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cephalopods where the muscular foot is actually in the head 
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Figure 1: We present the Lecture Presentations Multimodal Dataset as a benchmark for developing AI technologies that can
understand multimodal knowledge in educational content. Our diversely sourced and richly annotated dataset contributes
three challenging vision-and-language research tasks: automatic retrieval of (1) spoken explanations given figures, (2) illus-
trative figures given spoken explanations and (3) generation of slide explanations. Through benchmarking existing and newly
proposed models, we outline future research directions to bring us closer to intelligent and accessible tutoring aids.

Abstract
Many educational videos use slide presentations, a se-

quence of visual pages that contain text and figures ac-
companied by spoken language, which are constructed and
presented carefully in order to optimally transfer knowl-
edge to students. Previous studies in multimedia and psy-
chology attribute the effectiveness of lecture presentations
to their multimodal nature. As a step toward developing
vision-language models to aid in student learning as intel-
ligent teacher assistants, we introduce the Lecture Presen-
tations Multimodal (LPM) Dataset as a large-scale bench-
mark testing the capabilities of vision-and-language models
in multimodal understanding of educational videos. Our
dataset contains aligned slides and spoken language, for
180+ hours of video and 9000+ slides, with 10 lecturers
from various subjects (e.g., computer science, dentistry, bi-
ology). We introduce three research tasks, (1) figure-to-
text retrieval, (2) text-to-figure retrieval, and (3) genera-
tion of slide explanations, which are grounded in multi-
media learning and psychology principles to test a vision-
language model’s understanding of multimodal content. We
provide manual annotations to help implement these tasks

and establish baselines on them. Comparing baselines and
human student performances, we find that state-of-the-art
vision-language models (zero-shot and fine-tuned) strug-
gle in (1) weak crossmodal alignment between slides and
spoken text, (2) learning novel visual mediums, (3) tech-
nical language, and (4) long-range sequences. We intro-
duce PolyViLT, a novel multimodal transformer trained with
a multi-instance learning loss that is more effective than
current approaches for retrieval. We conclude by shedding
light on the challenges and opportunities in multimodal un-
derstanding of educational presentation videos.

1. Introduction
Students today commonly learn through multimedia, in-

cluding online lecture presentation recordings, educational
mobile applications, and other digital resources [28]. In
particular, slide-assisted instruction through lectures has be-
come predominant in educational settings [38, 42, 43] and
is widely considered by teachers and students as the pre-
ferred instructional tool [42, 47]. The effectiveness of lec-
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a) Video Acquisition (Manual): Acquired educational lecture videos from Youtube across a range of speakers and subjects(psychology, computer science, biology, etc.) in a presentation-style.

c) Figure Annotations (Manual): Annotators were 
asked to draw bounding boxes over figures, 
formulas, tables, and natural images. We provided 
additional instructions to exclude speakers/logos.

d) OCR (Automated): We used PyTesseract
to extract OCR output corresponding to the 
text on each slide segment.

e) ASR Alignment (Automated): We used 
Google ASR Video-Model to extract the text 
alignment from speech for each slide segment.

b) Slide Segmentation (Manual) : MTurk annotators annotated distinct slide segments within an educational lecture video by marking the timestamp before each new slide transition.

f) Quality Checking: 

0:00 3:24 5:35 9:01Segment 1 Segment 2 Segment 3 
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“Can we have a 
intelligent tutoring 

system infer a 
student’s emotion? 

There have been some 
works…”

Internal Annotation Team: 
Check and correction (All Data)

f) Trace Extraction 
(Automated): We calculate the 
difference between frames to 
extract moving traces.

Sabourin 
et 
al., 
2011 
Emotion 
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Internal Annotation Team: 
Word Error Rate Measurement (Subset)

Internal Annotation Team: 
PCK Measurement (Subset)

Figure 2: Overview of data collection and preprocessing with a summary of each step. Best viewed zoomed in and in color.

ture slides is supported by research in multimedia princi-
ples, which show that individuals learn more effectively
from spoken (or written) language when accompanied by
graphics rather than language in isolation [3, 29, 31, 33, 36].
The prevalence and effectiveness of lecture slides as an
educational medium call for vision-and-language models
that are also able to understand and communicate multi-
modal knowledge, in order to move closer towards intel-
ligent teaching assistants [17].

