
INSTA-BNN: Binary Neural Network with INSTAnce-aware Threshold

Changhun Lee1 Hyungjun Kim2 Eunhyeok Park1 Jae-Joon Kim3

1 Pohang University of Science and Technology (POSTECH), Pohang, Korea
2 SqueezeBits Inc., Seoul, Korea 3 Seoul National University, Seoul, Korea

Abstract

Binary Neural Networks (BNNs) have emerged as a
promising solution for reducing the memory footprint and
compute costs of deep neural networks, but they suf-
fer from quality degradation due to the lack of freedom
as activations and weights are constrained to the binary
values. To compensate for the accuracy drop, we pro-
pose a novel BNN design called Binary Neural Network
with INSTAnce-aware threshold (INSTA-BNN), which con-
trols the quantization threshold dynamically in an input-
dependent or instance-aware manner. According to our
observation, higher-order statistics can be a representa-
tive metric to estimate the characteristics of the input dis-
tribution. INSTA-BNN is designed to adjust the thresh-
old dynamically considering various information, including
higher-order statistics, but it is also optimized judiciously
to realize minimal overhead on a real device. Our exten-
sive study shows that INSTA-BNN outperforms the baseline
by 3.0% and 2.8% on the ImageNet classification task with
comparable computing cost, achieving 68.5% and 72.2%
top-1 accuracy on ResNet-18 and MobileNetV1 based mod-
els, respectively.

1. Introduction
Deep neural networks (DNNs) are well-known for their

abilities across diverse vision tasks, e.g., image classifica-
tion [7, 13, 26, 27], object detection [14, 15, 24, 25], and se-
mantic segmentation [19, 21]. These DNNs usually achieve
excellent accuracy by using a large model, but the large
model having massive memory usage and computing cost
prevents us from deploying it on mobile devices having in-
sufficient resources. In order to minimize the computation
and memory overhead, network binarization is an appeal-
ing optimization because weights and activations are quan-
tized into 1-bit precision domain. Binary Neural Networks
(BNNs) can achieve 32× reduction in memory requirement
compared to their 32-bit floating point counterparts, and
most modern CPUs or GPUs can serve the binary logic op-
erations much faster than 32-bit floating point operations.

Figure 1. Instance-wise (a) mean, (b) standard deviation, and
(c) skewness of pre-activation from three different instances. The
percentage in each distribution represents the ratio of +1’s in bi-
nary activation when sign function is used as activation function
(threshold is 0). When observing one component (e.g. mean (µ)
for the (a) case), the other two (e.g. std (σ), skewness (γ)) are
matched to be as close as possible. The other two values are dis-
played on the top right of each subgraph.

However, BNNs usually suffer from accuracy degrada-
tion due to the aggressive data quantization. In spite of the
great efficiency of BNN, the accuracy degradation limits the
deployment of BNNs in real-world applications. Therefore,
a large number of techniques have been introduced to mini-
mize the accuracy degradation of BNNs focusing on weight
binarization [22, 23], shortcut connections [17], and thresh-
old optimization [12, 16, 29].

In BNNs, only two values (+1 and −1) are available for
activations. Therefore, the threshold of quantization that de-
cides the mapping to either +1 or −1 plays a critical role in
BNNs. Some of the previous works tried to train the thresh-
olds of the binary activation function to control the activa-
tion distributions via back-propagation, where the threshold
is fixed statically after the training [16, 29]. However, one

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17325



can easily observe that the per-instance activation is heavily
distorted depending on the input data (Fig. 1), even while
the batch-wise statistics are stabilized via batch normaliza-
tion. As shown in the figure, the per-instance statistics nu-
merically indicate the large distortion of pre-activation, and
the corresponding outputs have a heavy fluctuation of the
ratio of +1’s. In BNNs, static thresholds may not provide
the adequate threshold for each instance, thereby resulting
in sub-optimal results in terms of overall accuracy.

In this work, we propose a novel INSTA-BNN that calcu-
lates the thresholds dynamically using the input-dependent
or instance-wise information (e.g. mean, variance, and
skewness). The instance-aware threshold enriches the qual-
ity of binary features significantly, resulting in higher accu-
racy of BNNs. In addition, we provide a variant of Squeeze-
and-Excitation (SE) [8] with instance-wise adaptation as an
additional option that one can exploit for even higher ac-
curacy with extra parameters. The proposed modules are
extensively evaluated on a real device with a large-scale
dataset [6], and we provide a practical guideline for net-
work design that maximizes the benefit of INSTA-BNN
while minimizing the increased overhead of it. With the aid
of the guidelines, INSTA-BNN achieves higher accuracy
with a similar number of parameters/operations and latency
compared to previous works. We claim that the proposed
INSTA-BNN can be an attractive option for BNN design.

