
Locomotion-Action-Manipulation:
Synthesizing Human-Scene Interactions in Complex 3D Environments

Jiye Lee
Seoul National University

kay2353@snu.ac.kr

Hanbyul Joo
Seoul National University

hbjoo@snu.ac.kr

Figure 1: Our system, LAMA, produces high-quality and realistic 3D human motions that include locomotion, scene interac-
tions, and manipulations within a given 3D scene and designated interaction cues.

Abstract

Synthesizing interaction-involved human motions has
been challenging due to the high complexity of 3D environ-
ments and the diversity of possible human behaviors within.
We present LAMA, Locomotion-Action-MAnipulation, to
synthesize natural and plausible long- term human move-
ments in complex indoor environments. The key motiva-
tion of LAMA is to build a unified framework to encom-
pass a series of everyday motions including locomotion,
scene interaction, and object manipulation. Unlike existing
methods that require motion data “paired” with scanned
3D scenes for supervision, we formulate the problem as
a test-time optimization by using human motion capture
data only for synthesis. LAMA leverages a reinforcement
learning framework coupled with a motion matching al-
gorithm for optimization, and further exploits a motion
editing framework via manifold learning to cover possi-
ble variations in interaction and manipulation. Through-
out extensive experiments, we demonstrate that LAMA
outperforms previous approaches in synthesizing realistic
motions in various challenging scenarios. Project page:
https://jiyewise.github.io/projects/LAMA/.

1. Introduction
Synthesizing interactions within real-life 3D environ-

ments has been a challenging research problem due to its

complexity and diversity. The spatial constraint arising from
real-life 3D environments where many objects are cluttered
makes motion synthesis highly constrained and complex.
Furthermore, the nearly indefinite diversity of possible spa-
tial arrangements of the 3D environment and human inter-
action behaviors makes generalization in synthesis difficult.

Due to the wide range of technical challenges in-
volved in human-scene interactions, previous approaches
have focused on sub-problems, such as (1) modeling static
poses [24, 66, 68, 16, 61, 45, 69] or (2) human ob-
ject interactions with a single target object or interaction
type [48, 67, 64, 49, 50, 44, 63, 10]. More recent meth-
ods [55, 54, 14] extend to synthesizing dynamic interaction
motions in real-world 3D scenes, where they use “scene-
paired” motion datasets [15] in which motion is simultane-
ously captured with the surrounding 3D environment. As
such paired dataset is rare and difficult to scale up, the per-
formance of these methods is fundamentally limited in fully
covering the complexity and diversity of human interaction
in real-world 3D scenes.

In this paper, we present LAMA, Locomotion-Action-
MAnipulation, to synthesize natural and plausible long-
term human motions in complex indoor environments. The
key motivation of LAMA is to build a unified framework
covering a series of everyday motions within real-world
3D scenes: locomotion through cluttered areas, interaction
with the scene, and manipulation of objects. Unlike previ-
ous approaches [55, 14] that use a “scene-paired” motion

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9663

dataset for supervision, we formulate it as a test-time opti-
mization by utilizing only human motion capture data. Ex-
ploiting reinforcement learning (RL) as a tool for optimiza-
tion, we present an RL-based framework coupled with a
motion matching algorithm [9, 5] to synthesize locomotion
and scene interaction seamlessly while adapting to com-
plex 3D scenes with collision avoidance handling. The ob-
ject manipulation in our framework is performed via a mo-
tion editing approach on top, by learning an autoencoder-
based motion manifold space [19]. As a test-time optimiza-
tion framework, LAMA is applicable to any 3D scene sce-
narios (e.g., public datasets or any newly scanned scenes).
Through extensive quantitative and qualitative evaluations
against existing methods, we demonstrate that our method
outperforms [55, 14] in various challenging scenarios.

Our contributions are summarized as follows: (1) The
first method to generate realistic long-term motions com-
bined with locomotion, scene interaction, and manipula-
tion in complex 3D scenes without “paired” datasets; (2)
A novel test-time optimization framework requiring hu-
man motion capture data only by incorporating a reinforce-
ment learning framework coupled with motion matching,
equipped with well-designed state and rewards for collision
avoidance and scene interactions; (3) the state-of-the-art
motion synthesis quality with longer duration (near 10 sec);
(4) A newly captured and polished motion capture dataset
including locomotion and action (e.g., sitting) suitable for
motion matching.

2. Related Work
Generating Human-Scene Interactions. Generating

natural human motion has been a widely researched topic
in the computer vision community. Early methods focus on
synthesizing or predicting human movements by exploiting
neural networks [12, 11, 34, 34, 37, 51, 53, 43]. However,
these approaches primarily address the synthesis of human
motion itself, without taking into account the surround-
ing 3D environments. Recent approaches begin to tackle
modeling and synthesizing human interactions within 3D
scenes, or with objects. Many focus on statically posing hu-
mans within the given 3D environment [24, 66, 68, 15],
by generating human scene interaction poses from vari-
ous types of input including object semantics [16], im-
ages [20, 65, 62, 61, 23, 22], and text descriptions [45, 69].

Recently, there have been approaches to synthesize dy-
namic human-object interactions (e.g., sitting on chairs, car-
rying boxes). Starke et al. [48] introduce an autoregressive
learning framework with object geometry based environ-
mental encodings to synthesize human-object interactions.
Although the encoding includes information on multiple
objects within a scene, as demonstrated in [14], no explicit
module for navigating through cluttered 3D scenes exists
in [48]. Later work [14, 67] extends this by synthesizing

Figure 2: Overview of LAMA.

motions conditioned with variations of objects and contact
points. Other approaches [64, 49, 59, 50, 44, 63, 70] focus
on generating natural hand movements for manipulation,
which is extended by including full body motions [49, 59].
Physics-based character control to synthesize human-object
interactions has been also explored in [38, 10, 8, 44, 63, 30].
Although these methods cover a variety of human-object in-
teractions, most of them focus on a specific interaction type
or the relationship between the human and the target object
without long-term navigation in cluttered 3D scenes.