We design the Lecture Presentations Multimodal Dataset
(LPM Dataset) as a benchmark evaluating vision-and-
language models’ multimodal understanding of educational
content. LPM Dataset contains over 9000 slides with nat-
ural images, diagrams, equations, tables and written text,
aligned with the speaker’s spoken language. These lecture
slides are sourced from over 180 hours worth of educa-
tional videos in various disciplines such as anatomy, biol-
ogy, psychology, speaking, dentistry, and machine learning.
To benchmark the understanding of multimodal information
in lecture slides, we introduce three research tasks of auto-
matic retrieval of (1) spoken explanations for an educational
figure (Figure-to-Text) and (2) illustrations to accompany a
spoken explanation (Text-to-Figure) (3) generation of slide
explanations. The tasks are strongly inspired by previous
literature in multimedia learning [28, 51, 30] which state
that meaningful learning takes place when one is able to or-
ganize verbal explanations (spoken words) combined with
non-verbal knowledge representations (pictures) into a co-
herent mental model [32].

LPM Dataset and its tasks bring new vision and language
research opportunities through the following technical chal-

lenges: (1) addressing weak crossmodal alignment between
figures and spoken language (a figure on the slide is often
related to only a portion of spoken language), (2) represent-
ing novel visual mediums of man-made figures (e.g., dia-
grams, tables, and equations), (3) understanding technical
language, and (4) capturing interactions in long-range se-
quences. Through human and quantitative studies, we find
that current multimodal models struggle with the aforemen-
tioned challenges. We work towards addressing weak align-
ment and novel visual mediums by introducing PolyViLT, a
multimodal transformer trained with a multi-instance learn-
ing loss. Although PolyViLT presents some improvement,
LPM Dataset still offers novel challenges that will spark
future vision-and-language research in educational content
modeling, multimodal reasoning, and question answering,
thereby opening up pathways to exciting applications, such
as an intelligent tutoring system that can utilize multimodal
content to answer a student’s question[19], a recommender
system that automatically generates a slide on-the-fly as the
speaker is speaking [46], or a evaluation system that pro-
vides feedback on the quality of the presentation [37].

2. Related Work

The effectiveness of lecture slides as a medium of trans-
ferring information can be attributed to five multimedia
learning principles [15], which highlight the importance of
multimodality. Firstly, the multiple representation principle
states that individuals learn more effectively from graph-
ics accompanied by spoken or written verbal information
than solely spoken language. This principle is supported by
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Features Size Avail.
Slide Segments Slide Figures Slide Text Spoken Language # Videos # Hours # Slides

VLEngagment [4] 11568 X
LectureBank [24] X(M) X(A) 1352 51,939 X
ALV [14] X(A) X(A) 1498 X
LectureVideoDB [12] X(M) X(M) 24 5000 X
GoogleI/O [6] X(A) X(A) 209 174 X
LaRochelle [48] X(A) X(A) X(A) 47 65 2350
LPM Dataset (Ours) X(M) X(M) X(A) X(A) 334 187 9031 X

Table 1: Comparison with existing lecture-based datasets, (A) represents automatic processing, (M) represents manual pro-
cessing. LPM Dataset is the first of its kind to offer slide segmentation, aligned spoken language, slide text, and visual
figures, while being publicly available.

dual-route processing mechanisms of working memory and
comprehension processes, where integration of verbal and
nonverbal information benefits formation of representations
in working memory. [31, 29, 36, 3, 33]. Secondly, the con-
tiguity principle expounds on reducing the spatio-temporal
separation between different forms of information, which
decreases the amount of effort required to build a coherent
mental representation [5, 35]. Third, redundancy: the expo-
sure to complementary but identical information in differ-
ent modalities, improves learner’s working memory (audi-
tory, visual). Fourth, coherence: restricting the information
presented to only essential information allows the learner to
integrate key concepts and relationships [18]. Finally, struc-
tured signalling provides learner information regarding the
overall hierarchical structure of the presentation [31].

Given the effectiveness of lecture slides as a medium
of presenting information, future vision-language models
should be able to learn and extract from the rich information
in lecture slides. LPM Dataset is the first to offer a large-
scale dataset with aligned and complete modalities. We
summarize and compare previous lecture slide datasets in
Table 1. LectureBank [24] is a manually-collected dataset
of lecture slides, consisting of 1352 online lecture PDF files
from 60 courses in Computer Science. The dataset is an-
notated for each lecture’s topic. It does not contain aligned
transcripts and was primarily used to predict prerequisite re-
lations for a given lecture slide. ALV [14] is a lecture video
dataset of artificially-generated lectures, where transcripts
from lectures are randomly split in fragments then assem-
bled by stitching 20 randomly selected fragments from var-
ious videos. The resulting dataset only consists of tran-
scripts. This work was developed for the purpose of evalu-
ating lecture video fragmentation techniques. VLEngage-
ment [4], is a dataset which was designed to study engage-
ment in video lectures, where content-based (stop-word
counts) and video-specific features (silence, video duration)
are extracted from publicly available scientific video lec-
tures. It only offers processed features, and does not con-
tain raw language or pixel data. LectureVideoDB [12] is a
dataset consisting of 5K frames of lecture videos, with an-
notated text characters developed for the purposed of text