2. Related works
Network Binarization Network binarization can signif-
icantly reduce the size of a model and the compute cost
by reducing the precision of weights and activations to
1-bit. Hubara et al. [10] proposed to binarize both the
weights and activations of a model, and suggested to use the
straight-through-estimator (STE) [1] for binarization func-
tion. XNOR-Net [23] introduced the real-valued scaling
factor for binarized weights and activations to minimize the
quantization error. To increase the representational capa-
bility of a model, a real-valued shortcut was suggested in
Bi-real-net [17]. There are several more approaches to im-
prove the accuracy of binarized networks, such as exploit-
ing extra component [20, 30], new model structures [3, 17],
and advanced training techniques [11, 20, 22]. In most pre-
vious BNNs, binarization of weights and activations were
conducted with the Sign function:

xb = Sign(xr) =

{
+1, if xr ≥ 0

−1, if xr < 0
. (1)

In case of activations, Eq. (1) is also called the binary activa-
tion function. The xr indicates a real-valued pre-activation
value, and xb is a binarized (+1 and −1) activation value.
The value xr is compared with the threshold of the binary
activation function.

Threshold Optimization Several works proposed to
modify the thresholds of binary activation functions to
improve the accuracy of BNNs. ReActNet [16] pro-
posed the activation function with learnable threshold for
which channel-wise parameters were trained via back-
propagation. Although the proposed technique improved
the accuracy of BNNs, the learned thresholds were fixed af-
ter training so that the same thresholds were always used
for every input. Kim et al. [12] pointed out that back prop-
agation alone cannot train the thresholds to have an optimal
value. They demonstrated that the distribution of learned
thresholds strongly depended on the initial values and did
not deviate from the initial point much. While Kim et al.
showed that initializing the thresholds with small positive
values improved the accuracy of BNNs, they did not provide
how to find optimal threshold values analytically. In sum-
mary, previous methods which tried to find optimal thresh-
olds are sub-optimal, and all of them used the fixed thresh-
old values during inference, failing to consider instance-
wise statistical information of activation distributions.

3. Instance-Aware BNN
3.1. Importance of instance-wise threshold

Compared to full precision DNNs, BNNs are more sen-
sitive to the distribution of pre-activation values since the
binarized activations are constrained to either +1 or −1.
Fig. 1a shows the distribution of pre-activations for three
different images. Note that all three distributions are from
the same layer and channel of a model, and they are the out-
puts after the batch normalization layer. As shown in the
figure, the mean of each distribution has a non-zero value
because, even with batch normalization, the mean value of
activation depends on the distribution of the corresponding
input instance. However, the small mean drift in the pre-
activation results in a large difference of binarized activa-
tion. In Fig. 1a, while the two distributions (left and center)
have mean values that are relatively close to 0 (−0.23 and
+0.32), the ratio of +1’s shows a large difference (32% and
60%). The static threshold of BNNs, combined with the
insufficient expression capability, is not enough to generate
high-quality binary outputs adequately aware of the delicate
change of input data.

To address the aforementioned issue, we introduce a
novel module that determines the quantization threshold
considering the instance-wise information. Fig. 2a shows
the conventional block structure used in ReActNet [16]. To
use the channel-wise learnable thresholds, ReActNet modi-
fied the Sign activation function as follows:

xb =

{
+1, if xr ≥ α

−1, if xr < α
. (2)

Note that all the learnable variables used in this section are

17326



Figure 2. Convolution blocks and the proposed module structure
that uses the instance-wise mean information. (a) Binary convo-
lution block structure without instance-aware modules. (b) Binary
convolution block that contains the proposed module.

channel-wise variables.
While the parameter α was trained using back-

propagation in ReActNet, we propose to replace it with an
instance-aware threshold (TH) as follows:

xb =

{
+1, if xr ≥ TH

−1, if xr < TH
. (3)

The instance-aware threshold is updated using per-instance
statistical information, and we need to design an appropriate
module for it. The module should be simplified as much
as possible to minimize the computation/storage overhead,
but it should be able to reflect the key information of input
activation.

The most straightforward implementation is extracting
input data information and linearly combining it to update
TH . We validate the effect of instance-wise TH based on
the mean of activation, which has a critical impact on the ra-
tio of +1’s and −1’s, as shown in Fig. 1a. To maximize the
benefit of TH generation process, we utilize the difference
between the batch-wise statistics and instance-wise statis-
tics to see how much each instance deviates from the batch
statistics. To calculate the drift between the per-instance
mean and the mean over the entire dataset, we first normal-
ize the pre-activation values using the Batch Normalization
(BN) layer without applying the affine transformation. Af-
ter the normalization layer, the instance-wise mean is cal-
culated as follows:

x̃r =
xr − µ̂

σ̂
E[x̃r] =

1

H ×W

H∑
i=1

W∑
j=1

x̃r(i, j), (4)

where H and W are the height and width of the feature
map. Using the instance-wise mean information, we for-
mulate the instance-aware threshold as follows:

TH = α+ βE[x̃r] . (5)

87.23

87.32

87.14

87.02

87.09

86.80

86.41

86.2 86.4 86.6 86.8 87.0 87.2 87.4

α (RSign)

α + β×mean

α + β×mean + γ×var

α + β×mean + γ×sk

α + β×mean + γ×sk + δ×var

α + (β×mean + γ×sk)×var

α + β×E[x3]

Figure 3. Test accuracy of binary ResNet-20 based model on
CIFAR-10 dataset when different instance-wise statistic informa-
tion are used for thresholds. Various combinations of mean, vari-
ance (var), and skewness (sk) are evaluated.

