Stable Diffusion [32] model. This

approach address the differences in modalities and enables

high-quality image generation from a sound without requir-

ing large paired training datasets between sounds and im-

ages.

However, since our purpose is to represent the rich and

dynamic characteristics of wild sounds in images, simply

generating images from audio captions is not sufficient.

Therefore, we propose a novel approach to address this is-

sue. Firstly, we propose to exploit audio attention. Au-

dio attention is a value of probability used by the ACT [23]

model to generate an audio caption. We first use this audio

attention to represent the rich and dynamic characteristic of

sound as an image. Secondly, we introduce sentence atten-

tion to emphasize objects from the generated audio caption.

To visualize sound, it is important to consider not only the

characteristics of the sound, but also to emphasize the ob-

jects in the sound within it.

Furthermore, we propose direct sound optimization to

optimize images further for corresponding sounds. We gen-

erate a latent vector from audio caption with CLIP [27] text

encoder, and initialize it with audio attention and sentence

attention to get a sound optimized latent vector. After that,

we generate an image with Stable Diffusion using the la-

tent vector as a conditioning vector, and optimize it through

AudioCLIP [11] similarity and CLIPscore [13]. Through

this process, we address the modality gap between audio

and image and are able to tackle the challenging problem of

generating realistic and dynamic images from wild sounds.

In summary, our contributions are as follows:

• We propose a novel approach that uses audio caption-

ing and diffusion based text-to-image model to gener-

ate a high quality image without large paired datasets

between sounds and images.

• We propose audio attention and sentence attention to

generate images that represent the characteristics of

multi-domain and time-varying dynamic sounds. In

addition, we introduce direct sound optimization with

CLIPscore and AudioCLIP similarity for further en-

hancement.

• In experimental results, our model is able to generate

faithful and high quality images from in-the-wild input

sounds and outperforms baselines in both quantitative

and qualitative evaluations.

2. Related work

Text-guided Image Generation Text-gudied image

generation has been widely covered along with the progress

in image synthesis. Previous works [5, 18, 24, 29, 30, 32,

33] used diffusion [14] model, transformer [4, 40], and VQ-

VAE [9, 39] to synthesize high quality images and adopted

ViT [7], T5 [28], and mostly CLIP [27] for the understand-

ing of the high-dimensional text and image data. In our

work, we tackle audio conditional image synthesis with sta-

ble diffusion [32] as it can handle diverse conditioning in-

puts and is also easily accessible.

Sound-guided Image Generation There have been

many studies [12, 20, 22, 37, 42, 44] that generate im-

ages from sounds. Wan et al. [42] used a conditional GAN

model to generate images from sounds for 9 categories, with

the image resolution of 64×64. They used SoundNet [2]

for the sound dataset and crawled images from the inter-

net to create a paired dataset of 10,701 sound-image pairs

for training. Wav2clip [43] extends CLIP [27] in the au-

dio dimension and performs contrastive learning using au-

dio, image, and text. The model represents audio features

from audio, image and text and use the results as input to

VQGAN-CLIP [5] to generate images that visualize the au-

dio. Other past studies [12, 20, 37] generate images from

bird sounds and music. One of the representative exam-

ples of generating visual information from music informa-

tion is TräumerAI [15]. TräumerAI analyzes music, extracts

features, maps them onto the feature space of visual infor-

mation, and generates videos using StyleGAN [16] model.

However, these have limitations in generating images from

wild sounds because the generated images are limited to

specific categories. To address this problem, we propose

a novel approach with audio attention, sentence attention,

and direct sound optimization, and, to the best of our knowl-

edge, we are first to use the diffusion-based model to gener-

ate high quality images from wild sounds.

Sound-guided Image Manipulation A study [21] was

also conducted to map sound, text, and image informa-

tion into a single space by extending the CLIP [27] model

which mapped text and image information to a single fea-

ture space. In the proposed method, a latent vector based

on a sound feature is generated and fed into the Style-

GAN2 [41] model to generate an image. While this method

utilizes the semantic information of sound, single domain

mapping makes it difficult to manipulate images generated

from wild sounds.

3. Method

In this section, we introduce our novel approach to rep-

resent wild sounds as images. Our model consists of two

stages as shown in Figure 2. In the first stage, Figure 2 (a),

we initialize Winit from input audio using Audio Caption-

ing Transformer (ACT) [23], involving audio caption, audio

attention and sentence attention. In the second stage, Fig-

ure 2 (b), we generate images with Stable Diffusion [32] by

inputting Winit and text latent z, and optimize Winit for

realistic sound characteristics.