detection and recognition in Lecture Videos. No spoken
language is provided. GoogleI/O [6] is a dataset consist-
ing of 209 presentation videos from the Google I/O con-
ferences between 2010-2012. It only offers textual infor-
mation from the speech and the slides. The retrieval task is
done at the video level, where entire transcripts are matched
with all the text in a presentation. LaRochelle [48] con-
tains 47 French lecture recordings at the university level and
has been used to study video-level retrieval. In addition,
the authors experiment with cross-modal retrieval where a
bag of words approach is used for the text and visual to-
kens (image figures are not used). However, at this time,
the data is not publicly available. ScienceQA [25] con-
sists of multiple choice questions with aligned information
from 261 lectures. However, the lectures are not sourced
from video or educational slides, and are sourced from lec-
tures purely based on written language, which do not offer
any visual figures. ChartQA [27] presents 4.8K human-
authored charts paired with 9.6K question-answer pairs to
benchmark a model’s question answering ability on man-
made charts. Both ScienceQA and ChartQA offer different
modalities and are incomparable to our dataset (hence, ex-
cluded from Table 1). To the best of our knowledge, LPM
Dataset is the first of its kind to offer educational presen-
tation videos with slide segmentation, aligned spoken lan-
guage, slide text, and visual figures, while being publicly
available for the research community.

3. Lecture Presentations Multimodal Dataset
The Lecture Presentations Multimodal Dataset is de-

signed as a benchmark to develop vision-language models
capable of understanding multimodal information present
in lecture slides. Our dataset offers segmented slides, their
aligned spoken language and visual elements (figures, dia-
grams, natural images, tables), and slide text.

3.1. Dataset Statistics
LPM Dataset consists of 9031 slides, 8598 figures,

28000 unique words, 1.6 million total words from 334 ed-
ucational presentation videos with a total duration of 187
hours. As shown in Table 3(b), per slide, there are 186
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(e) Number of seconds per slide 

(a) Number of OCR text per slide (b) Number of spoken words per slide (c) Number of figures per slide 

(f) Number of seconds of mouse trace per slide

(d) Distribution of figures 
(entire dataset)

(g) Distribution of slides by speaker 
(entire dataset)

Figure 3: Dataset statistics for Lecture Presentations Multimodal Dataset. 2(d) shows that our a large majority of our dataset
consists of figures that include text (diagrams, equations, tables). Figure 2(g) shows that the variety of educational content
covered by our dataset.

words spoken on average. Each slide’s duration is an aver-
age of 72.6 seconds, as shown in Figure Table 3(e). Among
the 8598 figures, there are 3877 (45.1%) natural images,
4018 (46.7%) diagrams, 301 (3.5%) tables, 402 (4.6%)
equations, shown in Table 3(d). Each slide has an average
of 0.94 (median of 1) figure, shown in Table 3(c), an aver-
age of 28.95 written words, displayed in Table 3(a). When
available, we provide the mouse traces which hover over the
region the speaker is describing. Globally, in 86.4% of the
slides, speakers use the mouse traces at least once. There
are 12.52 seconds of mouse trace data per slide on average,
as shown in Table 3(f). Our dataset consists of 35 courses on
biology, anatomy, psychology, dentistry, speaking, machine
learning taught by 10 speakers. The distribution of the num-
ber of slides per speaker is shown in Table 3(g). Our dataset
is designed to include some imbalances amongst topics and
visual mediums such that it could also be used for contin-
ual learning, low resource domain adaptation and transfer
learning. We release the full preprocessing pipeline for easy
expansion into other topics, as we describe below.

3.2. Data Collection and Preprocessing
The LPM Dataset is developed from a curated list of

lecture presentation videos, which are downloaded from
YouTube 1. Spoken language is extracted from speech via

1Following prior work [1, 50, 53, 26], we adopt a strict protocol to mit-
igate ethical concerns of using publicly available Youtube data: (1) videos
are internally checked to avoid offensive content, (2) the raw videos are
not shared, but only the Youtube IDs and download scripts are shared, (3)
creators have full control of the accessibility of their content and any per-

automatic speech recognition. We manually annotate for the
slide segments as well as figure bounding boxes and corre-
sponding labels in order to perform retrieval tasks between
slide-level segments spoken text and individual visual fig-
ures. In addition, in order to utilize the language informa-
tion in figures, the texts in the slide are automatically ex-
tracted via OCR. We extract the mouse trace location to en-
able researchers to utilize them as an additional grounding
signal between visual objects and language. We share the
full data preprocessing pipeline in our repository. A visual
outline the data collection and processing steps taken to cre-
ate LPM Dataset is shown in Figure 2. Detailed data collec-
tion and preprocessing steps can be found in Appendix A.