The parameters α and β are learned via back-propagation
and jointly trained with model weights. In addition to the
learnable parameter α that is used in RSign (Eq. (2)) of Re-
ActNet, we use an additional scaling factor β which is re-
lated to instance-wise statistics. The proposed module is
shown in Fig. 2b.

We evaluate the effect of instance mean-aware thresh-
olds on the ResNet-20 based model trained on the CIFAR-
10 dataset. We compare the average accuracy of 6 runs
with different random seeds. As shown in the top two
rows in Fig. 3, the proposed instance mean-aware thresh-
old improves the accuracy by 0.39% compared to the input-
agnostic learnable threshold of RSign.

3.2. Importance of higher-order statistics informa-
tion

In the previous section, the simple instance-aware
threshold works successfully with the mean of activation.
However, we can easily identify that higher-order statis-
tics, e.g. variance and skewness of distribution, also well
describe the important characteristics of activation (Fig. 1b
and c). In this work, the skewness of data is estimated based
on Fisher’s moment coefficient of skewness [31]:

Skewness(X) = E

[(
X − µ

σ

)3
]

=
E
[
X3

]
− 3µE

[
X2

]
+ 3µ2E[X]− µ3

σ3

=
E
[
X3

]
− 3µσ2 − µ3

σ3
.

(6)

As shown in the Fig. 1b and c, even when the mean val-
ues are comparable, the characteristics of the binary acti-
vation could be highly varied depending on the variance or
skewness of data distribution. Especially the skewness of
distribution has been neglected so far, but it contains extra
information that is not captured by mean and variance val-
ues (Fig. 1c). Therefore, instance-wise TH module should
consider higher-order statistics jointly.

17327



Figure 4. Convolution blocks and the proposed module structures of INSTA-BNN. (a) Binary convolution block that contains the proposed
INSTA-Th and INSTA-PReLU modules. (b) INSTA-Th+ module structure with SE-like block. INSTA-Th+ can replace the INSTA-Th
module in the structure of (a). Pow(3) indicates cubic operation, x3.

In order to validate the importance of higher-order in-
formation, we modify TH (Eq. (5)) in a diverse way to
add the influence of variance and skewness information on
thresholds (Fig. 3). As expected, adding more statistical
information for the instance-aware threshold improves the
accuracy even further. When TH = α + (β × mean +
γ × skewness)× var, we could achieve 87.32% accuracy
which is about 0.9% higher than the baseline that uses Re-
ActNet’s learnable threshold.

While using more per-instance statistical information
improves accuracy, computing such information for each in-
stance requires a high computing cost. For example, calcu-
lating all of mean, variance, and skewness of pre-activation
for each instance and each channel is highly costly, incur-
ring long inference latency. Here we introduce a simple al-
ternative way to consider instance-wise mean, variance, and
skewness at the same time. First, we can re-write the Eq. (6)
as follows:

E
[
X3

]
= (Skewness(X))σ3 + 3µσ2 + µ3. (7)

We can see that the equation has information of mean,
variance, and skewness and produces similar accuracy
(87.23%) to the case that achieves the highest accuracy,
87.32% (Fig. 3). Therefore, we propose to use higher-order
E
[
X3

]
term instead of calculating all the mean, variance,

and skewness of the pre-activation distribution separately.
The proposed threshold can be expressed as:

TH = α+ βE
[
x̃3
r

]
xb =

{
+1, if x̃r ≥ TH

−1, if x̃r < TH
.

(8)

We name this threshold as INSTAnce-aware Threshold
(INSTA-Th). The INSTA-Th module is shown in Fig. 4a.

Figure 5. Comparison of proposed INSTA-Th and SE module. (a)
βE

[
x̃3
r

]
component of INSTA-Th. (b) SE module. Non-linear

functions are skipped for simplicity.

3.3. Squeeze-and-Excitation Module

Some of recent BNN works [20] used the Squeeze-and-
Excitation (SE) module [8] to recalibrate the channel-wise
magnitude based on a kind of instance-wise information.
Although the SE module and INSTA-Th may look similar
in that both of them use instance-wise information, there is a
notable difference. As shown in Fig. 5, the SE module uses
two fully-connected layers to assess the relative importance
among different channels. On the other hand, the proposed
INSTA-Th computes E

[
X3

]
value channel-wise and then

propagates the information to each channel independently.
Note that the INSTA-Th focuses on the difference between
batch-wise and instance-wise statistical information rather
than the difference between channels.