More recent approaches include generating natural hu-
man scene interactions in cluttered 3D scenes [55, 54, 6,
56], closely related to ours. These methods are trained us-
ing human motion datasets paired with 3D scenes, which re-
quire both ground truth motion and simultaneously captured
3D scenes for supervision. Due to difficulties in acquiring
such data, some methods exploit synthetic datasets [6, 56],
data fitted from depth videos [55], or motion snapshots with
short duration (1-3 sec) [57]. In previous approaches [14,
54], navigation in cluttered environments is often performed
by a separate module via path planning (e.g., A∗ algorithm)
by approximating the volume of a human as a cylinder.
These path planning based methods approximate the spatial
information of the scene and the body and therefore have
limitations under highly complex conditions.

Motion Synthesis and Editing. Synthesizing natural
human motions by leveraging motion capture data has also
been a long-researched topic in computer graphics. Some
approaches [25, 36] construct motion graphs, where plau-
sible transitions are inserted as edges, and motion synthe-
sis is done by traversing through the graph. Similar ap-
proaches [29, 46] connect motion patches to synthesize
interactions in a virtual environment or multi-person in-
teractions. Due to its versatility and simplicity, variations
have been made to the graph-based approach, such as mo-
tion grammar [21] which enforces traversing rules in the
motion graph. Motion matching [5, 9] can also be under-
stood as a special case of motion graph traversal, where
the plausible transitions are not precomputed but searched
during runtime. Recent advances in deep learning allow to
leverage motion capture data for motion manifold learn-
ing [19, 47, 18]. Autoregressive approaches based on varia-
tional autoencoders (VAE) [35, 43] and recurrent neural net-
works [27, 13, 39] are also used to forecast future motions
based on past frames. These frameworks are generalized to
synthesize a diverse set of motions including locomotion

9664

on terrains [18] mazes [35], action-specified motions [43],
and interaction-involved sports [27, 39]. Neural network-
based methods are also reported to be successful in various
motion editing tasks such as skeleton retargeting [2], style
transfer [19, 3], and in-betweening [13].

Reinforcement learning (RL) has also been successful in
combination with both data-driven and physics-based ap-
proaches for synthesizing human motions. Combined with
data-driven approaches, RL serves as a control module that
generates corresponding motions to a given user input by
traversing motion graphs [26], latent space [33, 52, 35],
and precomputed transition tables [28]. Deep reinforcement
learning (DRL) has been widely used as well to synthesize
physically plausible movements with a diverse set of motor
skills [40, 39, 31, 4, 58, 42, 41, 30]. The key idea of these
methods comes from imitation learning, where the control
policy in DRL is optimized to actuate the character based
on the character’s physical state, to meet the goal of track-
ing the given reference motion in a physically simulated en-
vironment.

3. Method
3.1. Overview

Our system, dubbed as LAMA, outputs a sequence of
human poses M = {mt}Tt=1 by taking the 3D scene
W, desired interaction cues Φ, and initial state ginit =
(p0

root, r
0
root) as inputs:

M = LAMA(W,Φ,ginit), (1)

where p0
root ∈ R3 and r0root ∈ so(3) represent the global

position and orientation of the character’s root respectively
at initial (i.e., t = 0). The output posture at time t, mt =
(pt

root, r
t
root, r

t
1, ..., r

t
J) ∈ R3J+6, is represented by a con-

catenated vector of global position and orientation of the
root, and the local joint orientations of J joints where
each j-th joint is in angle-axis representations rtj ∈ so(3).
Throughout our system, the skeleton tree structure and joint
offsets are fixed as shown in Fig. 5 (a). We represent the
3D scene W = {wi} as a set of 3D object and scene
meshes, including the background scene mesh and other ob-
ject meshes targeted for manipulation.

The interaction cues, Φ = [ϕA, ϕM], represent the ex-
pected goal that the output needs to fulfill, and consist of
the action cue ϕA for the action task (e.g., sitting) and the
manipulation cue ϕM for the manipulation task. The action
cue ϕA = {qroot, rroot,qrFoot,qlFoot, } indicates desired
position and orientation of the root, and the positions of the
left foot and right foot respectively (i.e., qj ∈ R3). The foot
positions are optional and can be automatically determined
if not provided. ϕA can be manually chosen to instruct the
character or can be automatically given via an off-the-shelf
estimator such as GoalNet in [14]. The manipulation cue

ϕM = {qt
j}j∈JM

indicates desired locations of selected
joints JM for control, which is mainly used in the motion
editing procedure (Sec. 3.6). For example, ϕM can specify
the hand joint trajectory to perform the opening laptop mo-
tion in Fig. 1 and Fig. 6. Examples of the 3D scene W,
action cue ϕA and manipulation cue ϕM are in Fig. 6 (left).

LAMA is designed via a three-level system composed
of action controller A, motion synthesizer S, followed by
a manifold-based motion editor E. The locomotion and ac-
tion parts are seamlessly performed via the action controller
A and synthesizer S. The essential idea in our design is to
combine the RL framework with motion matching [9, 5] to
synthesize realistic human motions while fulfilling the de-
sired scene interaction tasks. By taking 3D scene W, action
cue ϕA, and initial state ginit as input, the action controller
A makes the use of RL as a way of test-time optimization
to synthesize corresponding motion. A control policy π is
optimized 1 to sample an action at time t, π(at|st,W, ϕA),
where at indicates the plausible next action containing pre-
dicted action types and short-term future forecasting. st is
the state cue to represent the current status of the human
character including its body posture, surrounding scene oc-
cupancy, and the targeting action cue. Intuitively, action
controller A is optimized to generate plausible next action
at by considering the current character-scene state st. The
generated action signal at from the action controller A is
provided as input to the motion synthesizer S, which then
determines the posture at the next time step mt+1, i. e.,
S(mt,at) = mt+1. The character’s next state st+1 can be
computed again from mt+1, which is subsequently taken by
the action controller A as an input for the next time frame.

The initial output motion M synthesized by A and S
is followed by a motion editor E(M) = M̃, where M̃ =
{M̃t}Tt=1 is the edited motion. The goal of the editing mod-
ule E is to (1) post-process M to fit into diverse objects
targeted for action task ϕA (e.g., sitting on a chair with
different heights), and (2) perform human-object manipula-
tion instructed by ϕM (e.g. moving objects, opening doors).
Fig. 2 shows the overview of LAMA.