3.3. Problem Definition
To benchmark a vision-and-language model’s under-

standing of multimodal educational content, we measure its
ability to associate a visual figure with a spoken explana-
tion. We carefully designed three tasks supported by mul-
timedia learning literature: where (1) visual figures are re-
trieved given spoken language (Text-to-Figure), (2) spoken
explanations are retrieved from visual figures (Figure-to-
Text) and (3) generation of spoken explanations.

Meaningful multimedia learning takes place when stu-
dents are able to organize verbal explanations (spoken
words) combined with non-verbal knowledge representa-

sonally identifiable data (only links to publicly available data are shared)
and (4) all the creators were individually contacted about the inclusion of
their content in our dataset. Implicit consent allows creators to be removed
from the dataset at any time.
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Figure 4: Overview of the key components of our proposed PolyViLT model. The diagram’s text and image patches are input
into a ViLT-based transformer encoder, and the spoken language BERT embedding is transformed into K representations. A
MIL Loss [10] is used to address weak crossmodal alignment and find partially aligned instances.

tions (pictures) into a coherent mental model [32]. Fur-
thermore, three cognitive processes that are essential for
active learning involves selecting, organizing, and integrat-
ing the learnt material with existing knowledge [28, 51].
Therefore, crossmodal retrieval is a natural fit to evalu-
ate a vision-language model’s understanding of educational
videos, as meaningful learning with video presentations, re-
quires organizing and integrating text and pictures into a
mental model. In the process of retrieving a text from a
figure, the learner must select relevant verbal information
from the given text, organize the information, and activate
prior knowledge (from learnt representation) to retrieve the
relevant image, which is aligned to the cognitive theory of
multimedia learning [30]. In this work, we primarily focus
on the two tasks of crossmodal retrieval, as the alignment
between figures and text is a crucial pre-requisite problem
that need be addressed to tackle the challenging problem
of slide explanation generation. Furthermore, we provide
baseline results and the codebase for slide explanation gen-
eration as described in Section 6.7.

In contrast to many prior crossmodal retrieval setups
which assume one-to-one mappings between modalities
[49], lecture presentations are unique in the presence of
weak crossmodal alignment between spoken language and
figures. There could exist n > 1 visual figures for a single
spoken speech segment s and a figure could be aligned par-
tially to the spoken segment (i.e., a part of the spoken seg-
ment is used to explain the figure). Thus, a core challenge
lies in addressing weak crossmodal alignment. Formally, let
D = (S, V ) be our dataset consisting of spoken language S

and figures V . The goal is to learn an embedding space that
can quantify the similarity between the figure and spoken
language. As a result, given a segment of spoken language
s 2 S, one could retrieve the set of aligned visual figures
{vk, vk+1, ..., vk+n} ✓ V . For Figure-to-Text, given a fig-
ure, we want to retrieve all of the transcriptions on each
slide. For Text-to-Figure, given the spoken language of the
entire slide, we want to retrieve all of the figures.

4. Retrieval Experimental Setup
We evaluate multiple state-of-art model’s performance

on text-to-figure and figure-to-text retrieval in comparison
with human student performance. We are interested in un-
derstanding how current state-of-the-art models perform on
different figure types (diagrams, images, equations, tables),
long range sequences, and technical language. We also
introduce PolyViLT, a multi-instance learning multimodal
transformer that utilizes both vision and language informa-
tion in slide figures.

4.1. Baselines
In addition to random selection and greedy text match-

ing, we select previous baselines PVSE [45] and PCME [8]
that are specifically designed for cross-modal retrieval in
scenarios with weak alignment by using Multiple Instance
Learning (MIL). These baselines are trained from scratch.
We also measure the pre-trained CLIP [40] model’s perfor-
mance, as its zero-shot image-text matching performance is
well recognized in the community.
CLIP [40] is an established baseline for image-text match-
ing. We use pre-trained CLIP to embed pairs of figures and
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Models Figure-to-Text Text-to-Figure
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