Since the proposed INSTA-Th module and the SE mod-
ule have different roles, the SE module can be combined
with our INSTA modules for additional accuracy improve-
ment. In Eq. (8), we modify the parameter α to be the output
of the SE-like module instead of the channel-wise learnable
parameter using back-propagation, as shown in Fig. 4b. We
replace the Sigmoid function in the original SE module with

17328



tanh function. To be more specific, we use the empirically
found 3∗tanh(x/3) to control the output range (Refer to Sec.
F of the supplementary material for more detail). In such a
way, we intend α to focus on inter-channel relationship and
βE

[
X3

]
to focus on instance-wise information. Note that

α is also an instance-aware variable in this case while it was
a fixed value in previous works as in Eq. (2). We name the
new threshold INSTA-Th+. While INSTA-Th+ requires
a larger number of parameters than INSTA-Th, it can be
clearly seen that using both INSTA-Th and SE-like mod-
ules improves the accuracy by a large margin (see Sec. 5.2).
Therefore, we leave it as an option to select either INSTA-
Th or INSTA-Th+ depending on the requirement for the ac-
curacy and parameter size.

3.4. Instance-aware PReLU

In recent works, additional activation functions such as
ReLU and PReLU were used in BNNs for intermediate real-
valued activations. ReActNet used additional learnable pa-
rameters for these PReLU layers (RPReLU) as well as the
Sign layers (RSign) as shown in Fig. 2a. In addition to the
INSTA-Th, we also propose replacing the learnable param-
eter (learnable shifts for x-axis) for RPReLU layers in Re-
ActNet with instance-aware alternatives. We left the y-axis
shift of RPReLU as it is. Fig. 4a shows the proposed IN-
STAnce-aware PReLU (INSTA-PReLU) which replaces
the PReLU. In the INSTA-PReLU, we constrain the out-
put range of βE

[
x̃3

]
. In case of the INSTA-Th, the output

range was not important since the end layer of INSTA-Th
was the Sign function. However, as the PReLU layer does
not constrain its output, extremely large values from the cu-
bic operation may cause an unrecoverable problem in the
network. Therefore, we used the additional tanh function to
constrain the output of the βE

[
x̃3

]
term. The computation

process of the modified PReLU layer is as follows:

x̃ =
x− µ̂

σ̂
THPR = α+ tanh(βE

[
x̃3

]
)

y =

{
x̃− THPR, if x̃ ≥ THPR

γ(x̃− THPR), if x̃ < THPR

.
(9)

Here, γ is a learnable slope parameter of the PReLU layer.
We can further control the output range of βE

[
x̃3

]
term by

replacing the tanh(x) function with the c∗tanh(x/c). We
empirically found that c=3 worked well, so we chose to
use 3∗tanh(x/3) for all other experiments. The effect of
INSTA-PReLU will be discussed in Sec. 5.4.1. Meanwhile,
the parameter α in INSTA-PReLU (Eq. (9)) can also be re-
placed by the SE-like module similar to the case in the pre-
vious section. We call the module as INSTA-PReLU+. In
the remainder of the paper, we refer to the proposed BNN
model as INSTAnce-aware BNN (INSTA-BNN), which
employs both INSTA-Th and INSTA-PReLU modules.

Layers using INSTA modules Top-1
Acc.(%)layer name conv2 x conv3 x conv4 x conv5 x

width 64 128 256 512
original

✓ ✓ ✓ ✓ 62.1
INSTA-BNN

INSTA-BNN
variants

✓ ✓ ✓ 62.1
✓ ✓ ✓ 61.8
✓ ✓ ✓ 61.7
✓ ✓ ✓ 60.9

✓ 61.1
✓ 60.6

✓ 60.6
✓ 60.2

Baseline 60.0

Table 1. Variants of INSTA-BNN that selectively use INSTA mod-
ules and their ImageNet validation accuracy comparison.

4. Practical guidelines for INSTA-BNN

Although INSTA-Th and INSTA-PReLU modules show
noticeable performance improvement (Sec. 5.2), the cubic
operations inside the modules cause non-negligible compu-
tational overhead. In this section, we introduce some tech-
niques that we used to reduce the latency overhead of the
proposed INSTA-BNN model while maintaining its benefit.

4.1. Selective use of the INSTA module

In most convolutional neural networks (CNNs), the fea-
ture size decreases and the number of channels (width) in-
creases in deeper layers. Meanwhile, the cubic operation
within the INSTA module is an element-wise multiplica-
tion and its cost is proportional to the layer’s feature size:
H×W×C. As a result, the shallower layers have a larger
cost for cubic operations, and the cost becomes smaller in
deeper layers. Therefore, in terms of the amount of com-
putation, it is more desirable to eliminate the cubic opera-
tion in earlier layers as far as accuracy is maintained. Ta-
ble 1 shows the accuracy comparison results for ResNet-18
based INSTA-BNN models in which the INSTA modules
are applied to selective layers. Interestingly, the use of IN-
STA modules at the deeper part of the model mainly ac-
counts for the accuracy improvement. When we apply IN-
STA modules to each block one by one, the results show a
clear correlation and lead to a similar conclusion. There-
fore, we can improve the accuracy of the model with rela-
tively small computational overhead by skipping the INSTA
modules for earlier layers.

