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Abstract

Graph convolutional networks (GCNs) are the most
commonly used methods for skeleton-based action recog-
nition and have achieved remarkable performance. Gen-
erating adjacency matrices with semantically meaningful
edges is particularly important for this task, but extract-
ing such edges is challenging problem. To solve this,
we propose a hierarchically decomposed graph convolu-
tional network (HD-GCN) architecture with a novel hier-
archically decomposed graph (HD-Graph). The proposed
HD-GCN effectively decomposes every joint node into sev-
eral sets to extract major structurally adjacent and distant
edges, and uses them to construct an HD-Graph contain-
ing those edges in the same semantic spaces of a human
skeleton. In addition, we introduce an attention-guided hi-
erarchy aggregation (A-HA) module to highlight the dom-
inant hierarchical edge sets of the HD-Graph. Further-
more, we apply a new six-way ensemble method, which
uses only joint and bone stream without any motion stream.
The proposed model is evaluated and achieves state-of-
the-art performance on four large, popular datasets. Fi-
nally, we demonstrate the effectiveness of our model with
various comparative experiments. Code is available at
https://github.com/Jho-Yonsei/HD-GCN.

1. Introduction

Human action recognition (HAR) is a task that catego-
rizes action classes by receiving video data as input. HAR is
used in many applications, such as human–computer inter-
action and virtual reality. Recently, several RGB-based and
skeleton-based HAR methods have been proposed with the
development of deep learning technology. However, RGB-
based methods [31, 29] cannot robustly recognize human
actions because they are strongly influenced by environ-
mental noises such as background color, brightness of light,
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Figure 1. The framework of HD-GCN. The input skeleton is ap-
plied with various edge sets through a hierarchically decomposed
graph (HD-Graph). The red lines are the edges included in the
corresponding hierarchy edge set. The network highlights the ma-
jor edge sets through the attention map. The darker the color of
red line, the more highlighted the edge set, and dotted lines denote
unconnected edges.

and clothing. Therefore, methods using skeleton modal-
ity [35, 24, 36, 26, 5, 4, 18, 2, 15] have attracted attention
because they are not affected by these noises. These meth-
ods recognize action by receiving 2D or 3D coordinates of
major human joints as time-series inputs.

Recent approaches [24, 18, 4, 2] have adopted graph
convolutional networks (GCNs) to apply human-skeleton
graphs to convolutional layers. However, existing GCN-
based methods [35, 24, 25, 4, 2] have the following lim-
itations. (1) With the widely used handcrafted graph, the
relationships between distant joint nodes are not identified
since they use only the relationships of PC edges in the hu-
man skeleton. Although the graph with PC edges has a se-
mantic significance, the graph with only PC edges suffers
from long-range dependency problem as they are heuris-
tically fixed. However, for humans to recognize actions,
relationships between structurally distant joints as well as
between adjacent joints are strongly correlated. Although
several methods [24, 2] have attempted to solve such limita-
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tion by training attention-guided learnable graphs, they still
use [35]’s handcrafted graph with their learnable graphs.
Moreover, as the element values of [35]’s graph are more
dominant than those of the learnable graphs, they do not ad-
equately highlight the relationships between distant nodes.
(2) Some recent methods [35, 24, 4, 18] risk falling into
suboptimality by simply aggregating the edge features and
ignoring the contribution of each edge, thus incompletely
recognizing which edges are significant for each skeleton
sample. For example, in the case of a ‘squat down’ action,
the interactions between the legs and arms should be high-
lighted.

Motivated by these limitations, we propose a hierarchi-
cally decomposed graph convolutional network (HD-GCN)
with a hierarchically decomposed graph (HD-Graph) and
attention-guided hierarchy aggregation (A-HA) module. In
addition, we present a six-way ensemble method to effec-
tively utilize our HD-Graph. The framework of our pro-
posed methods is shown in Fig. 1 for ‘squat down’ action.