3.2. Scene-Aware Action Controller

Unlike previous approaches [56, 14] that use path plan-
ning for navigation and a learning-based module trained
with a scene-paired motion dataset for interaction, our ac-
tion controller A performs locomotion and desired actions
seamlessly by fulfilling the action cue ϕA and avoiding col-
lisions in the 3D scene W. Importantly, given the scene W,
action ϕA and initial state ginit as inputs, our action con-
troller is directly optimized to choose the most plausible
motion clip in our motion database at each state, synthesiz-
ing natural human motions while taking the 3D scene into

1We use the term “optimized” rather than “learned” for the policy since
we perform a test-time optimization.

9665

account without any scene-paired motion dataset or training
procedure. Intuitively, given the current state st, the goal
of the action controller is to output the best next action at
which is used to search the next motion clip in Motion Syn-
thesizer S.

State. The state st = ψ(mt−1,mt,W, ϕA) at time t is
a feature vector representing the current status of the hu-
man character, where ψ is the function to compute the state
from other inputs. st = (sbodyt , sscenet , sintert) is composed
of body configuration sbody , scene occupancy sscene, and
desired current target interaction sinter. Body configuration
sbody = {r, ṙ, θup, h,pe}, where r, ṙ ∈ RJ×6 are the joint
rotations and velocities respectively for the J joints exclud-
ing the root in 6D representations [71], θup ∈ R is the up
vector of the root (represented by the angle w.r.t the Y-axis),
h ∈ R is the root height from the floor, and pe ∈ Re×3 is the
end-effector position in person-centric coordinate (where e
is the number of end-effectors). sscene = {gocc,groot} in-
cludes scene occupancy information in the floor plane, as
shown in Fig. 4. gocc ∈ Rn2

represents the occupancy grid
on the floor plane of neighboring n cells around the agent
and groot ∈ R2 denotes the current global root position of
the character in the discretized grid plane. Note that, while
we consider the 2D floor grid for efficiency rather than 3D,
the 3D scene is still considered via our collision reward term
in Sec. 3.4. sinter represents the action cue the character is
targeting, that is sinter = ϕA.

Action. Given the current status of the character st,
the control policy π outputs the feasible action at =
(atypet ,afuturet ,aoffsett). atypet provides the probabilities
of the next action type among possible actions (e.g., walk,
sit, or stop), determining the transition timing between ac-
tions (e.g., from locomotion to sitting). afuturet predicts fu-
ture motion cues such as plausible root position for the next
10, 20, and 30 frames. Posture offset aoffsett is intended
to modify the raw motion data searched from the motion
database in motion synthesizer module S. Intuitively, our
optimized control policy generates a posture offset aoffsett

to alter the closest plausible raw posture chosen in the
database. This enables the character to perform more plausi-
ble scene-aware human poses only with human motion data.
More details are addressed in Sec. 3.3.

3.3. Motion Synthesizer

By taking the current posture mt and actions signal at
from the action controller A as inputs, the motion synthe-
sizer S produces the next plausible posture: S(mt,at) =
mt+1. As the first step, the motion synthesizer searches for
motion from a motion database that best matches the clos-
est motion feature, then modifies the searched raw motion
to be more suitable to the scene. To this end, the motion
synthesizer’s output mt+1 is in turn fed into the action con-
troller recursively. We exploit a modified version of the mo-

Figure 3: Visualization of the relationship between the Ac-
tion Controller and the Motion Synthesizer.

tion matching algorithm [5, 9, 17] for the first step of mo-
tion synthesis. In motion matching, motion synthesis is per-
formed periodically by searching the most plausible next
shot motion segments from a motion database, and com-
positing them into a long connected sequence.

Motion features. Motion feature yt represents the char-
acteristic of each frame in the short motion segment and is
computed as f(m) = yt = {{pj}, {ṗj}, θup, c,ofuture}.
From a posture m, the positions and velocities pj, ṗj ∈ R3

are extracted for the selected joints j ∈ {Head,Hand,
Foot}, which are defined in a person-centric coordinate
of m. θup ∈ R3 is the up-vector of the root joint, and
c ∈ {0, 0.5, 1} indicates automatically computed foot con-
tact cues of the left and right foot (0 for non-contact, 1 for
contact, 0.5 for non-contact but close to the floor within a
threshold). ofuture = {{p∆t

root}, {r∆t
root}} contains the cues

for short-term future postures, where p∆t
root and r∆t

root are
the position and orientation of root joint at ∆t frames later
from the current target frame. ofuture are computed in 2D
XZ plane in person-centric coordinate of the current target
motion m, and thus p∆t

root, r
∆t
root ∈ R2. The selected fu-

ture frames are action-type specific, and for locomotion, we
extract 10, 20, and 30 frames in the future (at 30Hz) fol-
lowing [9]. Intuitively, the motion feature extracts the target
frame’s posture and temporal cues by considering neighbor-
ing frames. For efficiency, we pre-compute motion features
yt for every frame of the motion clip in the database.

Motion feature xt of the current state of the character, or
the query feature denoted, is also computed in the same way
based on posture mt−1, mt and afuturet produced by the
action controller, that is xt = f(mt−1,mt,a

type
t ,afuturet).

The component afuturet serves as ofuture in the query fea-
ture, which can be understood as the action controller pro-
viding cues for predicted future postures.

Motion searching and updating. Given the query mo-
tion feature xt and the motion features yk in the motion
database (where k is the index of the clip), motion searching
finds the best matches k∗ in the motion database by com-
puting the weighted euclidean distances between the query
feature and motion database features:

k∗ = argmin
k

||wT
f (xt − yk)||2, (2)

9666

Figure 4: Visual representation of the occupancy grid. Grid
on the right represents top view. Gray and black are occu-
pied cells while blue indicates the root.

where wf is a fixed weight vector to control the impor-
tance of feature elements. After finding the best match m̂k∗

from the motion database, the motion synthesizer updates
it with the predicted motion offset aoffsett from at, that is
τ(m̂k∗+1,aoffset) = mt+1, where m̂k∗+1 is the next plau-
sible character posture and τ is an update function to update
selected joints in m̂k∗+1. In practice, motion searching is
performed periodically (e.g., every N-th frame) to make the
synthesized motion temporally more coherent.