7161



Figure 2: Overall architecture of our model. Our model consists of two stages. Stage (a) is the step of initializing the W

vector with attentions, and Stage (b) is direct sound optimization and image generation process.

3.1. Audio Captioning

Previous studies [12, 21, 42] have generated images by

mapping sounds into limited categories. However, these ap-

proaches may result in the loss of the rich characteristics of

the sound; it will map the sound of ”a person walking on a

beach with waves” to an image of either waves or a person.

To address this issue, we transform sound into audio caption

rather than mapping them into a limited category so that one

gets more information from sound than from a single label.

In this paper, we use a pre-trained ACT [23] model for au-

dio captioning, which has a vanilla transformer [40] struc-

ture and was trained on the Audiocaps [17] dataset. Initial

weights of the encoder are initialized with the weights of

pre-trained Deit [38] and the encoder was pre-trained with

Audioset [10] audio tagging task. By generating audio cap-

tion from sound, we use richer information for visualiza-

tion, such as multi-domain and actions, that cannot be pro-

vided with single labels.

3.2. Attentions and Positional Encoding

Audio Attention The generated audio captions have

more information than single labels, but may not be able

to represent the rich intensity and dynamic characteristics

of sound. For example, ”laughing loudly” is different from

”laughing a little”, and ”thunder from afar” and ”thunder

from close up” are different. We propose a novel approach,

called audio attention, which can effectively represent these

features of sound. We use the value of probability, used by

the decoder of the ACT model to generate the audio caption

as audio attention. It is unique to each sound and allows

better representation of the sound than audio captions. For

example, if the sound of thunder is given as an input, the au-

dio caption would generate ”Thunder is striking very close”.

As the sound of thunder gets louder, the value of ”Thun-

der” in the audio attention would also increase accordingly.

Through this process, we are able to effectively represent

the rich and dynamic characteristics of sound through im-

ages.

Sentence Attention We generate audio captions from

sound and use audio attention to represent sound charac-

teristics as images. However, in order to visualize sound,

it is important not only to represent the characteristics of

sound, but also to emphasize the object in the sound. For

example, if the input sound is the sound of a person laugh-

ing loudly, audio attention will focus more on the laughter

sound than on the person. However, since we need to repre-

sent the object ’person’ as an image, we require additional

approach. We propose sentence attention that emphasizes

nouns in the audio caption. It is a probability that a word

in the sentence is a noun. In this paper, we use FLAIR [1]

model to calculate the probability that each word in the au-

dio caption is a noun. By using sentence attention, we can

emphasize the object in the sound, which greatly facilitates

the visualization of sound.

Positional Encoding We empirically find that it is ben-

eficial to use positional encoding to optimize attentions to

the text embedding space. After trials, we use Equation 1 to

compute the positional encoding P of audio attention.

P =
1

2 + e2−0.5x
(1)

3.3. Initializing Winit vector

We generate an Winit vector with audio attention, sen-

tence attention and positional encoding. First, we apply po-

sitional encoding to audio attention. Second, add sentence

attention and audio attention. In this process, in order to em-
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phasize the object, we multiply the noun of audio attention

by a weight λa to relatively increase the weight of the sen-

tence attention (we set λa = 0.1 after experiments). Finally,

after tokenizing audio caption, reshape Winit to the shape

of audio caption token. Figure 2 (a) shows the process of

initializing Winit vector along with Equations 2, 3, 4 where

t is the audio caption, S is a function that extracts sentence

attention from audio caption t, P is the positional encoding

function, a is the audio given as input, A is a function to

extract audio attention from audio a, Wn is for noun and

Wwn is for non-noun. We use the Winit vector to generate

a realistic image that represents the dynamic characteristics

of sound.

Wn = S(t) + λaA(a)n + P (A(a)n) (2)

Wwn = S(t) +A(a)wn + P (A(a)wn) (3)

Winit = Reshape(Stack(Wn,Wwn)) (4)

3.4. Image Generation

Let G be the image generation model that takes text em-

bedding as an input. We use one of the current state-of-the-

art diffusion models called Stable Diffusion [32] as G. We

use its pre-trained model with LAION-5B [36] to generate

real images optimized for open domain sound. We encode

the audio caption into latent vector z in the text embedding

space using the CLIP [27] text encoder. After initializing

the Winit vector, we multiply the latent vector z to get a

new latent vector zn. The model generates an image Iinit
with zn as input:

Iinit = G(Winit � z) (5)

where � is element-wise multiplication.