The HD-GCN incorporates GCNs with our HD-Graph,
which identifies the relationships between distant joint
nodes in the same semantic spaces (e.g. right and left hands,
right and left feet). The same semantic spaces are formed
by moving out step by step from the Center of Mass (CoM)
node of the graph. For example, if belly is a CoM node,
the first semantic space includes the belly node, the next
space includes the chest and hip nodes, and the subsequent
space includes the left and right shoulder and the left and
right hip nodes. The nodes in the same semantic space are
defined as hierarchy node set. To detect the relationships
between distant joint nodes, network should have large re-
ceptive field. The proposed HD-Graph contains both mean-
ingful adjacent and distant joint nodes by connecting all
the nodes in neighboring hierarchy node sets and identi-
fies the connectivity between those nodes for large receptive
field. We adopt rooted tree-like structure to effectively rep-
resent every edges. We apply a spatial edge convolution
(S-EdgeConv) layer to consider semantically close edges
which cannot be captured by the HD-Graph for each sam-
ple. To create the S-EdgeConv layer, we borrow the struc-
ture of [33], which is widely used in 3D point clouds.

To consider the contribution of each edge set, the process
of selecting the dominant hierarchical information should
depend on the action data sample to give proper attention to
the most dominant edge sets. For example, in order to rec-
ognize the “clapping” action, a hierarchy edge set that in-
cludes both hands must be emphasized. To tackle this issue,
we propose an attention-guided hierarchy aggregation (A-
HA) module, which consists of two submodules: represen-
tative spatial average pooling (RSAP) and hierarchical edge
convolution (H-EdgeConv). A scaling bias problem occurs
if we use the spatial average pooling module without any
node extraction process because each node has a different

number of adjacent nodes. To prevent this, we apply RSAP,
which includes a representative node extraction process that
triggers features after the pooling layer to represent each
node. To effectively manage hierarchical features obtained
by RSAP, we apply a hierarchical edge convolution (H-
EdgeConv) layer. The H-EdgeConv treats each hierarchi-
cal feature as a graph node and identifies which hierarchical
features should be highlighted via the Euclidean distance in
feature space. With the RSAP and the H-EdgeConv, our
model successfully determines which hierarchy edge sets
and joints should be emphasized among the input features.

The existing ensemble method uses four-stream data
composed of the joint, bone, joint motion, and bone mo-
tion streams, which are the original skeletal coordinates,
spatial differential between joint coordinates, and temporal
differential of joint, and temporal differential of the bone,
respectively. Most existing ensemble methods [25, 2] use
additional motion data, but models that solely utilize mo-
tion data exhibit relatively inferior performance. To address
this problem, we present a new method, a six-way ensem-
ble. We apply this ensemble method by setting three HD-
Graphs with joint and bone stream data. Each graph has
different CoM nodes to extract features of different seman-
tic spaces (see Appendix).

We conduct extensive experiments on four bench-
mark action recognition datasets: NTU-RGB+D 60 [22],
NTU-RGB+D 120 [16], Kinetics-Skeleton [11], and
Northwestern-UCLA [30].

Our main contributions are summarized as follows:

• We propose a hierarchically decomposed graph (HD-
Graph) to thoroughly identify the significant distant
edges between the same hierarchy node sets.

• We propose an attention-guided hierarchy aggregation
(A-HA) module to highlight the key edge sets with rep-
resentative spatial average pooling (RSAP) and hierar-
chical edge convolution (H-EdgeConv).

• We use a new six-way ensemble method for skeleton-
based action recognition with HD-Graphs that have
different center of mass (CoM), which outperforms
regular ensemble without any motion data.

• Our HD-GCN outperforms the state-of-the-arts on four
benchmarks for skeleton-based action recognition.

2. Related Work
2.1. Action Recognition with GCNs

In skeleton-based action recognition, human skeletal
data are represented by a graph with joint nodes. Most re-
cent approaches use GCN-based methods [35, 24, 5, 18, 2]
with [35]’s graph structure, which identifies physical con-
nections in the human skeleton. Those GCN-based meth-
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Figure 2. (a) Structure of HD-Graph with physically connected (PC) edges. The human skeleton graph is decomposed into a rooted
tree, where PC edges are included in hierarchy sets. (b) Structure of HD-Graph with fully connected (FC) edges. Edges between all
nodes in the same semantic space are obtained by connecting all the nodes in adjacent hierarchy edge sets. Blue and red lines stand for PC
and FC edges, respectively.

ods perform remarkably better than methods using hand-
crafted features [7, 8, 13, 20, 21]. They extract the spatial
features representing the relationships between physically
connected edges among human skeleton, and they outper-
form other methods by using them to construct the major
relationships between joint nodes in the human skeleton.
In particular, [25] and [2] propose adaptive attention-based
graph structures to learn the sample-wise topological fea-
tures. However, they might fall into suboptimality because
they do not consider the physical prior of the human skeletal
structure and allow too much flexibility in network training.
To address this issue, we introduce a novel HD-Graph, ref-
erencing the known tendencies of human perception