3.4. Optimizing Scene-Aware Action Controller

The objective of our reinforcement learning framework
is to optimize the policy by maximizing the discounted cu-
mulative reward. In our method, we design the rewards to
guide the character to perform both locomotion and de-
sired actions (e.g., sitting) under common constraints (e.g.,
smooth transitions, and collision avoidance). Our reward
function consists of the following terms:

Rtotal = wtrRtr + wactRact + wregRreg, (3)

where wtr, wact, and wreg are the weights to balance among
reward terms. The trajectory reward Rtr is obtained when
the character moves towards action ϕA while meeting the
spatial constraints from the 3D scene, described below:

Rtr = rcoli · rpos · rroot, where (4)

rcoli = exp

(
− 1

σ2
coli

∑
b∈B

wbρ(b,W)

)
, (5)

rpos = exp

− 1

σ2
root

∑
j∈J

∥p0 − qj∥2
 , (6)

rvel =

{
1 when ṗroot ≥ σth

σvel∥ṗ0∥2 else.
(7)

The collision-avoidance reward rcoli penalizes collisions
with 3D scenes. As depicted in Fig. 5 (a), body limbs in
the skeletal structure are represented as a set of box-shaped
nodes B with a fixed width, where each element b ∈ B is
a 3D box representation of legs and arms (we exclude torso
and head). The function ρ(b,W) detects the collision be-
tween edges of a box-shaped node b with 3D scene W and
returns the number of intersection points. (Fig. 5 (b)). wb

Figure 5: (a) Skeleton with joints and box nodes. (b) Auto-
matically detected collision points (colored as red).

is the weight to control the importance of each limb b. The
collision-avoidance reward is maximized when no penetra-
tion occurs, enforcing the policy π to generate adequate ac-
tion at to avoid physically implausible penetrations. rpos is
obtained when the agent navigates toward targeting action
cue ϕA. rvel encourages the character to move by penaliz-
ing when the root velocity ṗroot is less than a threshold σth.
σcoli, σroot, and σvel are weights to control balance.

Action reward Ract encourages to fulfill the given action
cue ϕA = {qroot, rroot,qrFoot,qlFoot}:

Ract = rinter · r∆t · r∆v, where

rinter = exp

− 1

σ2
inter

∑
j∈JA

∥pj − qj∥2
 ,

r∆t = exp
(
−σ2

∆tCtr

)
, r∆v = exp

(
−σ2

∆vCvel

)
(8)

where interaction reward term rinter is given when the char-
acter switches from navigation to corresponding action to
ϕA and is maximized when the performed action meets the
positional constraints of ϕA. Smoothness reward terms r∆t

and r∆v minimize the transition cost, which is based on the
subpart of the feature distances defined in Eq. 2, where Ctr

is the weighted feature distances of pj , θup, and c, and Cvel

is from ṗ. These are intended to discourage the character
from making abrupt changes.

Regularization reward Rreg penalizes the aoffsett exces-
sively modifying the original posture searched in the motion
database of S, denoted as m̂t, and maintains temporal con-
sistency among frames.

Rreg = exp
(
− 1

σ2
reg

(
∥m̂t −mt∥2 + ∥mt −mt−1∥2

))
.

As reported in [32, 39], multiplying rewards with consis-
tent goals can enforce all reward terms to be simultaneously
met. We also use early termination [40] and limited action
transitions to accelerate learning. Details are in supp. mat.

3.5. Generalizing Action Controller

While our major focus of the use of RL is for a test-
time optimization given a single target task, the optimized
policy can handle variations of the task to some extent, as an
advantage of the nature of RL. As shown in our experiments
in Sec. 4.4, we demonstrate that our optimized controller

9667

can be directly used for various action cues ϕA and initials
ginit without further optimization for the same scene W.

As an extension of our framework, we can make our
controller more generalized by optimizing the policy with
random variations of inputs, ginit and ϕA per each episode
during policy optimization. This procedure is more similar
to the usual RL framework, where the policy is “learned”
in advance for the target scene W, and applied to the pro-
vided inputs during inference. We also demonstrate that our
controller can handle a wider range of input variations via
this augmentation process. This extension of our framework
can provide better efficiency for the cases where varying
tasks are instructed under a fixed 3D scene W. As shown
in Sec. 4.4, via the generalization process we can directly
use the policy for diverse inputs without further optimiza-
tion. Or, if necessary, efficiently fine-tuning the policy is
also possible. Note that this extension still differs from other
learning-based methods [55, 14] in that we do not require
any scene-paired motion datasets or other supervision.

3.6. Task-Adaptive Motion Editing

To cover the diversity in interactions, we include a task-
adaptive motion editing module in our motion synthesis
framework. In particular, in the case of object manipulation,
manipulation cue ϕM is provided to enforce an end-effector
(e.g., a hand) to follow the desired trajectory expressing the
manipulation task on the target object, as in Fig 6. The ma-
nipulation cue ϕM can be provided via any possible way,
and in our experiments we produce it semi-automatically.
We compute the desired trajectory by simulating the tar-
get articulated object’s motion [60] by considering a contact
point on the surface of the object mesh.

Not only the edited motion M̃ = E(M) should ful-
fill the sparsely given positional constraints, it should also
preserve the temporal consistency and spatial correlations
among joints to maintain its naturalness. We adopt the mo-
tion manifold learning approach with convolutional autoen-
coders [19] to compress motion to a latent vector within a
motion manifold space. Motion editing is done by search-
ing an optimal latent vector among the manifold. For train-
ing the autoencoder, motion sequence, which we denote as
X converted from M, is represented as a time-series of
postures by concatenating joint rotations in 6D represen-
tations [71], root height, root transform relative to the pre-
vious frame projected on the XZ plane, and foot contact
labels. The encoder and decoder module are trained based
on reconstruction loss, ||X − Ψ−1(Ψ (X)) ||2, where Ψ is
the encoder and Ψ−1 is the decoder.