Random 1.36 ± 0.22 7.63 ± 0.88 15.81 ± 0.7 2.15 ± 0.61 8.64 ± 1.10 16.38 ± 1.91
Greedy Text Matching 4.20 ± 0.01 10.9 ± 0.015 11.9 ± 0.01 4.20 ± 0.01 10.9 ± 0.015 11.9 ± 0.01
CLIP [40] 2.05 ± 0.7 7.4 ± 0.15 17.65 ± 1.02 1.58 ± 0.56 6.89 ± 1.18 13.78 ± 0.55
PVSE [45] 3.17 ± 0.68 12.44 ± 1.28 22.01 ± 0.61 2.81 ± 0.27 11.87 ± 1.24 21.2 ± 0.63
PVSE (BERT) [45, 9] 2.96 ± 0.76 10.96 ± 0.52 18.54 ± 0.99 2.43 ± 0.05 11.21 ± 1.11 18.51 ± 1.10
PCME [8] 2.31 ± 0.41 8.83 ± 0.34 16.43 ± 0.67 2.12 ± 0.36 8.68 ± 0.14 16.9 ± 1.10
PCME (BERT) [8, 9] 1.93 ± 0.26 8.27 ± 0.95 15.76 ± 1.64 1.93 ± 0.26 8.36 ± 1.08 15.85 ± 1.77

PolyViLT 4.94 ± 0.55 19.16 ± 0.69 30.35 ± 0.55 6.14 ± 1.25 23.19 ± 0.68 33.22 ± 1.73
PolyViLT w/ All Speakers 3.22 ± 0.64 10.65 ± 0.26 20.54 ± 0.32 2.00 ± 0.29 9.85 ± 1.45 19.19 ± 1.77
PolyViLT w/ Trace 3.85 ± 0.91 17.77 ± 1.88 28.26 ± 1.78 5.38 ± 0.78 19.66 ± 2.39 32.26 ± 0.59

PolyViLT w/o Fig. Lang. 4.29 ± 0.72 17.43 ± 0.72 27.83 ± 0.35 4.32 ± 1.11 19.89 ± 1.71 31.77 ± 0.48
PolyViLT w/o Fig. Image 3.79 ± 0.31 14.25 ± 0.71 24.70 ± 1.34 6.14 ± 0.89 19.30 ± 2.07 29.39 ± 2.80

Table 2: Comparison between PolyViLT vs previous state-of-the-art models for crossmodal retrieval with multiple instance
learning across all dataset for 3 random seeds, standard deviation bars are reported. PolyViLT outperforms all previous state-
of-the-art approaches by a large margin. We also find that training speaker-specific models outperforms training collectively
across all speakers. We run ablation studies by masking the figure image (w/o Fig. Image) and language (w/o Fig. Image) to
find a drop in performance.

text and rank their similarity scores for retrieval.
PVSE [45] is designed to model one-to-many alignment for
crossmodal retrieval, by encoding visual and text features
as K possible embeddings and training with a multiple in-
stance loss that rewards weak cross-modal alignment (i.e.,
the best pair among K2 pairs is rewarded).
PCME [8] handles pairwise semantic similarities and un-
certainty in crossmodal retrieval. It models each modality
as probabilistic distributions in a common embedding space
using Hedged Instance Embeddings [34] and utilizes a soft
version of the contrastive loss to handle weak alignment.

4.2. PolyViLT: Proposed Retrieval Model for Weak
Image-Text Alignment

On top of these baselines, we introduce Polysemous-
ViLT (or PolyViLT), which is designed to handle vision
and language inputs (e.g., diagrams) and weak cross-modal
alignment. Previous approaches were designed specifically
for the task of crossmodal retrieval on datasets consisting
of only natural images and text. However, to perform well
on retrieval problems involving figures, models must utilize
text information present in the figure, as they could provide
valuable signals to the model. Our approach utilizes local
feature transformers in PVSE [45], a multi-instance learn-
ing loss [10] and a ViLT encoder [21] to utilize both vision
and language information in figures. We refer the readers to
Figure 4 for details of the architecture.
ViLT Figure Encoder We utilize the ViLT model [21] as
a backbone encoder to contextualize the text and vision in-
formation present in figure. Given an image of a figure,
we utilize the text (from OCR output) within the bounding
box occupied by the figure. The text input is tokenized with

BERT [9], and patches of the diagram image is flattened and
linearly projected, and inputted to a transformer encoder.
Multiple Instance Learning (MIL) To account for the
weak crossmodal alignment between figures and spoken
language, we represent the spoken language with K embed-
dings, capturing different words of the speech, inspired by
local feature transformers in [45], The local K embedding
are combined with global information via residual connec-
tions. Then, we utilize the MIL objective [10], which as-
sume that there is a partial match between a figure and K
local embeddings of the spoken language.