2.2. Attention Modules for Action Recognition

The attention mechanism is an essential element for
constructing a deep neural network. Using recent at-
tention modules [10, 34], networks emphasize important
information along a specific dimension. For example,
Hu et al. [10] applies channel-wise attention, and Woo et
al. [34] applies both channel-wise and spatial-wise atten-
tions. These techniques are divided into two categories
for GCNs: (1) attention-based graph construction [24, 2]
which is a method of forming topologies using a non-
local block [32] or customized correlation matrices, and (2)
spatial-wise, temporal-wise, channel-wise attention, which
are commonly used attentions in [25, 27], and several other
networks.

3. Methodology
In Sec. 3.2, we detail the HD-Graph convolution to

solve the problems of the conventional human-skeleton
graph [35], which includes only PC edges. We also explain
the A-HA module in Sec. 3.3 to highlight dominant hier-
archical features. In Sec. 3.4, we replace the widely used
four-stream ensemble method [25, 2, 4] with a six-way en-
semble without motion data streams. Finally, we introduce
the HD-GCN, which uses these proposed methods.

3.1. Preliminaries

Notations. The spatio-temporal graph for human skeleton
is represented by G(V, E), where V and E denote the joint
and edge groups, respectively. Physically connected edges
and fully-connected edges used in Sec. 3.2 are denoted as
PC-edges and FC-edges, respectively.

Graph Convolutional Networks. 3D time-series skele-
tal data are represented by X ∈ R3×T×V , where V and
T are the number of joint nodes and the temporal window
size, respectively. GCN’s operation with input feature map
Fin ∈ RC×T×V is as follows:

Fout =
∑
s∈S

ÂsFinΘs, (1)

where S = {sid, scf , scp} denotes graph subsets, and sid,
scf , and scp indicate identity, centrifugal, and centripetal
joint subsets, respectively. Θs denotes the pointwise con-
volution operation. The normalized adjacency matrix Â is
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initialized as Λ− 1
2AΛ− 1

2 ∈ RNS×V×V , where Λ is a di-
agonal matrix for normalization and NS = 3.

3.2. Hierarchically Decomposed Graph

Most recent methods have adopted the handcrafted graph
proposed by Yan et al. [35], but the HD-Graph is derived
through a newly presented method. Fig. 2 shows the frame-
work of the HD-Graph.

Decomposition into a Rooted Tree. The first step is to
decompose the graph with PC edges and construct a rooted
tree. To decompose a given skeleton into the tree, we need
to determine a CoM node, which allows nodes in the same
hierarchy edge set to exist in the same semantic space. For
example, nodes in the same semantic space, such as elbow
and knee joints, or hands and feet, must exist in a hierar-
chy node set. After choosing the CoM node, the graph is
converted into a rooted tree, which includes the hierarchi-
cal information of the graph, and defines the directed adja-
cency matrix

−→
AHD ∈ RNL×V×V with NL hierarchy layers

for NH hierarchy edge sets:

−→
AHD =

[
E(H1 → H2), · · · , E(HNH−1 → HNH

)
]
, (2)

where Hk denotes the k-th hierarchy node set and E(Hk →
Hk+1) denotes a set of edges from Hk to Hk+1. NL and
NH are the number of hierarchy layers and hierarchy edge
sets, respectively, and NL = NH − 1. However,

−→
AHD

includes only the directed centrifugal edges. For consis-
tency with existing methods, all the reverse-directed edges
from the leaf nodes of the rooted tree in Fig. 2 to the CoM
node must be reflected in the adjacency matrices to cover
the centripetal edges. In addition, to get the features of
the nodes themselves, the identity edges for each hierarchy
node set must be considered. Thus, the adjacency matrices←→
A HD ∈ RNL×NS×V×V are defined as follows:

←→
A HD =

[
E1, E2, · · · , ENL

]
, (3)

Ek = E(Hk ∪Hk+1︸ ︷︷ ︸
sid

, Hk → Hk+1︸ ︷︷ ︸
scp

, Hk+1 → Hk︸ ︷︷ ︸
scf

), (4)

where Ek denotes the concatenation of the three edge sub-
sets of S = {sid, scp, scf} and sid, scp, scf indicate the
identity, centripetal, and centrifugal edge subsets, respec-
tively. Through this construction policy, we create a skeletal
graph with bidirectional and identity edges.