The latent vector from the encoder z = Ψ(X) from the
motion manifold space preserves the spatiotemporal rela-
tionship among joints and frames found in natural human
motions. As demonstrated in [19], editing motions within
the manifold space ensures the edited motion to be realistic

Figure 6: Visual representation of system input Φ,W and
output M̃. On the left, action cue ϕA and manipulation cue
ϕM are shown as red and cyan, respectively. The right is the
synthesized motion M̃.

and coherent. The optimal latent vector z∗ is found by mini-
mizing a loss function L by constraining the output motions
to follow the manipulation constraint ϕM . We also include
additional regularizers in L so that the output motion can
maintain the foot locations and root trajectories of the orig-
inal motion. See supp. mat. for more details on L. Finally,
the edited motion M̃ can be computed via Ψ−1(z∗).

4. Experiments

We evaluate LAMA’s ability on synthesizing long-term
motions in real-world 3D scenes with various human-scene
and object interactions involved. We exploit an extensive set
of quantitative metrics and perceptual studies for evaluation.

Dataset. For constructing the database for the motion
synthesizer, we capture a new motion capture dataset in-
volving locomotion and action. Motion is captured with
IMU-based system XSens MVN Link [1]. The collected
data include high quality human motion with locomotion
and interaction in various scenarios, such as walking around
at different angles and sitting on a chair with random start-
ing points. Captured motion data are post-processed to be
suitable for motion matching. All the data used in this sys-
tem are motion capture data (in bvh format) with no scene
or object related prior information. We use PROX [15] and
Matterport3D [7] datasets for 3D scenes and SAPIEN [60]
object meshes for manipulation. See supp. mat. for details.

4.1. Experimental Setup

Evaluation metrics. As our system does not rely on super-
vision for motion synthesis, quantifying synthesized quality
is challenging due to the lack of ground-truth data or official
evaluation metrics. We try to evaluate in terms of physical
plausibility and naturalness.
• Physical Plausibility: We use contact and penetration
metrics to evaluate the physical plausibility of the synthe-
sized motions. Contact penalizes the foot movement when
the foot is in contact. Since foot contact is a critical element
in dynamics, the contact-based metric is closely related to
determining the physical plausibility of motions. Penetra-
tion loss (“Penetration” in Table 1) measures implausible
cases when the body penetrates the objects in the scene. We

9668

Figure 7: Examples of motions which include locomotion, action, and manipulation. Top: opening, closing a trash can lid and
sitting on a chair. Bottom: opening door and sitting on a chair.

Method Contact Penetration Naturalness

Wang et al. [55] 6.32 2.75 16.27
Wang et al. [55]* 22.98 14.73 -
SAMP [14] 11.75 7.18 42.04
LAMA (ours) 4.34 1.30 100

Table 1: Baseline Comparison Foot contact (cm, ↓) aver-
aged over all frames and penetration (percentage, ↓) score.
Naturalness score (percentage, ↑) indicates selection ratio
relative to LAMA (for LAMA, set to 100). Wang et al. with
an asterisk indicates without post-processing.

compute penetration metric by counting frames where in-
tersection points (Sec. 3.2) go over a certain threshold. 2

• Naturalness: We evaluate the naturalness of the synthe-
sized motion via perception study (A/B test) on Amazon
Mechanical Turk. The motions used for testing are ren-
dered with the exact same view and 3D characters, making
them indistinguishable from the appearance side. Human
observers are asked to choose a more natural motion based
on two criteria: (1) the character movement is human-like
and (2) the movement is plausible in the given scene. De-
tails of the study setup are in supp. mat.

Baselines. We compare LAMA with the state-of-the-art
methods as well as variations of ours.
• Wang et al. [55] is the state-of-the-art long-term mo-
tion synthesis method for human-scene interactions within
a given 3D scene. We use the author’s code for evaluation.
As Wang et al. post-processes synthesized motion to im-

210 for legs and 7 for arms

Figure 8: Comparison with LAMA (left) and LAMA with-
out collision reward (right). Without collision reward the
character fails to avoid collisions with obstacles (red).

prove foot contact and reduce collisions which are directly
related to our metric, we both compare Wang et al. with and
without post-processing.
• SAMP [14] generates interactions that can be general-
ized not only for object variations but also random starting
points within a given 3D scene. SAMP explicitly exploits
path planning to navigate through cluttered 3D scenes.
• Ablative Baselines We perform ablation studies on the
action controller and motion editing module. We perform
ablation studies on the scene reward rcoli, and action offset
aoffsett to present the contribution of both terms on gen-
erating scene-aware motions. We also compare our method
without the transition reward r∆t and r∆v terms (Sec. 3.2)
of the action controller. Finally, we demonstrate the strength
of our motion editing module to edit motions naturally
(Sec. 3.6) by comparing it with inverse kinematics (IK).

4.2. Comparisons with Previous Work

Evaluation Setup and Details. For comparison with
baselines, we generate 50 motion sequences in total with
random input ginit and ϕA from 4 PROX 3D scenes used

9669

Figure 9: Comparison with LAMA (left) and LAMA with-
out action offset (right). The character in original LAMA
moves forward while tilting its arms to avoid collision with
walls, while in LAMA without action offset does not.

in testing for Wang et al. [55]. Since our method is based
on test-time optimization without explicit training and test-
ing split, our action controller is optimized per each input,
and no prior information on inputs is given before policy
optimization. It takes 4 to 20 minutes to optimize a pol-
icy and 3 to 4 minutes (500 epochs) for optimization in
the motion editing module. We only consider locomotion
and action (walk-to-sit) motions and do not include manip-
ulation as the baselines do not tackle manipulation. Con-
tact metric is measured by the position difference of foot
in contact, where contact is automatically labeled based on
foot velocity. To compute penetration metric in a fair way,
SMPL-X outputs of Wang et al. and SAMP are converted to
box-shaped skeletons as in ours and intersection points are
counted. Table 1 shows the results.

Physical Plausibility. As shown, LAMA outperforms
both Wang et al. and SAMP in physical plausibility. Wang et
al. post-processes the synthesized motion to ensure contact
and reduce penetration, yet LAMA still outperforms. More-
over, our RL-based method with motion matching shows
its advantage in collision avoidance in cluttered 3D scenes
compared to path-planning based navigation in SAMP.