3.5. Direct Sound Optimization

We generate an image by inputting a new latent zn
into Stable Diffusion [32]. We are inspired by Style-

CLIP [25] and perform direct sound optimization using

CLIPscore [13] between image and audio caption and Au-

dioCLIP [11] similarity between audio and image. Our total

loss is as follows:

Ltotal = λaCLIPLaCLIP +λCLIPLCLIP +λL2LL2 (6)

LaCLIP is the term of similarity between the input audio

a and the generated image I . LCLIP indicates the similarity

between the generated image I and the audio caption t. We

maximize these two losses. LL2 is the L2 norm of the latent

vector z generated by the audio caption t and the new latent

vector zn. Additionally, we augment the image generated

by the new latent vector zn with VQGAN-CLIP [5] data

augmentation method. In order to focus on the nouns part

Figure 3: Process of direct sound optimization. When

initializing latent z with attentions, we optimize in the blue

area, whereas without using attention, we optimize in the

yellow area. To solve the problem of local minimum and

to represent the rich features of sound, attentions are neces-

sary.

of the audio when generating the image, we divide Winit

into nouns Wn and without nouns Wwn. In the direct sound

optimization step, the Wn is optimized with a higher learn-

ing rate because of local minimization problem. By using

this, we get more natural results from audio captions and

audio. Equation 6 is the loss used in direct sound optimiza-

tion and Figure 3 shows this process.

4. Experiments

4.1. Datasets

To effectively evaluate image generation performance

from wild sounds, we use audio captioning datasets [8, 17]

in a sound-guided image generation task for the first time.

The datasets used in the experiments are as follows:

Audiocaps [17] is a paired dataset between sound in the

wild and text that labels about 50k of audio data in Au-

dioset [10]. The dataset contains human-annotated captions
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Dataset

Audiocaps Clotho Urban8K Multi-ESC50

Model CLIPscore↑ IS↑ CLIPscore↑ IS↑ IS↑ IS↑ Yolo↑

Wan et al. 0.5298 2.52 0.5411 2.35 2.05 1.95 0.00

W2c-vqgan 0.5249 6.69 0.4649 6.71 4.91 5.55 0.07

Ours 0.6580 17.03 0.5875 17.47 6.30 6.51 0.7857

Table 1: Quantitative evaluations. We compare our method with baselines on wild

audio datasets. IS is Inception score [35]. Yolo is YOLO score.

Wan et al. W2c-vqgan

Audiocaps 95.10% 90.26%

Clotho 96.00% 93.46%

Urban8K 94.70% 87.90%

Multi-ESC50 96.00% 94.80%

Table 2: Pairwise comparison with

baseline models in human evalua-

tion. Each cell lists the percentage

where our result is preferred over the

baseline models.

and various multi-domain sounds. We use the test set con-

sisting of a total of 957 audio files for both qualitative and

quantitative evaluations.

Clotho [8] is a dataset for audio captioning consisting of

4,981 wild audio files of 15 to 30 seconds duration and

24,905 captions. We use the test set consisting of a total of

1,045 audio files for both qualitative and quantitative evalu-

ations.

Urbansound 8K [34] is a dataset for sound classification,

consisting of 8,732 audios in 8 classes. To visualize sounds,

we exclude abstract classes, and we use 400 audios from a

total of 4 classes (dog barking, children playing, car horn,

and gun shot) for both qualitative and quantitative evalua-

tion.

Multi-ESC50 Wild sounds may contain multi-domain and

have domains that change over time. We composed 700 au-

dio files by concatenating two classes of sounds from the

ESC50 [26] dataset, excluding abstract classes. It consists

of a total of 7 classes. Three classes have two objects, and

four classes consist of object and background. Each class

consists of a total of 100 sounds. For example, we com-

bined baby cry class and laughing class.

4.2. Baselines

We use Wan et al. [42], which generates images from

sound, and W2-vqgan, which generates open-domain im-

ages with VQGAN [5] through the representing sound fea-

tures proposed in Wav2CLIP [43], as baselines. We train

the Wan et al. model for 9 classes with paired datasets be-

tween sounds and images on SoundNet [2], as described

in their paper. This was because paired datasets between

sounds and images in open domains are difficult to obtain.

The W2c-vqgan is a model that uses Wav2CLIP and VQ-

GAN [5] pre-trained with ImageNet [6].