Fully Connected Inter-Hierarchy Edges. Decomposed
graph

←→
A HD has a different number of edge sets from the

conventional graph, but the edges are all the same. To iden-
tify the relationships between major distant joint nodes, es-
pecially those in the same semantic space, we connect all
nodes between neighboring hierarchy node sets. In addi-
tion, since [35]’s graph contains the connectivity of only
PC edges, not distant relationships, the receptive field is
very small with this sparse graph. Applying our fully con-
nected (FC) edges to the rooted tree, the graph becomes
denser and makes the receptive field larger than before with
more meaningful distant connectivity as shown in Fig. 2 (b).
Then, the adjacency matrices are normalized with degree
matrices for training stability and we leave all elements of
the matrices as learnable parameters for training adaptabil-
ity.

HD-Graph Convolution. Our HD-Graph convolution in-
cludes four parallel branch operations: three graph convo-
lution through HD-Graph and an additional EdgeConv [33]
operation. To reduce the computational complexity, a linear
transformation is applied to all four operations. For three of
these operations, our method performs a subset-wise GCN
operation in the same way as [35, 24] for each hierarchy
edge set with three edge subsets. However, rather than sum-
ming the output values for each subset as in Eq. (1), we
concatenate these output values to the channel dimension:

F
(k)
HD = ∥

s∈S

{←→
A

(k)
HD;sΦ(Fin)Θ

(k)
s

}
, (5)

where F(k)
HD denotes the output feature map of the HD-Graph

convolution and function Φ denotes a linear transformation
with parameter W ∈ RC′×C . Note that ∥ is a concatenation
operation.

Although our HD-Graph defines more meaningful node
relationships than conventional graph, it may still not be
able to extract sample-wise key relationships that reflect
the similarities between all nodes in the feature space. To
improve this limitation, we adopt EdgeConv [33] as the
remaining operation, which is used for extracting graphi-
cal features through local neighborhood graphs in the fea-
ture space. With spatial EdgeConv (S-EdgeConv), our net-
work extracts sample-wise node connectivity, which the
HD-Graph does not capture. For our method, S-EdgeConv
initially takes the average pooling as the temporal dimen-
sion for computational efficiency. Local graphs with local
edges are then formed via k-nearest neighbor (k-NN) based
on the Euclidean distance, and the local edges as well as
identity edges based on the graphs are aggregated via train-
able parameters Wedge ∈ RC′×2C′

. For the deep neural
network, physically close edges are reflected to the initial
shallow layers, but as they become deeper, the relationship
between semantically similar edges in the feature space are
identified and learned. Our whole GCN process is shown in
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Figure 3. HD-Graph convolution operation block with an A-
HA module. The left side shows an operation for one hierarchy
edge set, and the right side shows an operation block that concate-
nates the results for NL edge sets and applies A-HA. The lower
part of the figure is EdgeConv, where the EdgeConv subscript in-
dicates the feature space to extract graphical features. The × and
· operations denote matrix and element-wise multiplication.

Fig. 3 and computed as follows:

FHD ←
NL∑
k=1

[
F

(k)

HD∥ z
(k)
V

(
1

T

T∑
t=1

Φ(Fin)

)]
, (6)

where zV denotes the S-EdgeConv operation.
All four branch outputs are concatenated to the channel

dimension, with all four computed in the same way for NL

hierarchy edge sets. Due to the inherent characteristics of
skeletal data, the number of joint nodes included in each
dataset is different, and, consequently, the number of hierar-
chy sets is different. Therefore, we adopt an addition policy
for NL hierarchy-wise outputs and a concatenation policy
for NS subset-wise outputs. In this way, the dimensionality
is maintained, and the common hierarchy-wise aggregation
policy is followed for every skeletal dataset by adding all
the outputs for different numbers of hierarchical sets.

3.3. Attention-Guided Hierarchy Aggregation

The HD-Graph convolution uses an aggregation policy
of adding all the hierarchy-wise outputs. However, because
each data sample has relationship between specific major

edges, we propose an attention-guided hierarchy aggrega-
tion (A-HA) module, which applies a weighted-sum pol-
icy to the hierarchy dimension with proper attention to the
hierarchy-wise outputs. The framework of the HD-Graph
convolution with the A-HA module is shown in Fig. 3.