4.3. Human Student Performance
To measure human student performance and probe the

difficulty of each topic with non-expert performance, hu-
man students are shown 10 figure-caption pairs (to prevent
attention loss) for 10 speakers and 3 seeds. For Figure-to-
Text, a student is shown one figure image and all of the
aligned spoken language. Then, they are asked to select the
most relevant spoken language. For Text-to-Figure, the an-
notator is shown one spoken language, all the figure and is
asked to select the most relevant figure. There are exactly
300 figures, 197 spoken language segments and we measure
Recall@1 performance. For fair comparison, all baseline
models are evaluated with Recall@1 again with identical
samples from the human study. We share human evaluation
results as a part of our dataset.

5. Training Details
We use PyTorch as the auto-differentiation library to

train all our models. For each speaker, with split the data
such that a random 80% is used as training data and the
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Figure 5: Comparison of baselines and PolyViLT against human student performance in Recall@10 for (Top) Figure-to-Text
and (Bottom) Text-to-Figure retrieval.

remaining 20% is used for test (the data is split accord-
ing to each random seed). In our experiments, we use the
following hyperparameters. We train for 100 epochs, and
our batch size is 8. We also utilize the 3 losses (MIL with
a margin parameter �m, Diversity �div , Domain Discrep-
ancy �dom) as motivated in [45], we refer the audience
to the original paper for the formulation of these losses.
We use the default parameters, �m = 0.1, �div = 0.01,
�dom = 0.01. For the number of locally guided features
K, as shown in Figure 4, we use K = 5. Further finetun-
ing on these hyperparameters is a future direction of study
to boost performance. As mentioned in Section 4.2, we use
a pre-trained backbone ViLT encoder from HuggingFace,
by the original authors, which has been trained on masked
language modelling and image-text matching (’ViLT-b32-
mlm-itm’) [52, 21]. We will release the full code base with
our default hyperparameters. The average model train run-
time was around 8 hours on Titan X 1080 GPUs.

6. Results
6.1. Model and Human Performance

The in-domain performance of all models can be seen in
Table 2. We first implement a greedy text matching base-
line, where we assign a match between spoken language
and figure by considering the greatest number of com-
monly occuring words. Our proposed model, PolyViLT,
outperforms this approach by a significant margin. We
note that 46% of our dataset contains figures with no text,
which reflects the challenging multimodal nature of our
task. We also refer the reviewer to Appendix I, where we
test PolyViLT’s performance for varying difficulties of text-
matching measured by tf-idf. We find that PolyViLT per-
forms better for cases with easier keyword identifiability
than harder cases. PolyViLT outperforms previous state-
of-the-art vision-language models in both figure-to-text re-
trieval and text-to-figure retrieval. The second best perform-
ing model is PVSE [45], which further justifies our rea-
soning behind utilizing local feature transformers and the

MIL loss. Surprisingly, CLIP’s zero-shot performance of-
ten is worse than Random, which indicates that large-scale
pre-training on natural image-text pairs may not be suffi-
cient for our task. We find that fine-tuning CLIP on our
dataset yields a performance boost (6.21% increase for text-
to-figure Recall@10 shown in Appendix H). We refer the
readers to Appendix F, where we conduct out-of-domain
experiments where we train on a source speaker and evalu-
ate on a different target speaker. To test speaker and topic
independence, we report the results for 3 speaker pairs (bio-
1 ! bio-3, anat-1 ! anat-2, psy-1 ! psy-2) on similar
domains and a pair from different domains (bio-1 ! psy-
1) and find that the baseline models perform better than
random, which demonstrate the baselines’ generalizability
from one domain/speaker to another. The detailed results
for each speaker can be found in Appendix E We also pro-
vide human student retrieval performance in Figure 5. We
see that all methods fall well below human students’ perfor-
mance, even PolyViLT, the closest method, is 47.68% worse
for text-to-figure retrieval and 43.63% worse for figure-to-
text retrieval, which demonstrates the challenging nature of
our dataset. Below, we perform error analysis to uncover
the concrete challenges presented in LPM Dataset.

6.2. Performance on Novel Visual Mediums

We first investigate the impact of novel visual mediums
such as man-made figures (e.g., diagrams, tables, and equa-
tions) on model performance. We report Recall@10 scores
conditioned on each type in Table 3, and find that PolyViLT
outperforms other baselines for most figure types. Inter-
estingly, we can see that for natural images, previous ap-
proaches perform worse than PolyViLT. Whereas we in-
tially suspected that PolyViLT’s main advantage is in its
use of text information, it outperforms previous approaches
even when no text information is used. This indicates that
the usage of a ViT encoder [11] is superior over using local
and global feature transformers as proposed in PVSE [45]
and PCME [8] even for natural images. We also find models
struggle, particularly on equations. As mentioned in Sec-
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Models Figure-to-Text: Recall@10 Text-to-Figure: Recall@10
Diagram Image Table Equation Diagram Image Table Equation