Naturalness. For perception study, we build two sep-
arate sets for comparison with Wang et al. and SAMP,
and each testset is done with non-overlapping participants.
For 50 motion sequences per set, 5 unique responses are
collected per sequence for comparison. With Wang et al.,
LAMA received 215 votes while Wang et al received 35
(relative ratio 16.27%). With SAMP, LAMA received 176
votes, SAMP received 74 (relative ratio 42.04%). The re-
sults demonstrate that our method greatly outperforms base-
lines in terms of naturalness as well.

4.3. Ablation Studies

Ablation Studies on Action Controller. For quantita-
tive ablations, we compare the original LAMA and the
LAMA without collision reward rcoli. Ablation studies are
performed in 5 PROX scenes. In original LAMA, penetra-
tion occurs in only 1.1% of the frames among the whole
motion sequence, while the ratio is 15.7% in LAMA with-
out rcoli. The result supports that the rcoli enforces the
action controller to synthesize motions according to the
given 3D scene. Example results are shown in Fig. 8. We

Figure 10: (a) Comparison with LAMA (top) and LAMA
without manifold and replaced with IK (bottom) of a char-
acter opening the toilet lid. (b) Comparison with LAMA
(top) and LAMA without motion editing (bottom) in sitting.

Figure 11: Examples of synthesized manipulation motions.
The target object for manipulation is colored as orange, the
character purple at start and aqua at the end. Left: walking
and opening a toilet lid. Right: walking and opening doors.

also qualitatively compare the contribution of other com-
ponents in the action controller. As seen in Fig. 9, without
action offset aoffsett the character does not tilt its limbs to
avoid penetration with objects or walls, as the raw motion
brought from the motion database does not have any infor-
mation about the scene. This shows that aoffsett also plays
a role in generating detailed scene-aware poses. Moreover,
the results without smoothness rewards r∆t and r∆v are not
smooth enough, showing unnatural and abrupt movements.

Ablation Studies on Task-Adaptive Motion Editing.
We ablate our motion editing module by replacing it with
an alternative approach via IK. Same as ϕM , only the tra-
jectory of a joint in contact (e.g., the right hand) is given
to the IK solver. As shown in Fig. 10 (left), LAMA with
motion editing module shows natural moves such as bend-
ing knees and tilting hips to make contact. However, results
with IK show awkward poses as such spatiotemporal corre-
lations in natural human motions are not reflected in the IK
solver. Furthermore, as seen in Fig. 10 (right), the motion
editing module makes the character properly sit in chairs
with different shapes.

4.4. Robustness Test of Action Controller

As described in Sec. 3.5, utilizing RL for test-time op-
timization allows the optimized policy to handle variations
in input. In this experiment, we aim to measure the extent

9670

Figure 12: Visualization of the range of a policy can cover,
with and without generalization. Colored points indicate
initial starting point ginit where the policy can synthesize
motions meeting the action cue (white).

to which a policy optimized for a single task ϕA and initial
ginit can generalize to varying inputs. To test the robustness
with varying initials and tasks, we apply the optimized pol-
icy to all possible input variations in the scene and count the
number of inputs the policy succeeds in synthesizing. From
all possible initials sampled, the colored points in Fig 12
illustrate initial starting locations where the policy can syn-
thesize motions meeting the given action cue ϕA. As shown
in Table 2, a policy initially optimized for a single set of
inputs (red in Fig. 12) can successfully synthesize motions
even with distinct set of inputs without any additional opti-
mization. Furthermore, to test the robustness of the gener-
alized policy (described in Sec. 3.5), we perform the same
test with the policy trained with our augmentation strategy
during optimization. As shown above, it shows even more
robustness in variations as expected.

We further demonstrate the generalization ability among
unseen scenes with a policy optimized with the augmenta-
tion strategy. The generalized policy (Sec. 3.5) optimized
in scene W0 (scene in Fig. 12) are tested on two unseen
scenes W1 and W2 from PROX [15] shown in Fig. 13. As
demonstrated in Table 3, an generalized policy (Sec. 3.5)
optimized with scene W0 can be generalized to some ex-
tent to scene W1, as W0 and W1 shares a similar structure
(sofa and chairs around a table). However, as expected, the
generalization ability decreases when tested on a totally dis-
tinct scene W2.

Note that the inference time here is about 0.2-3 sec per
input as no further policy optimization is required. Details
of the test setup are in supp. mat.

5. Discussion

We present a unified framework to synthesize human
motions within complex real-world 3D scenes with motion-
only datasets. We formulate it as a test-time optimization,

Method ϕ1A ϕ2A ϕ3A ϕ4A

Original Policy 10.5% 25.9% 25.5% 13.9%
Generalized Policy 40.2% 81.7% 77.0% 71.7%

Table 2: Robustness Test. Ratio of ginit (percentage, out
of total valid ginit within the scene) which the optimized
policy succeeds in synthesizing motion fulfilling ϕnA.

Figure 13: Robustness test on unseen scenes W1 and W2.
Colored points represent initials where the policy can syn-
thesize motions meeting the action cue.

Method W1, ϕ
1
A W1, ϕ

2
A W2, ϕ

1
A W2, ϕ

2
A

- 70.5% 53.4% 11.9% 21.2%

Table 3: Robustness Test in Unseen Scenes. Ratio of ginit

(percentage, out of total valid ginit within the scene) which
the optimized policy succeeds in synthesizing motion ful-
filling ϕnA in scene Wn.

leveraging RL with motion matching for realistic motion
synthesis, and also utilize motion manifold to further cover
the diversity of manipulation behaviors. Our method has
been thoroughly evaluated in diverse scenarios, outperform-
ing previous approaches [55, 14].

Despite RL is used for test-time optimization, a single
policy can cover variations in input and can also be gener-
alized for extensive variations. Combining this framework
with supervised learning for further efficiency increase can
be an interesting future research direction. Furthermore, al-
though we assume a fixed skeleton throughout the system,
interaction motions may change depending on the charac-
ter’s body shapes and sizes. We leave synthesizing motions
on varying body shapes as future work.