Representative Spatial Average Pooling. Our A-HA
module is applied to feature map FHD ∈ RC×NL×T×V af-
ter the HD-Graph convolution. The first step is to extract the
temporal frame with the highest score on FHD. RSAP, Ψ,
is then applied, which is preceded by the extraction of rep-
resentative nodes in each hierarchy layer. If spatial average
pooling is applied without this extraction process, scaling
bias occurs because the number of edges connected to each
node is different. Therefore, representative node extraction
is essential to obtain an appropriate score for attention with-
out any bias. After the extraction, spatial average pooling is
applied to hierarchy-wise outputs. Our pooling function Ψ
is as follows:

Ψ(F
(k)

HD) =
1

Nk +Nk+1

∑
v∈Hk∪Hk+1

max
t

(
F

(k)

HD(v)
)
, (7)

where Nk denotes the number of vertices in the Hk set.

Hierarchical Edge Convolution. After the RSAP layer,
NL hierarchy-wise features in attention feature map M
have not yet shared their information with each other. We
treat all NL features as nodes on a graph to learn and re-
flect similarities in the hierarchical feature space. To apply
this process, representative features of these nodes are fed
into EdgeConv [33], and the similarities of those nodes are
learned based on the Euclidean distance. We also include
the self-loop shown in the bottom section of Fig. 3 so that
the node’s own features can be reflected. Our attention map
M operates as follows:

M = σ

(
zL

(
∥

k∈L

{
Ψ
(
F

(k)
HD

)}))
, (8)

where zL and σ denote H-EdgeConv and the sigmoid func-
tion, respectively.

The attention map M obtained is multiplied by the HD-
Graph convolution output feature map FHD, and the output
feature map Fout is obtained through a weighted sum to the
hierarchy axis as shown in Fig. 3. Similar to S-EdgeConv
in Sec. 3.2, The H-EdgeConv method incorporates the con-
cept of hierarchical edge sets in a physically proximal man-
ner in earlier layers, while in the deeper layers, it empha-
sizes the presence of semantically similar edge sets. This
approach highlights different hierarchical edge sets for each
sample and enables the model to learn meaningful represen-
tations that capture both physical and semantic properties of
the input data.
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Figure 4. The architecture of HD-GCN. HD-GCN receives the
skeleton sequence as input and obtains the class label through nine
GCN blocks, and an FC layer, and the softmax function.

3.4. Six-Way Ensemble

Shi et al. [24, 25] have applied a four-stream ensem-
ble method using streams for joints, bones, joint motion,
and bone motion. However, as the performances of motion
streams are relatively poorer than the performances of joint
and bone streams, we adopt an ensemble method with the
joint and bone streams without any motion streams. We use
three different HD-Graphs, and each graph is used for train-
ing with joint and bone streams. The three HD-Graphs have
different CoM nodes, which are chest, belly, hip nodes, re-
spectively. In other words, we train joint and bone streams
with HD-Graph with the CoM node of chest, and we train
the same when the CoM node is belly or hip node. As mod-
els with the three different graphs should be trained in dif-
ferent aspects, each of the graphs is composed of different
edge sets. For example, if the CoM node is belly, both thigh
edges and both upper arm edges are included in the same
edge set, whereas when the CoM node is chest, both thigh
edges and both forearm edges are included in the same edge
set. The details of our six-way ensemble are specified on
our Appendix.

3.5. Network Architecture

As shown in Fig. 4, we adopt [24] as our baseline net-
work architecture with a total of nine stacked GCN blocks.
The numbers of output channels for the blocks are 64, 64,
64, 128, 128, 128, 256, 256, and 256. Each block con-
tains a residual connection [9] and is divided into a spatial
module, in which the GCN operation proceeds, and a tem-
poral module, which includes the temporal convolutions.
Our method use the temporal module of [2], whose baseline
module is [18, 28]. This module consists of four branch op-
erations. Two are dilated temporal convolutions with kernel
size five and dilation one and two, respectively. The remain-
ing branch operations are pointwise convolution and max
pooling with kernel size three. Our spatial module consists
of an HD-Graph convolution operation and an A-HA mod-
ule, as introduced in Sec. 3.2 and Sec. 3.3. After passing

through all GCN layers with attention to the hierarchy-wise
features, the network compresses the feature map through
the global average pooling layer and classifies the action
sample through the softmax function.