4.2. Reuse of activation statistics

Since Bi-real net [17], most of BNNs have been adopting
shortcuts for convolution blocks. In the proposed INSTA-
BNN, the feature information used for INSTA-Th is directly
transferred to INSTA-PReLU via an identity shortcut path

17329



y = 0.8214x + 0.1214
R² = 0.9347

-10

0

10

20

30

40

-10 0 10 20 30 40 50

(b) conv2_1

y = 0.814x + 0.0054
R² = 0.9794

-20

0

20

40

60

80

-20 0 20 40 60 80 100

(d) conv5_4

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10111213141516

st
an

da
rd

 d
ev

ia
tio

n

Layer Index

(a) 
shortcut
residual

y = 1.0041x - 0.0387
R² = 0.9616

-6

-4

-2

0

2

4

6

-4 -2 0 2 4 6

(c) conv3_3

Figure 6. (a) The standard deviation of the values from the short-
cut and residual right before they are added. (b)-(d) Correlation
between E

[
x̃3

]
values from INSTA-Th and subsequent INSTA-

PReLU of 256 training set instances. x axis: E
[
x̃3

]
values of

INSTA-Th. y axis: E
[
x̃3

]
values of subsequent INSTA-PReLU.

Charts show the correlation at (b) the front, (c) the middle, and (d)
the rear of the ResNet-18 based INSTA-BNN.

while the binary convolution output is fed to INSTA-PReLU
via the residual path at the same time (Fig. 4a). We com-
pared the strength of the values from residual path with the
ones from shortcut path by calculating their standard devi-
ations (Fig. 6a). We can observe that the response strength
of the shortcut path is larger than that of the residual path,
which is consistent with the argument of the ResNet [7] pa-
per that the residual functions might have generally smaller
values than the non-residual functions.

Based on the observation, we can expect that statistics
(E

[
x̃3

]
) calculated from INSTA-PReLU module are simi-

lar to the statistics from the preceding INSTA-Th module,
although they are not identical. We check their correla-
tions for trained models. Fig. 6b-d shows that calculated
E
[
x̃3

]
values inside INSTA-PReLU are highly correlated

with previous E
[
x̃3

]
of INSTA-Th module, whereas non-

linear relations are observed between INSTA-PReLU and
subsequent INSTA-Th because of the intervening PReLU
(Sec. E in the supplementary material). Thus, we reuse
the E

[
x̃3

]
obtained from INSTA-Th for the subsequent

INSTA-PReLU module to reduce the computational bur-
den. In order to adjust the difference caused by the residual,
we apply the channel-wise affine transform to the reused
E
[
x̃3

]
value. When the shortcut contains 1x1 convolution,

we calculate the feature statistics for INSTA-PReLU sepa-
rately. The experimental results show that applying the two
schemes, the selective use of INSTA module and the reuse
of feature statistics, do not degrade the accuracy while re-
ducing the latency significantly. Detailed results are shown
in Sec. 5.2 and Sec. 5.3. Please refer to the supplementary
material Sec. D for the detailed model structure, which em-
ploys the two schemes.

5. Experiments

We applied the proposed schemes to state-of-the-art
BNN models and evaluated the accuracy improvement on
ImageNet (ILSVRC12) dataset [6].

5.1. Experimental Setup

We used the PyTorch framework to implement state-of-
the-art BNN models and the proposed INSTA-BNNs. We
chose the ReActNet [16] as the baseline model. We re-
placed the RSign layer in ReActNet with INSTA-Th (or
INSTA-Th+) module and the PReLU layer with INSTA-
PReLU (or INSTA-PReLU+) module. The reduction ra-
tio of 16 is used for INSTA-Th+ and INSTA-PReLU+, if
not specified. We followed the two-stage training strategy
in [20]. In the first stage, we trained a model with binary ac-
tivation and full-precision weights from scratch. In the sec-
ond stage, we trained a BNN model by initializing it with
pre-trained weights from the first stage. We used Adam
optimizer with a linear learning rate decay scheduler. In
both stages, we trained the model for 256 epochs with batch
size of 512 and initial learning rate of 0.001. We only ap-
plied random resized crop and random horizontal flip for
the training data augmentation and used default STE [1]
rather than a piecewise polynomial function from [17]. We
also used the distributional loss [16] using ResNet-34 as a
teacher model. Note that our proposed INSTA-BNN does
not rely on any specific BNN training methods. To reduce
the additional parameter cost for the proposed scheme, we
applied the 8-bit quantization to the weights of the SE-like
module. Please refer to the supplementary materials for
more details on weight quantization and cost analysis.