4.3. Evaluation Metrics

There is no metric available to directly evaluate the sim-

ilarity between sound and image. Therefore, we propose to

evaluate the performance of sound-to-image synthesis mod-

els indirectly using CLIPscore [13], Inception score [35]

and YOLO score:

CLIPscore [13] is a metric that evaluates the similarity

between text and images. In this paper, we calculate the

score between the audio captions in ground-truth of each

dataset [8, 17] and the generated images from wild sounds.

In the case of UrbanSound8K and Multi-ESC50, CLIPscore

could not be calculated because there was no ground truth

audio caption available.

Inception score [35] is a metric used to evaluate the quality

and diversity of the generated images.

YOLO score To evaluate whether there is an object in the

image that matches the sound or not, we use an object de-

tection model Yolo v5 [31].

4.4. Implementation Details

We used a single NVIDIA A100 80G for our experi-

ments, and performed 10 steps of direct sound optimiza-

tion using the Adam [19] optimizer with λaCLIP = 0.9,

λCLIP = 1.0, λL2 = 0.01 and set the learning rate for Wn

to 0.01 and learning rate for Wwn to 0.001. We used a

PLMS sampler and we performed the DDIM step 40 times.

Our model and W2c-vqgan have an image resolution of

512×512, while Wan et al. [42] has an image resolution

of 64×64. More detail can be found in the supplementary

material.

4.5. Comparisons with the baselines

4.5.1 Quantitative Evaluation

We quantitatively evaluate the similarity between sound and

generated images on the four datasets. We compare the

performance of our model with baseline models, Wan et

al. [42] and W2c-vqgan [43]. As shown in Table 1, our

model shows a significant CLIPscore [13] improvement

compared to the baseline models on the wild sound datasets

(Audiocaps [17] and Clotho [8]). In the Yolo score evalua-

tion of object matching between the given sounds and gen-

erated images, while the baseline showed a very low score,

our model achieved 78.57%, outperforming the baseline by

a significant margin. Also, our model outperforms the base-

line models by a large margin in Inception score [35] on

all datasets. These results demonstrate that our model gen-

erates high-quality images optimized for sound, surpassing
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Figure 4: Comparison of sound-guided image generation result. Given audio inputs, we generate images using our

models and baselines [42, 43]. Text is ground-truth (GT) audio caption of audio datasets [8, 17]. Generated samples here are

randomly chosen.

baseline models on all datasets. It is also noteworthy that

evaluations on Clotho, Urbansound 8K, and Multi-ESC50

are zero-shot and thus they show the strong performance of

our model for even zero-shot setting.

4.5.2 Qualitative Analysis

Because the automatic metric cannot comprehensively eval-

uate the quality of generated images from sounds, we con-

ducted a side-by-side human evaluation study on Amazon

Mechanical Turk. We use a total of 300 audio files from

three datasets, randomly sampling 100 audio files from each

dataset. We recruit 30 participants for each study. In each

study, participants listened to a sound and were asked to

select one of two images generated by different models.

Participants answer the following questionnaire: Listen to

the following audio and choose the most appropriate image.

We randomly swap the images generated from baseline and

our model to remove bias. As shown in Table 2, the per-

centage of participants who chose our model to be more

suitable when comparing between our model and Wan et

al. [42] is 95.10% in Audiocaps, 96.00% in Clotho, 94.70%

in Urban8K and 96.00% in Multi-ESC50. When comparing

our model with W2c-vqgan [43], the results show a similar

trend to Wan et al., and the participants select W2c-vqgan

model slightly higher than Wan et al. when compared to our

model. In all experiments, a large portion of participants

chose generated image by our model as the best. In addi-

tion, as shown in Figure 1, 4, our model generates realistic

images of detailed objects and scenes but W2c-vqgan and

Wan et al. generate abstract images on wild audio datasets.

Specifically, W2c-vqgan generates abstract images of birds,

bees, and the sky when sound of “birds chirping and bee

buzzing” are given as input, whereas the images generated

by Wan et al. are difficult to interpret in terms of the corre-

spondence between sound and image. These results indicate

that our model better represents sound as images compared

to the baseline models and demonstrate a significant im-

provement in image quality performance. More generated

samples of our model and baselines are included in supple-

mentary material.

4.6. Impact of Magnitude of the Sound

Altering images based on the magnitude of sound is one

of the methods to demonstrate the rich characteristics of

sound in a sound-to-image task [42]. We also investigate

the impact of sound amplitude on the resulting image by

amplifying the sound two and three times. As shown in

Figure 5, we observe that the images became more exagger-

ated as the sound become louder. These results demonstrate

that our model generates richer and more relevant images

depending on the sound.