4. Experiments
4.1. Datasets and Experimental Settings

NTU-RGB+D 60. NTU-RGB+D 60 [22] is a large
dataset used in skeletal action recognition. It contains
56,880 skeleton action samples, performed by 40 different
participants and classified into 60 classes. The authors of
this dataset recommend two benchmarks. (1) Cross-Subject
(X-Sub): 20 of the 40 subjects’ actions are used for training,
and the remaining 20 are for validation. (2) Cross-View (X-
View): Two of the three camera-views are used for training,
and the other one is used for validation.

NTU-RGB+D 120. NTU-RGB+D 120 [16] is a dataset
in which 57,367 new action samples are added to the NTU-
RGB+D 60 dataset. It contains a total of 114,480 skeleton
action samples over 120 classes, performed by 106 differ-
ent subjects. The authors of this dataset recommend two
benchmarks: (1) Cross-Subject (X-Sub): 53 of the 106 sub-
jects’ actions are used for training, and the remaining 53 are
used for validation. (2) Cross-Setup (X-Set): Of the 32 se-
tups, data with even setup IDs are used for training, and the
remaining data with odd IDs are used for validation.

Kinetics-Skeleton. The Kinetics-Skeleton dataset is de-
rived from the Kinetics 400 video dataset [11], utilizing the
OpenPose pose estimation [1] to extract 240,436 training
and 19,796 testing skeleton sequences across 400 classes.
The dataset restricts the number of skeletons per time step to
two and eliminates skeletons with lower confidence scores,
ensuring high-quality sequences for human action recogni-
tion and pose estimation research.

Northwestern-UCLA. The Northwestern-UCLA skele-
ton dataset [30] contains 1494 video clips over 10 classes.
Each action is captured through three Kinect cameras with
different camera views and is performed by 10 subjects. We
adopt the same protocol as NW-UCLA: Two of the three
camera-views are used for training, and the other one is used
for validation.

Experimental Settings. In our experiments, we
adopt [24] as the backbone. The SGD optimizer is
employed with a Nesterov momentum of 0.9 and a weight
decay of 0.0004. The number of learning epochs is set to
90, with a warm-up strategy [9] applied to the first five
epochs for more stable learning. We set the learning rate
to decay with cosine annealing [19], with a maximum

10449



Methods Publication Motion Stream
NTU-RGB+D 60 NTU-RGB+D 120 Kinetics-Skeleton Northwestern

X-Sub (%) X-View (%) X-Sub (%) X-Set (%) Top-1 (%) Top-5 (%) UCLA (%)

ST-GCN [35] AAAI 2018 ✗ 81.5 88.3 70.7 73.2 30.7 52.8 -
2s-AGCN [24] CVPR 2019 ✗ 88.5 95.1 82.5 84.2 36.1 58.7 -
SGN [36] CVPR 2020 ✓ 89.0 94.5 79.2 81.5 - - 92.5
AGC-LSTM [26] CVPR 2019 ✗ 89.2 95.0 - - - - 93.3
DGNN [23] CVPR 2019 ✓ 89.9 96.1 - - 36.9 59.6 -
Shift-GCN [5] CVPR 2020 ✓ 90.7 96.5 85.9 87.6 - - 94.6
DC-GCN+ADG [4] ECCV 2020 ✓ 90.8 96.6 86.5 88.1 - - 95.3
DDGCN [14] ECCV 2020 ✓ 91.1 97.1 - - 38.1 60.8 -
MS-G3D [18] CVPR 2020 ✗ 91.5 96.2 86.9 88.4 38.0 60.9 -
MST-GCN [3] AAAI 2021 ✓ 91.5 96.6 87.5 88.8 38.1 60.8 -
CTR-GCN [2] ICCV 2021 ✓ 92.4 96.8 88.9 90.6 - - 96.5
EfficientGCN-B4 [27] TPAMI 2022 ✓ 91.7 95.7 88.3 89.1 - - -
STF [12] AAAI 2022 ✗ 92.5 96.9 88.9 89.9 39.9 - -
InfoGCN (4-ensemble) [6] CVPR 2022 ✓ 92.7 96.9 89.4 90.7 - - 96.6
InfoGCN (6-ensemble) [6] CVPR 2022 ✓ 93.0 97.1 89.8 91.2 - - 97.0

HD-GCN (2-ensemble) ✗ 92.4 96.6 89.1 90.6 38.9 61.7 96.6
HD-GCN (4-ensemble) ✗ 93.0 97.0 89.8 91.2 40.3 63.0 96.9
HD-GCN (6-ensemble) ✗ 93.4 97.2 90.1 91.6 40.9 63.5 97.2