5.2. Comparison on ImageNet Classification

In this section, we compare the accuracy and cost of pre-
vious BNN models and the proposed INSTA-BNN models.
In Table 2, we grouped the models with similar model pa-
rameter sizes. For the proposed models, INSTA-BNN rep-
resents a model with INSTA-Th and INSTA-PReLU mod-
ules, and INSTA-BNN+ represents a model with INSTA-
Th+ and INSTA-PReLU+ modules.

INSTA-BNN-ResNet18 / INSTA-BNN+-ResNet18 use
the ReActNet-ResNet18 model as a backbone network
while INSTA-BNN / INSTA-BNN+ use the ReActNet-A
(based on MobileNetV1) model as a backbone network.
For experimental results, INSTA-BNN+ (bottom row of Ta-
ble 2) used the INSTA-Th+ and INSTA-PReLU (without
SE modules) to avoid large increase in the parameter size.

Compared to BNN models with less than 50 Mbit pa-
rameters, the proposed INSTA-BNNs with ResNet-18 back-
bone achieved much higher accuracy. With a small over-
head, INSTA-BNN with ResNet-18 backbone achieved
67.6% top-1 accuracy which is already 2.1% higher than

17330



Method
Bit-width BOPs FLOPs OPs Params Top-1 Top-5

(W/A) (×109) (×108) (×108) (Mbit) Acc. (%) Acc. (%)
ResNet18 FP [5] 32/32 0 18.2 18.2 374 69.8 89.1

BNN [10] 1/1 1.70 1.20 1.47 28.1 42.2 67.1
XNOR-Net [23] 1/1 1.68 1.40 1.66 33.4 51.2 73.2

Bi-real Net 18 [17] 1/1 1.68 1.40 1.67 33.5 56.4 79.5
XNOR-Net++ [4] 1/1 1.68 1.42 1.68 33.5 57.1 79.9

IR-Net [22] 1/1 1.68 1.40 1.67 33.5 58.1 80.0
Bi-real Net 34 [17] 1/1 3.53 1.42 1.97 43.8 62.2 83.9
Real-to-Binary [20] 1/1 1.68 1.40 1.66 42.6 65.4 86.2

ReActNet-ResNet18 [16] ‡ 1/1 1.68 1.40 1.67 34.0 65.5 -
ReCU [32] 1/1 1.68 1.40 1.67 34.0 66.4 86.5

AdaBin [28] 1/1 1.68 1.43 1.70 34.0 66.4 86.5
INSTA-BNN-ResNet18 1/1 1.68 1.43 1.70 34.8 67.6 87.5

INSTA-BNN+-ResNet18 1/1 1.68 1.44 1.70 37.3 68.5 88.2
ReActNet-A [16] ‡ 1/1 4.82 0.12 0.87 63.1 69.4 -
ReActNet-B [16] 1/1 4.69 0.44 1.17 68.0 70.1 -

AdaBin [28] 1/1 4.82 0.21 0.96 63.1 70.4 -
INSTA-BNN 1/1 4.82 0.20 0.95 65.6 71.7 90.3
DyBNN [33] 1/1 4.82 0.14 0.90 137.4 71.2 89.8

High-Capacity Expert [2] 1/1 1.70∗ 1.10∗ 1.37 83.0 71.2 90.1
ReActNet-C [16] 1/1 4.69 1.40 2.14 84.7 71.4 -
INSTA-BNN+ 1/1 4.82 0.20 0.96 71.2 72.2 90.5

Table 2. Comparison of the number of operations, parameter size, and ImageNet top-1 and top-5 validation accuracy of different BNN
models. BOPs and FLOPs mean the number of binary operations and floating point operations, respectively. ∗ indicates that those numbers
are from their original paper [2]. ‡ denotes the baseline model of the proposed INSTA-BNN(-ResNet18) models.

ResNet-18 based ReActNet. In addition, with additional
parameter cost, INSTA-BNN+ with ResNet-18 backbone
achieved even higher accuracy (68.5% top-1 accuracy)
which is 3.0% higher than baseline, and only 1.3% lower
than Full-Precision ResNet-18 baseline. Similar improve-
ment was achieved with larger BNN models. INSTA-
BNN achieved 2.3% higher accuracy than ReActNet-A with
marginal overhead. In case of INSTA-BNN+, it achieved
much higher top-1 accuracy than the state-of-the-art mod-
els, ReActNet-C [16] and High-Capacity Expert [2], with
much smaller parameter size and computing cost.

We trained the full-precision (fp) network with Re-
ActNet structure using the official ReActNet implementa-
tion [18] and got 73.1% top-1 accuracy. Applying weight
decaying not only to the convolution layers but also to the
linear weights prevented the overfitting of fp model train-
ing, resulting in higher accuracy than originally reported.
As a result, there is a reasonable gap between ReActNet
fp model and INSTA-BNN+ accuracy. The superiority of
the proposed models is more clearly demonstrated in Fig. 7.
The proposed INSTA-BNN models are placed in the upper-
left side of previous state-of-the-art models in both accuracy
vs. parameter size graph and accuracy vs. operations graph.