CLIP [40] 6.2 ± 0.57 5.77 ± 0.73 6.2 ± 4.36 2.83 ± 1.11 6.5 ± 1.27 6.0 ± 0.22 6.9 ± 2.5 3.5 ± 0.96
PVSE [45] 8.2 ± 0.93 9.6 ± 0.57 7.27 ± 0.29 12.27 ± 3.27 7.6 ± 1.3 10.33 ± 1.76 6.97 ± 4.15 4.47 ± 4.66
PCME [8] 6.0 ± 0.37 6.9 ± 0.22 6.3 ± 3.28 2.93 ± 3.27 5.9 ± 0.49 6.87 ± 0.26 6.3 ± 3.28 2.93 ± 3.27

PolyViLT 18.53 ± 1.65 15.2 ± 0.91 15.83 ± 2.67 5.53 ± 5.37 18.53 ± 1.89 20.13 ± 0.7 19.17 ± 6.34 9.97 ± 3.48

Table 3: Comparison of recall@10 scores for baselines conditioned on types of figures, mean and standard deviations are
reported for 3 seeds across all speakers. PolyViLT outperforms previous baselines in most cases, except for equation text-to-
figure retrieval.

Length of Spoken Words Number of Sub-words

Figure 6: (Left) PolyViLT performance drops for very short
or very long sequences, (Right) or with increasing number
of subwords (technical terms).

tion 4.2, this could be attributed to the significant domain
difference between the pretraining domain (natural images,
non-educational language) of ViLT [21]. PVSE [45] is ini-
tialized with random weights, therefore is unaffected.

6.3. Technical Language and Long Sequences

We investigate the effects of technical language beyond
commonly spoken and written text on model performance.
The right figure in Fig. 6 shows the number of subwords to-
kenized by HuggingFace’s BERT Tokenizer [9, 52], which
represents the number of Out-of-Vocabulary (OOV) tokens,
a proxy measure for how much external knowledge is re-
quired to understand technical language. With an increas-
ing number of subwords, there is a drop in performance,
indicating that our models struggle to quickly acquire tech-
nical information or require external knowledge to perform
well. Furthermore, our dataset poses challenges in captur-
ing information in long range language sequences due to
its educational nature. On the left of Fig. 6, we report
Recall@10 scores conditioned on the number of spoken
words. PolyViLT’s performance peaks between 100 and
200 words, and decreases with increasingly longer spoken
phrases, or very short spoken phrases (under 100, where we
find phrases that often do not contain enough information to
disambiguate from different figures). This calls for a need
to develop models for extremely long-range and short-range
sequences. We refer the readers to Appendix K and Ap-
pendix J where we display qualitative and quantitative anal-
ysis of how current baselines fail when technical knowledge
or understanding of long range interactions are required.

6.4. Impact on Performace due to OCR/ASR errors

We find 100 samples each of figure-text pairs with cor-
rect and incorrect OCR/ASR, then human and PolyVilT’s
r@1 scores are calculated. For correct OCR/ASR, model:
0.343, humans: 0.765. For incorrect OCR/ASR, model:
0.270, human: 0.837. Humans are more robust to incor-
rect OCR/ASR, whereas the model suffers a performance
drop. We investigate human’s performance with incorrect
OCR/ASR further. In the correct case, we find an average
of 170.8 ASR tokens and 15.6 OCR tokens, whereas in the
incorrect case, we find an average of 243.9 ASR tokens and
14.4 OCR tokens. We hypothesize that the greater number
of ASR tokens in the incorrect case provides more informa-
tive context that human annotators could exploit even with
incorrect ASR/OCR. When we control the number of ASR
to be equivalent (at less than 75 tokens), we find that the hu-
man performance is similar at 61.9% for correct ASR/OCR
vs. 62.5% for incorrect ASR/OCR cases. However, even
with correct OCR/ASR, the model has comparable perfor-
mance to that of incorrect OCR/ASR, which indicates that
its limitation is not due to errors in OCR/ASR but more
likely due to other challenges; such as the novel medium of
man-made figures, highly technical language. We include
these annotations in the dataset such that users can analyze
how OCR/ASR errors might impact performance.