Table 1. Comparisons of the top-1 accuracy (%) against state-of-the-art methods on the NTU-RGB+D 60, 120, Northwestern-
UCLA, and Kinetics-Skeleton datasets. The orange and yellow cells respectively indicate the highest and second-highest value.

learning rate of 0.1 and a minimum learning rate of 0.0001.
For the NTU-RGB+D datasets, we set the batch size to
64 and use the data preprocessing method from [36]. For
Kinetics-Skeleton, the batch size is set to 128. In addition,
to overcome the absence of belly and hip nodes in the
Kinetics-Skeleton, we define the center of both hip joints
as CoM hip node, and the center of chest and the hip node
as CoM belly node, resulting in a total of 20 nodes. For the
Northwestern-UCLA dataset, we set the batch size to 16
and use the data preprocessing method from [5]. All our
experiments are conducted on a single RTX 3090 GPU.

4.2. Comparison with State-of-the-Arts Methods

Most recent state-of-the-art networks [25, 5, 4, 2] adopt
a four-way ensemble method, but we adopt the six-way en-
semble method described in Sec. 3.4.

We compare ours with state-of-the-art networks on three
datasets: NTU-RGB+D 60 [22], NTU-RGB+D 120 [16],
Northwestern-UCLA [30], and Kinetics-Skeleton [11].
Comparisons for each dataset are shown in Tab. 1. The
recognition performance of our HD-GCN has exceeded
the state-of-the-arts on every dataset without any motion
streams, as shown in Tab. 1. With our proposed en-
semble method, HD-GCN outperforms the state-of-the-art
and shows comparable performance to the 6-way ensemble
state-of-the-art using only 4-way ensemble method.

4.3. Ablation Study

In this section, we demonstrate the effectiveness of the
proposed HD-GCN. Performance is specified as the cross-
subject and cross-setup classification accuracy on the NTU-
RGB+D 120 [16] joint stream data.

Graph type Edges S-EdgeConv X-Sub (%) X-Set (%)

Conventional PC ✗ 83.5 85.4

HD-Graph
A PC ✗ 84.3 (↑ 0.8) 86.1 (↑ 0.7)
B PC ✓ 84.6 (↑ 1.1) 86.3 (↑ 0.9)
C FC ✗ 84.9 (↑ 1.4) 86.5 (↑ 1.1)
D FC ✓ 85.1 (↑ 1.6) 86.7 (↑ 1.3)

Table 2. Comparison of the conventional graph and four types
of HD-Graph.

Method H-EdgeConv X-Sub (%) X-Set (%)

Baseline ✗ 83.5 85.4

HD-GCN
w/o A-HA ✗ 85.1 (↑ 1.6) 86.7 (↑ 1.3)
w/ SAP ✗ 85.2 (↑ 1.7) 86.7 (↑ 1.3)
w/ SAP ✓ 85.4 (↑ 1.9) 87.0 (↑ 1.6)
w/ RSAP ✗ 85.5 (↑ 2.0) 87.0 (↑ 1.6)
w/ RSAP ✓ 85.7 (↑ 2.2) 87.3 (↑ 1.9)

Table 3. Comparison of various types of attention modules.
SAP denotes the spatial average pooling.

Hierarchically Decomposed Graph. To proceed with
the ablation study for HD-Graph, we set Yan et al. [35]’s
graph as the conventional graph. Here, we use the tempo-
ral convolution module of [18], as mentioned in Sec. 3.5,
to compare the performance of networks fairly with various
graphs. The experimental results are shown in 2.

We set the edges of the HD-Graph in different ways to
show a gradual performance increase according to the type
of graph. There are four main versions of HD-Graph, the
first of which is graph A containing only the PC edges.
Unlike the conventional graph with one edge set includ-
ing three fixed subsets, HD-Graph has a flexible number
of edge sets, each divided by hierarchy layers with three
subsets. Graph B is an extension of A, with the additional
operation S-EdgeConv. Graph C contains FC edges for NH

hierarchy node sets, and graph D is similar to C but includes
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Figure 5. Hierarchy-wise attention scores by A-HA for “Run-
ning” and “Kicking” class. Each score indicates the value of the
attention map M of the A-HA module.

S-EdgeConv. The HD-Graph with only PC edges performs
better than the conventional graph by a large margin, even
though they share the same edges. This proves that it is
meaningful to divide the joint nodes by hierarchy edge sets.
In addition, the HD-Graph with FC edges and S-EdgeConv
performs better for every datasets.