4.7. Expansion of Sound Modality

Our model can expand the sound modality by combining

it with text modality, as we use a pre-trained text-guided

image generation [32] model. As shown in Figure 6, we
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Figure 5: Generated images by different amplitudes of

sounds. 2 times means the sound amplitude is doubled, and

3 times means it is tripled compared to the original sounds.

Text is ground-truth audio caption of audio datasets [8, 17].

Figure 6: Generated images by combining sound and

text modality. We generate images by using text and sound

as inputs.

observe the generation of an image describing “a car driv-

ing in the rain” when inputting the text “An engine revving

and then tires squealing” and sound of “Wind is blowing

and heavy rain is falling and splashing.”. This allows us to

leverage the advantages of both rich sound modality and the

ability of text modality to specify objects concretely.

5. Ablation Study

We provide ablations with respect to our model on Au-

diocaps [17] and Multi-ESC50 with wild sounds and multi-

object sounds. We conducted human evaluation to evalu-

ate the similarity between sound and the generated images

from a human perspective. We compared our model with 5

ablation models, including a model without attentions and

direct sound optimization (w/o all), a model without all at-

tentions (w/o attns), a model without audio attentions (w/o a

attn), a model without sentence attentions (w/o s attn), and

a model without direct sound optimization (w/o opt). All

experimental environments are the same as in Section 4.5.

Dataset

Audiocaps Multi-ESC50

Model CLIPscore↑ IS↑ IS↑ Yolo↑

w/o all 0.6538 16.13 5.80 0.4186

w/o attns 0.6563 16.57 6.24 0.6914

w/o s attn 0.6573 16.63 6.32 0.7285

w/o a attn 0.6564 16.75 6.46 0.7243

w/o opt 0.6581 16.00 6.15 0.7200

Ours 0.6580 17.03 6.51 0.7857

Table 3: Quantitative evaluations. We compare our

method with ablation models on wild audio datasets. IS is

Inception score [35]. Yolo is YOLO score.

Audiocaps Multi-ESC50

w/o all 63.46% 70.30%

w/o attns 60.93% 64.60%

w/o a attn 59.20% 60.10%

w/o s attn 58.40% 58.30%

w/o opt 64.60% 62.00%

Table 4: Pairwise comparison with ablation models in

human evaluation. w/o attns is model without all atten-

tions. w/o a attn is model without audio attention. w/o s

attn is model without sentence attention. Each cell lists the

percentage where our result is preferred over the baseline

models.

Ablation: Attentions and Optimization We compare

our model and w/o all model. W/o all model does not

have attentions and direct sound optimization and gener-

ates images by inputting simply audio captions generated

by the ACT [23] model into Stable Diffusion [32]. Table 3

shows that our model achieves better performance than the

w/o all model. Furthermore, on the Multi-ESC50 dataset,

the Yolo score for the w/o all model was 41.86%, show-

ing a significant difference compared to our model’s score

of 78.57%. In the human evaluation, as shown in Table 4,

the percentage of participants who chose our model to be

more suitable between our model and w/o all is 63.46% in

Audiocaps [17] and 70.30% in Multi-ESC50. As shown

in Figure 7, when given the input of the sound of “a man

speaks as paper crumples”, our model generates both a man

and paper, while w/o all model does not generate the man.

These results indicate that our model generates higher-

quality sound-optimized images in the eyes of human ob-

servers and represent more faithful to the input sounds com-

pared to the model without all.

Ablation: Direct Sound Optimization To analyze the

impact of Direct Sound Optimization (DSO) on the perfor-

mance of our model, we conduct an ablation study by con-

structing a model (w/o opt) that excludes DSO and eval-

uating its performance on datasets. Table 3 shows that

the model without DSO lower scores than our model on

datasets except CLIPscore on the Audiocaps. In addition,
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Figure 7: Ablation study on all attentions and direct

sound optimization. Ours(w/o all) is a model that does not

have both attentions and direct sound optimization. Text is

ground-truth audio caption of audio datasets [17].

Figure 8: Ablation study on direct sound optimization.

Ours(w/o opt) is a model that does not have direct sound

optimization but includes attentions. Text is ground-truth

audio caption of audio datasets [17].

as shown in Table 4, in the human evaluation, more than

half of the participants answer that the images generated by

our model are more suitable for the sound than those gen-

erated by the model without DSO. As shown in Figure 8,

when given the sound “Cats meowing loudly and then a

male voice”, both our model and the model without DSO

generate images of a cat and a male, but our model gener-

ates an image that is more optimized for the sound and has

higher quality in the details compared to the w/o opt model.