Acknowledgements. This work was supported by SNU-
Naver Hyperscale AI Center, SNU Creative-Pioneering Re-
searchers Program, NRF grant funded by the Korea govern-
ment (MSIT) (No. 2022R1A2C2092724), and IITP grant
funded by the Korea government (MSIT) (No.2022-0-
00156 and No.2021-0-01343). H. Joo is the corresponding
author.

9671

References
[1] Xsens mvn link. https://www.movella.com/

products/motion-capture/xsens-mvn-link. 6
[2] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-

Hornung, Daniel Cohen-Or, and Baoquan Chen. Skeleton-
aware networks for deep motion retargeting. ACM Trans.
Graph, 39(4), 2020. 3

[3] Kfir Aberman, Yijia Weng, Dani Lischinski, Daniel Cohen-
Or, and Baoquan Chen. Unpaired motion style transfer from
video to animation. ACM Trans. Graph., 39(4), 2020. 3

[4] Kevin Bergamin, Simon Clavet, Daniel Holden, and
James Richard Forbes. Drecon: data-driven responsive con-
trol of physics-based characters. ACM Trans. Graph., 38(6),
2019. 3

[5] Michael Büttner and Simon Clavet. Motion matching - the
road to next gen animation. In Proc. of Nucl.ai, 2015. 2, 3, 4

[6] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai,
Minh Vo, and Jitendra Malik. Long-term human motion pre-
diction with scene context. In ECCV, 2020. 2

[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In 3DV, 2017. 6

[8] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng.
Learning to sit: Synthesizing human-chair interactions via
hierarchical control. In AAAI, 2021. 2

[9] Simon Clavet. Motion matching and the road to next-gen
animation. In Proc. of GDC, 2016. 2, 3, 4

[10] Haegwang Eom, Daseong Han, Joseph S Shin, and Junyong
Noh. Model predictive control with a visuomotor system
for physics-based character animation. ACM Trans. Graph.,
39(1), 2019. 1, 2

[11] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
tendra Malik. Recurrent network models for human dynam-
ics. In ICCV, 2015. 2

[12] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe
Yearsley, and Taku Komura. A recurrent variational autoen-
coder for human motion synthesis. In BMVC, 2017. 2

[13] Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and
Christopher Pal. Robust motion in-betweening. ACM Trans.
Graph, 39(4), 2020. 2, 3

[14] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito,
Jimei Yang, Yi Zhou, and Michael Black. Stochastic scene-
aware motion prediction. In ICCV, 2021. 1, 2, 3, 6, 7, 9

[15] Mohamed Hassan, Vasileios Choutas, Dimitrios Tzionas,
and Michael J. Black. Resolving 3D human pose ambigu-
ities with 3D scene constraints. In ICCV, 2019. 1, 2, 6, 9

[16] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios
Tzionas, and Michael J Black. Populating 3d scenes by
learning human-scene interaction. In CVPR, 2021. 1, 2

[17] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and
Tiberiu Popa. Learned motion matching. ACM Trans.
Graph., 39(4), 2020. 4

[18] Daniel Holden, Taku Komura, and Jun Saito. Phase-
functioned neural networks for character control. ACM
Trans. Graph., 36(4), 2017. 2, 3

[19] Daniel Holden, Jun Saito, and Taku Komura. A deep learning
framework for character motion synthesis and editing. ACM
Trans. Graph., 35(4), 2016. 2, 3, 6

[20] Chun-Hao P Huang, Hongwei Yi, Markus Höschle, Matvey
Safroshkin, Tsvetelina Alexiadis, Senya Polikovsky, Daniel
Scharstein, and Michael J Black. Capturing and inferring
dense full-body human-scene contact. In CVPR, 2022. 2

[21] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. Motion
grammars for character animation. In Computer Graphics
Forum, volume 35, 2016. 2

[22] Nan Jiang, Tengyu Liu, Zhexuan Cao, Jieming Cui, Yixin
Chen, He Wang, Yixin Zhu, and Siyuan Huang. Chairs: To-
wards full-body articulated human-object interaction. arXiv
preprint arXiv:2212.10621, 2022. 2

[23] Yuheng Jiang, Suyi Jiang, Guoxing Sun, Zhuo Su, Kaiwen
Guo, Minye Wu, Jingyi Yu, and Lan Xu. Neuralhofusion:
Neural volumetric rendering under human-object interac-
tions. In CVPR, 2022. 2

[24] Vladimir G Kim, Siddhartha Chaudhuri, Leonidas Guibas,
and Thomas Funkhouser. Shape2pose: Human-centric shape
analysis. ACM Trans. Graph., 33(4), 2014. 1, 2

[25] Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hod-
gins, and Nancy S Pollard. Interactive control of avatars
animated with human motion data. In Proceedings of the
29th annual conference on Computer graphics and interac-
tive techniques, 2002. 2

[26] Jehee Lee and Kang Hoon Lee. Precomputing avatar be-
havior from human motion data. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, 2004. 3

[27] Kyungho Lee, Seyoung Lee, and Jehee Lee. Interactive char-
acter animation by learning multi-objective control. ACM
Trans. Graph., 37(6), 2018. 2, 3

[28] Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee.
Learning time-critical responses for interactive character
control. ACM Trans. Graph., 40(4), 2021. 3

[29] Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion
patches: building blocks for virtual environments annotated
with motion data. In ACM SIGGRAPH 2006 Papers. 2006.
2

[30] Seunghwan Lee, Phil Sik Chang, and Jehee Lee. Deep com-
pliant control. In ACM SIGGRAPH 2022 Conference Pro-
ceedings, 2022. 2, 3

[31] Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee.
Learning a family of motor skills from a single motion clip.
ACM Trans. Graph., 40(4), 2021. 3

[32] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Je-
hee Lee. Scalable muscle-actuated human simulation and
control. ACM Trans. Graph., 38(4), 2019. 5

[33] Sergey Levine, Jack M Wang, Alexis Haraux, Zoran
Popović, and Vladlen Koltun. Continuous character con-
trol with low-dimensional embeddings. ACM Trans. Graph,
31(4), 2012. 3