5.3. Inference latency evaluation

In the previous section, we showed that INSTA-BNNs
produce higher accuracy with small operation overhead.

64

66

68

70

72

0 20 40 60 80 100

To
p-

1 
A

cc
ur

ac
y 

(%
)

Parameter Bits (Mbit)

64

66

68

70

72

0 0.5 1 1.5 2 2.5

OPs (x108)

INSTA-BNN
INSTA-BNN+

ReAct-ResNet18
ReActNet-A,B,C

High-Cap-Expert
Real-to-Binary

INSTA-ResNet18
INSTA+-ResNet18

Figure 7. (a) Parameter size versus ImageNet top-1 accuracy. (b)
The number of operations (OPs) versus ImageNet top-1 accuracy.

Similar to our analysis in previous section, previous works
mostly reported the number of operations (OPs) to assess
the computational overhead, but simple counting of OPs
may not directly translate into real hardware latency char-
acteristics. So, we also evaluated the latency of BNNs (Ta-
ble 3) using the Huawei Noah’s Ark Lab’s Bolt [9] library
on Google pixel 3, which has 2.80 GHz Qualcomm Kryo
385 Gold and 1.77 GHz Silver (customized ARM Cortex-
A75 and A55, respectively) CPUs inside. We customized
the bolt kernel to make cubic operations and element-wise
addition more computationally efficient. As shown in Ta-
ble 3, INSTA-BNNs have marginal overhead compared to
their baselines. We report the average latency of 10 infer-
ence loops in the table. Using a single thread / Cortex-A75
core, INSTA-BNN runs with just 2 ms (6%) and 3 ms (4%)

17331



Model
Top-1 .bolt A75 A55
Acc. file size latency latency
(%) (MB) (ms) (ms)

Bi-real Net 18 56.4 2.68 30 83
Bi-real Net 34 62.2 3.91 52 135
Real-to-Binary 65.4 3.34 33 93

ReActNet-RN18 65.5 2.74 32 91
INSTA-BNN-RN18 67.6 2.85 34 98

INSTA-BNN+-RN18 68.5 3.55 35 102
ReActNet-A 69.4 5.55 70 178
INSTA-BNN 71.7 5.79 73 192

INSTA-BNN+ 72.2 7.19 75 197

Table 3. Inference time comparison of BNNs on mobile device.
Measured using a single thread. .bolt is a converted file that can
be used for inference. RN18 = ResNet18.

latency overhead compared to ResNet-18 and MobileNetV1
baselines, respectively, while maintaining the higher accu-
racy. This shows that INSTA-BNN can operate efficiently
on real hardware while achieving higher accuracy.

5.4. Ablation Study

5.4.1 Effect of individual component in INSTA-BNN

Table 4 shows the effect of each component proposed in
Sec. 3 on the ImageNet top-1 accuracy. Experimental setup
for the ablation study is described in Sec. A.2 of the sup-
plementary material. First, using the instance-wise mean
information on the threshold (Eq. (5)) improves the top-1
accuracy by 0.6% when compared to the baseline ReAct-
Net model. On top of that, when variance and skewness
information are added on the threshold (INSTA-Th), an-
other 0.5% improvement is achieved. Replacing the learn-
able parameter α in Eq. (8) with the SE-like module with
reduction ratio (r) of 8 achieves 61.7% top-1 accuracy that
is 1.7% higher than baseline result. We also evaluate dif-
ferent combinations of INSTA-Th and INSTA-PReLU with
and without the SE-like modules. When both modules use
the SE-like module (INSTA-Th+ and INSTA-PReLU+), we
increase the r to 16 to match the additional parameter cost.
Regardless of where the SE-like module is combined with
INSTA modules, it improves the accuracy by a large mar-
gin. However, the cases in which only SE module is used
in the proposed architecture (2nd and 3rd row of Table 4)
show lower accuracy than the cases when INSTA modules
are used.

5.4.2 Effect of the normalization layer

In Sec. 3.1, we proposed using the normalization layer be-
fore calculating instance-wise mean information to capture
the difference between instance-wise and batch-wise statis-
tical data. Although the proposed modules can still make
instance-aware thresholds without the normalization layer,

Network Top-1 Acc. (%)
Baseline (RSign + RPReLU) 60.0
Baseline + SE (RSign+ + RPReLU) (r=8) 60.8
Baseline + SE (RSign+ + RPReLU+) (r=16) 61.1
Normalization and mean (Eq. (5)) 60.6
INSTA-Th 61.1
INSTA-Th −norm 60.8
INSTA-Th+ (r=8) 61.7
INSTA-Th + INSTA-PReLU 62.1
INSTA-Th + (INSTA-PReLU −norm) 61.5
INSTA-Th+ + INSTA-PReLU (r=8) 63.0
INSTA-Th + INSTA-PReLU+ (r=8) 62.8
INSTA-Th+ + INSTA-PReLU+ (r=16) 62.9

Table 4. The effect of each component of INSTA-BNN on the Im-
ageNet top-1 validation accuracy. + and r indicate the usage of SE
module and the reduction ratio, respectively.

we observed that removing the normalization from either
INSTA-Th or INSTA-PReLU modules limits the perfor-
mance of the modules. When normalization layers are not
used (−norm indication in the Table 4), the modules gen-
erate the threshold using the instance-wise statistical data
themselves. In contrast, when the normalization layers are
used, the difference between the instance-wise and overall
training dataset statistics are used to generate the threshold
(5th row in Table 4), resulting in better accuracy than using
pure instance-wise statistics (6th row).