These results demonstrate that DSO allows the latent z to

better optimize the generated images for the sound and im-

proves the quality of the detailed parts in the images.

Ablation: All Attentions To analyze the impact of the

attentions on the performance of our model, we conduct

an ablation study by constructing a model (w/o attns) that

excludes attentions and evaluating its performance on all

datasets. As shown in Table 3, the model without attentions

shows lower scores compared to our model. Furthermore,

we conduct a human evaluation to compare the images gen-

erated by the model without attentions and our model. More

than half of the participants answer that the images gener-

ated by our model were more suitable for the given sound

compared to the images generated by the model without

attentions. Additionally, one might have a concern that

Direct Sound Optimization (DSO) could potentially elim-

inate the functionality of attentions by optimizing the im-

ages for the sound. However, as shown in Figure 9, even

with DSO, we observe that the details of the image changes,

but the main content of the image still remains. For exam-

ple, given sound of “motorcycle starting then driving away”,

our model generates motorcycles and people, but the w/o at-

tns model generates engines. Even after going through the

DSO process, the main contents of the image, such as mo-

torcycles and engines, maintain and only the details will be

changed. Therefore, we observe that initializing the Winit

vector via attentions is very important in representing wild

sound. Figure 3 shows the detailed process.

Ablation: Audio Attention To further analyze the im-

pact of audio attention, we conducted an ablation study on

a model without the audio attention (w/o a attn). We use

the value of probability, used by the decoder of the ACT

model to generate the audio caption as audio attention. It

allows for the representation of the dynamic characteristics

and rich intensity of wild sounds. According to Table 3, our

model slightly outperformed the w/o a attn model on Au-

diocaps and showed a 5% higher Yolo score on the Multi-

ESC50. Furthermore, as shown in Table 4, 59.20% of users

in the human evaluation preferred our model over the w/o a

attn model on Audiocaps. As shown in Figure 10 (a), our

model can emphasize and visually represent audio features

such as intensity of thunder or rain sounds. However, the

w/o a attn model without audio attention, sometimes fails to

adequately represent these rich audio characteristics. These

results indicate that audio attention sufficiently represents

the various characteristics of sound.

Ablation: Sentence Attention We employed sentence

attention to represent objects contained within the audio as

images. To analyze the impact of sentence attention, we

compared our model to a model without sentence attention

(w/o s attn). According to Table 3, our model outperformed

w/o s attn model on all datasets. In the Yolo score of Multi-

ESC50, our model scored 78.57%, which is approximately

5% higher than w/o s attn model score of 72.85%. More-

over, 58.30% of participants in the human evaluation pre-

ferred our model over the w/o s attn model. As seen in

Figure 10 (b), our model can accurately generate objects

associated with the sound when given a multi-class sound
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Figure 9: Ablation study on all attentions. Ours(w/o attns) is a model that does not have attentions but includes direct

sound optimization. Text is ground-truth audio caption of audio datasets [17].

Figure 10: Ablation studies on each attention. Ours(w/o

a attn) is a model without audio attention. Ours(w/o s attn)

is a model without sentence attention.

as input. However, the w/o s attn model sometimes failed to

generate accurate objects present in the multi-object sounds.

This result indicates that sentence attention assists in gener-

ating appropriate objects in images from sounds.

Through these ablation studies, we analyze the effects of

the attentions and DSO on our model and observe that us-

ing two components better represents wild sounds as images

and overcomes the difference in modalities.

6. Conclusion and Limitation

We propose a novel approach that uses audio captioning

and diffusion-based text-guided image generation model

[32] to generate a high quality image with open domain

from wild sounds. We propose audio attention and sentence

Figure 11: Failure cases of image generation with our

model.

attention to represent the dynamic properties of sounds in

the wild and leverage CLIPscore[13] and AudioCLIP[11]

similarities to optimize generated images. As a result, our

model successfully generates faithful and high-quality im-

ages from wild sound, and outperforms baselines in both

quantitative and qualitative evaluations. Nevertheless, our

model depends on audio captioning [17] and text-guided

image generation model [32] so we could find some cases

where our model fails, such as Figure 11. However, we need

neither large paired datasets between sounds and images nor

training of the model, and we can still generate high-quality

images of open domain from wild sounds.
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