Attention-Guided Hierarchy Aggregation. To prove the
effectiveness of the A-HA module, we use a method to
change or remove specific parts of our attention module,
with the results shown in Tab. 3. Spatial average pool-
ing (SAP) simply averages along the spatial axis without
the representative node extraction process, which performs
worse than our RSAP. The poorer performance is due to
two factors: (1) scaling bias occurs because the number of
nodes in each hierarchy node set is different, and (2) atten-
tion through SAP does not represent the corresponding hi-
erarchy node set because it brings the average of the feature
vectors of all nodes, not a specific node set. Furthermore,
it performs better with H-EdgeConv, which recognizes each
hierarchy edge set as a graph node. This proves that because
the major edge sets are different for each data sample, it is
important to find and highlight edge sets with high similar-
ity based on the Euclidean distance through H-EdgeConv.

The results of the attention score M of our A-HA mod-
ule are shown in Fig. 5. These results show that our mod-
ule scores edge sets 4 and 5 higher for the “running” class,
which includes knees and feet, elbows and hands. For the
“Kicking” class, A-HA gives the highest score to edge set 3,
which includes shoulders and hips, followed by edge set 4
and 5. It is reasonable for human visual recognition that the
dynamically moving edge set 4, 5 are more important than
the stationary and barely moving edge set 3 when running

X-Sub (%) X-Set (%) GFLOPs # Param. (M)

DC-GCN [4] 84.0⋆ 86.1⋆ 2.74 3.45
MS-G3D [18] 84.9⋆ 86.8⋆ 5.22 3.22
CTR-GCN [2] 84.9 86.5⋆ 1.97 1.46
InfoGCN [6] 85.1 86.3 1.68 1.57

HD-GCN 85.7 87.3 1.60 1.68

Table 4. Comparison of complexity of the single-stream state-
of-the-arts. ⋆: results obtained by the released codes.

X-Sub (%) X-Set (%) GFLOPs # Param. (M)

CTR-GCN † [2] 88.9 90.6 7.88 5.84
InfoGCN † [6] 89.4 90.7 6.72 6.28
InfoGCN ‡ [6] 89.8 91.2 10.08 9.42

HD-GCN † 89.8 91.2 6.40 6.72
HD-GCN ‡ 90.1 91.6 9.60 10.08

Table 5. Comparison of complexity of the multi-stream state-
of-the-arts. †: 4-ensemble, ‡: 6-ensemble

rather than when kicking something.

Six-Way Ensemble. We use the ensemble method to
which three graphs with different CoM nodes are applied,
excluding motion streams. Tab. 1 shows that the HD-GCN
with 4-way ensemble outperforms the state-of-the-art [6] 4-
way methods with motion data and shows comparable per-
formance with the state-of-the-art 6-way method. In addi-
tion, when the 6-way ensemble with three different graphs
is applied to HD-GCN, it outperforms the state-of-the-art
methods. This proves that the features extracted with dif-
ferent CoM nodes are learned in different learning aspects.

4.4. Comparison of Complexity with Other Models

Although our model has multiple branch layers for mul-
tiple edge sets, it does not cause high complexity because it
precedes channel reduction layers. Comparisons of compu-
tational complexity with other models are shown in Tab. 4,
where the window size is fixed to 64. Our model shows
the best performance on NTU-RGB+D 120 joint stream by
a large margin even though the computational complexity
of our model is the lowest. For multi-stream ensemble, our
4-stream HD-GCN shows almost similar performance to 6-
stream InfoGCN [6] while having 3.68G fewer FLOPs and
2.70M fewer parameters as shown in Tab. 5.

5. Conclusions

In this work, we propose a novel hierarchically de-
composed graph convolutional network (HD-GCN) for
skeleton-based action recognition. We also propose a new
framework (HD-Graph) that replaces the existing frame-
work, decomposes all the joint nodes by hierarchy edge sets
and considers the connectivity between major distant nodes,
which is difficult to identify naturally. We also present an
effective attention module (A-HA) composed of representa-
tive spatial average pooling (RSAP) layer and hierarchical
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edge convolution (H-EdgeConv), which applies hierarchy-
wise attention for the HD-Graph. In addition, our HD-GCN
learns graph-wise features with different patterns through
a six-way ensemble method. We derive an effective feature
extractor by combining these three methods and empirically
verify its effectiveness. Our approach outperforms current
state-of-the-art methods on four benchmark datasets.
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