Ablation study for the effect of the threshold value
ranges in INSTA modules, the effect of INSTA-Th for dif-
ferent block structure, discussion of reducing the inconsis-
tent sign problem of binary convolution, and visualization
results of t-SNE are discussed in detail in the supplemen-
tary materials.

6. Conclusion
In this paper, we argue that the traditional BNNs with

the input-agnostic threshold are sub-optimal. Instead,
we demonstrate that the instance-wise statistics, including
mean, variance, and skewness, must be considered to de-
termine the better threshold values dynamically. Based on
the idea, we propose the BNN with instance-aware thresh-
old control (INSTA-Th) and demonstrate that the proposed
BNN outperforms the previous BNNs by a large margin.
We further improve the performance of the BNN with
INSTA-Th by adding the instance-aware PReLU (INSTA-
PReLU) and a variant of the Squeeze-and-Excitation mod-
ule (INSTA-Th+). Experimental results show that our
INSTA-BNN+ achieves the top-1 accuracy up to 72.2% on
the ImageNet dataset.

17332



Acknowledgement

This work was supported in part by Institute of Infor-
mation & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No. 2021-0-00105, Development of model compression
framework for scalable on-device AI computing on Edge
applications, and No. 2021-0-02068, Artificial Intelligence
Innovation Hub).

References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 2, 6

[2] Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos.
High-capacity expert binary networks. In International Con-
ference on Learning Representations (ICLR), 2021. 7

[3] Adrian Bulat and Georgios Tzimiropoulos. Binarized convo-
lutional landmark localizers for human pose estimation and
face alignment with limited resources. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3706–3714, 2017. 2

[4] Adrian Bulat and Georgios Tzimiropoulos. Xnor-
net++: Improved binary neural networks. arXiv preprint
arXiv:1909.13863, 2019. 7

[5] Torch Contributors. Torchvision.models. https:
//pytorch.org/vision/stable/models.html#
classification, 2017. Accessed: 2023-03-08. 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 6

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 6

[8] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 2, 4

[9] Huawei-noah. Bolt. https://github.com/
huawei-noah/bolt, 2020. 7

[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in neural information processing systems, 29, 2016.
2, 7

[11] Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon
Kim. Binaryduo: Reducing gradient mismatch in binary ac-
tivation network by coupling binary activations. In Interna-
tional Conference on Learning Representations, 2019. 2

[12] Hyungjun Kim, Jihoon Park, Changhun Lee, and Jae-Joon
Kim. Improving accuracy of binary neural networks us-
ing unbalanced activation distribution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7862–7871, 2021. 1, 2

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012. 1

[14] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 1

[16] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. Reactnet: Towards precise binary neural net-
work with generalized activation functions. In European
Conference on Computer Vision, pages 143–159. Springer,
2020. 1, 2, 6, 7

[17] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018. 1, 2, 5, 6, 7

[18] liuzechun. Reactnet. https://github.com/
liuzechun/ReActNet, 2020. 7

[19] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 1

[20] Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tz-
imiropoulos. Training binary neural networks with real-to-
binary convolutions. In ICLR. 2020. 2, 4, 6, 7

[21] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han.
Learning deconvolution network for semantic segmentation.
In Proceedings of the IEEE international conference on com-
puter vision, pages 1520–1528, 2015. 1

[22] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2250–
2259, 2020. 1, 2, 7

[23] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 1, 2, 7

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28:91–99, 2015. 1

[26] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

17333



[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.
1

[28] Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang.
Adabin: Improving binary neural networks with adaptive bi-
nary sets. In European conference on computer vision, pages
379–395. Springer, 2022. 7

[29] Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, and Jian
Cheng. Sparsity-inducing binarized neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12192–12199, 2020. 1

[30] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.
Learning channel-wise interactions for binary convolutional
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
568–577, 2019. 2

[31] Wikipedia contributors. Skewness — Wikipedia, the
free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Skewness&oldid=
1140693810, 2023. [Online; accessed 8-March-2023]. 3

[32] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling
Shao, Yue Gao, Yonghong Tian, and Rongrong Ji. Recu:
Reviving the dead weights in binary neural networks. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 5198–5208, 2021. 7

[33] Jiehua Zhang, Zhuo Su, Yanghe Feng, Xin Lu, Matti
Pietikäinen, and Li Liu. Dynamic binary neural network
by learning channel-wise thresholds. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1885–1889. IEEE, 2022.
7

17334