6.5. Importance of MIL objective

We investigate the effects of using a Multi-Instance
Learning (MIL) objective to handle ambiguous alignment
by comparing PolyViLT with and without the MIL objec-
tive in Fig. 7. “No MIL” is the case where we optimize
using the standard triplet ranking objective [13, 22]. Con-
sistently, across all 3 speakers, we see that MIL is useful and
leads to performance boosts by handling weak crossmodal
alignment. In Appendix L, we provide additional analysis
in regard to the learnt alignments, by investigating the K
representations. To specifically find out whether the MIL
objective was successful at disambiguating figures amongst
K representations, we display the aligned spoken language
and figures for a given slide, and show the calculated sim-
ilarity scores for the K instances of spoken language for
each figure. We see that in successful cases, the distribu-
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Figure 7: Using MIL to handle weak crossmodal alignment
leads to performance boosts.

tion of the similarity scores of K instances differ for each
figure, potentially hinting that the representation has cap-
tured the many-to-one mapping between figures and spoken
language. However, in failed cases, the distribution of the
similarity scores of K instances are identical for each figure,
hinting that the separate K instances have not learned to dis-
ambiguate the different figures. A potential way to enforce
the K instances to be different for each given figure by in-
creasing the diversity hyperparameter �div , which penalizes
the redundancy among K instances.

6.6. Using Mouse Trace as a Grounding Signal

Our aim is to provide the users with all available modal-
ities and provide an opportunity to study mouse traces,
which are known to be related to deictic gestures, eye gaze
and grounding of language and vision. Thus, we experi-
ment with utilizing mouse trace as an additional ground-
ing signal to capture crossmodal alignment and represent
mouse traces as a one-hot vector with length equivalent to
the spoken language sequence. For the indices correspond-
ing to words when the mouse hovered over the figure, we
assign it the value 1, indicating that the spoken word is di-
rectly aligned to the given figure and is conceptually similar
to hard attention. We re-parameterize this categorical distri-
bution with a Gumbel-Softmax [20], and use a dot-product
attention with skip connections to fuse spoken language and
mouse traces. The result for this model is shown in Table 2,
as ‘PolyViLT + Trace’. For certain speakers, the inclusion
of mouse-trace data offers better performance. We refer the
readers to Appendix E for speaker-specific studies. Future
work should aim at better utilizing the valuable information
in mouse traces as a grounding signal [23, 39].

6.7. Slide Explanation Generation

LPM Dataset and text-to-figure retrieval enables gener-
ating slides from spoken language, where individual figures
need to be retrieved one-by-one, which is a reflection of how
speakers refer to figures in presentations (a segment within
an explanation refer to a single figure). We also attempt the
more ambitious task of slide explanations generation. We
experiment with generating captions for each slide via fine-
tuning a pre-trained ViT [11] encoder and GPT-2 [41] de-

coder with the next word prediction objective. We refer the
reader to Table 6, where we see that the ROUGE-L scores
for anat-1 is 12.3, bio-1: 9.2, psy-1: 6.6. Their low perfor-
mance indicates that crossmodal retrieval and its challenges
needs to be first addressed before tackling the more chal-
lenging task of generation. Nonetheless, our dataset is the
first to enable the task of slide caption generation.

7. Conclusion and Discussion

We present the Lecture Presentations Multimodal
Dataset as benchmark for developing vision-and-language
models that can understand multimodal knowledge in edu-
cational videos. Our diversely sourced and richly annotated
dataset contributes three challenging research tasks as a step
towards educationally relevant goals: (1) automatic retrieval
of spoken explanations given figures, (2) automatic retrieval
of illustrative figures given spoken explanations (3) gener-
ation of spoken slide explanations. Through benchmarking
existing and newly proposed models, we outline future re-
search directions in tackling weak crossmodal alignment,
novel visual mediums, technical language, and long-range
sequences to step closer towards intelligent and accessible
tutoring aids.
Limitations and Ethics: There exists an imbalance in the
distribution amongst topics (most of our data fall under sci-
ence and math) and types of visual mediums (small pro-
portion of quantitative figures, tables and equations). Our
dataset does not contain other extraneous sources of infor-
mation such as animations, websites, or virtual whiteboards.
While we believe that LPM Dataset is a sufficient first step
towards tackling AI understanding of multimodal educa-
tional content, a robust and diverse dataset will require a
broader variety of topics, mediums and information types.
Hence, we share the full data preprocessing pipeline to en-
able expansion. To increase the transparency of our dataset,
we share a Datasheet for Datasets [16] in the supplementary.
Our work is intended to support research in AI teaching aids
that could help address the shortage of teachers and democ-
ratization of education. Along the benefits, there are risks
such as changing traditional educational settings, misinfor-
mation spread and unforeseen economic impacts.
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ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[53] Luowei Zhou, Chenliang Xu, and Jason J Corso. To-
wards automatic learning of procedures from web in-
structional videos. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

20098