[34] Ruilong Li, Shan Yang, David A. Ross, and Angjoo
Kanazawa. Ai choreographer: Music conditioned 3d dance
generation with aist++. In ICCV, 2021. 2

9672

[35] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van
De Panne. Character controllers using motion vaes. ACM
Trans. Graph., 39(4), 2020. 2, 3

[36] Kovar Lucas, Gleicher Michael, and Pighin Frédéric. Motion
graphs. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, 2002. 2

[37] Julieta Martinez, Michael J Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
In CVPR, 2017. 2

[38] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval
Tassa, Leonard Hasenclever, Vu Pham, Tom Erez, Greg
Wayne, and Nicolas Heess. Catch & carry: reusable neural
controllers for vision-guided whole-body tasks. ACM Trans.
Graph., 39(4), 2020. 2

[39] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and
Jehee Lee. Learning predict-and-simulate policies from un-
organized human motion data. ACM Trans. Graph., 38(6),
2019. 2, 3, 5

[40] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
Van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans.
Graph., 37(4), 2018. 3, 5

[41] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,
and Sanja Fidler. Ase: Large-scale reusable adversarial skill
embeddings for physically simulated characters. ACM Trans.
Graph, 41(4), 2022. 3

[42] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Trans. Graph,
40(4), 2021. 3

[43] Mathis Petrovich, Michael J Black, and Gül Varol. Action-
conditioned 3d human motion synthesis with transformer
vae. In ICCV, 2021. 2, 3

[44] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui-
han Yang, Yang Fu, and Xiaolong Wang. Dexmv: Imitation
learning for dexterous manipulation from human videos. In
ECCV, 2022. 1, 2

[45] Manolis Savva, Angel X Chang, Pat Hanrahan, Matthew
Fisher, and Matthias Nießner. Pigraphs: learning interaction
snapshots from observations. ACM Trans. Graph., 35(4),
2016. 1, 2

[46] Hubert PH Shum, Taku Komura, Masashi Shiraishi, and
Shuntaro Yamazaki. Interaction patches for multi-character
animation. ACM Trans. Graph., 27(5), 2008. 2

[47] Sebastian Starke, Ian Mason, and Taku Komura. Deepphase:
periodic autoencoders for learning motion phase manifolds.
ACM Trans. Graph., 41(4), 2022. 2

[48] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.
Neural state machine for character-scene interactions. ACM
Trans. Graph., 38(6), 2019. 1, 2

[49] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim-
itrios Tzionas. Goal: Generating 4d whole-body motion for
hand-object grasping. In CVPR, 2022. 1, 2

[50] Omid Taheri, Nima Ghorbani, Michael J Black, and Dim-
itrios Tzionas. Grab: A dataset of whole-body human grasp-
ing of objects. In ECCV, 2020. 1, 2

[51] Graham W Taylor and Geoffrey E Hinton. Factored con-
ditional restricted boltzmann machines for modeling motion
style. In ICML, 2009. 2

[52] Adrien Treuille, Yongjoon Lee, and Zoran Popović. Near-
optimal character animation with continuous control. In
ACM SIGGRAPH 2007 papers. 2007. 3

[53] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,
Xunyu Lin, and Honglak Lee. Learning to generate long-
term future via hierarchical prediction. In ICML, 2017. 2

[54] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,
and Bo Dai. Towards diverse and natural scene-aware 3d
human motion synthesis. In CVPR, 2022. 1, 2

[55] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-
long Wang. Synthesizing long-term 3d human motion and
interaction in 3d scenes. In CVPR, 2021. 1, 2, 6, 7, 8, 9

[56] Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin. Scene-
aware generative network for human motion synthesis. In
CVPR, 2021. 2, 3

[57] Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang,
and Siyuan Huang. Humanise: Language-conditioned hu-
man motion generation in 3d scenes. NeurIPS, 2022. 2

[58] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A
scalable approach to control diverse behaviors for physically
simulated characters. ACM Trans. Graph., 39(4), 2020. 3

[59] Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar
Hilliges, Fisher Yu, and Siyu Tang. Saga: Stochastic whole-
body grasping with contact. In ECCV, 2022. 2

[60] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive
environment. In CVPR, 2020. 6

[61] Xianghui Xie, Bharat Lal Bhatnagar, and Gerard Pons-Moll.
Chore: Contact, human and object reconstruction from a sin-
gle rgb image. In ECCV, 2022. 1, 2

[62] Xiang Xu, Hanbyul Joo, Greg Mori, and Manolis Savva.
D3d-hoi: Dynamic 3d human-object interactions from
videos. arXiv preprint arXiv:2108.08420, 2021. 2

[63] Zeshi Yang, Kangkang Yin, and Libin Liu. Learning to use
chopsticks in diverse gripping styles. ACM Trans. Graph.,
41(4), 2022. 1, 2

[64] He Zhang, Yuting Ye, Takaaki Shiratori, and Taku Komura.
Manipnet: Neural manipulation synthesis with a hand-object
spatial representation. ACM Trans. Graph., 40(4), 2021. 1, 2

[65] Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan,
Jitendra Malik, and Angjoo Kanazawa. Perceiving 3d
human-object spatial arrangements from a single image in
the wild. In ECCV, 2020. 2

[66] Siwei Zhang, Yan Zhang, Qianli Ma, Michael J Black, and
Siyu Tang. Place: Proximity learning of articulation and con-
tact in 3d environments. In 3DV, 2020. 1, 2

[67] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,
Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards
controllable human-chair interactions. In ECCV, 2022. 1, 2

[68] Yan Zhang, Mohamed Hassan, Heiko Neumann, Michael J
Black, and Siyu Tang. Generating 3d people in scenes with-
out people. In CVPR, 2020. 1, 2

9673

[69] Kaifeng Zhao, Shaofei Wang, Yan Zhang, Thabo Beeler, ,
and Siyu Tang. Compositional human-scene interaction syn-
thesis with semantic control. In ECCV, 2022. 1, 2

[70] Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, and
Gerard Pons-Moll. Toch: Spatio-temporal object-to-hand
correspondence for motion refinement. In ECCV, 2022. 2

[71] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
Hao. On the continuity of rotation representations in neural
networks. In CVPR, 2019. 4, 6

9674

