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Figure 1: The results of neural collage transfer. Given an image and materials, each output collage was generated based on
the proposed complexity-aware multi-scale collage method. The sequence of grapes shows our collage generation process.

Abstract

Collage is a creative art form that uses diverse mate-
rial scraps as a base unit to compose a single image. Al-
though pixel-wise generation techniques can reproduce a
target image in collage style, it is not a suitable method
due to the solid stroke-by-stroke nature of the collage form.
While some previous works for stroke-based rendering pro-
duced decent sketches and paintings, collages have received
much less attention in research despite their popularity as
a style. In this paper, we propose a method for learning
to make collages via reinforcement learning without the
need for demonstrations or collage artwork data. We de-
sign the collage Markov Decision Process (MDP), which
allows the agent to handle various materials and propose a
model-based soft actor-critic to mitigate the agent’s train-
ing burden derived from the sophisticated dynamics of col-
lage. Moreover, we devise additional techniques such as
active material selection and complexity-based multi-scale
collage to handle target images at any size and enhance the
results’ aesthetics by placing relatively more scraps in ar-
eas of high complexity. Experimental results show that the
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trained agent appropriately selected and pasted materials
to regenerate the target image into a collage and obtained
a higher evaluation score on content and style than pixel-
wise generation methods. Code is available at https:
//github.com/northadventure/CollageRL.

1. Introduction
Collage, derived from the French word coller meaning

to glue, is a fundamental art form where disparate scraps of
images are assembled and arranged geometrically to create
a complete scene. The intriguing and alluring impression
of collage was influenced by the art movement of Cubism,
particularly the work of Pablo Picasso, and has now be-
come a prevalent art style. However, creating high-quality
collage artworks in the style of artists such as Derek Gores
requires professional-level skills, much like other art forms
such as painting. Collage may seem like a simple variation
of painting, but it is much more challenging when attempted
by artificial agent for several reasons. Unlike predefined
brush strokes in paintings, the strokes of a collage depend
on selecting materials from a diverse range of candidates,
which involves uncertainty. After the material selection,
the complicated manipulation process of cutting and past-
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ing follows. Moreover, detailed representations are strictly
limited when the content of material pieces is unmodifiable.
Even for a human, a large amount of experience is required
to handle these difficulties.

Fortunately, recent advances in AI-based art creation
have made art more accessible to ordinary people. Pixel-
based generation approaches evolved from Deep Convo-
lutional Neural Networks (DCNNs) [48, 14], Variational
Auto-Encoders (VAEs) [23], and Generative Adversarial
Networks (GANs) [9] have fostered the creation of novel
artworks [39, 6] and transferred images into various styles
[8, 5, 20, 57, 54, 16, 34, 25] under Neural Style Transfer
(NST) [21]. However, pixel-based approaches directly dis-
cover the final look in the pixel space; the result can be seen
as unnatural and cannot obtain a natural creation sequence.

Since most art formulations enjoy stroke-by-stroke, a
more natural and aesthetic collage can be obtained if a ma-
chine learns to create collages in a stroke-by-stroke fash-
ion. There have been some previous learning approaches
in stroke-based rendering (SBR) [15] to imitate stroke-
by-stroke image generation, such as supervised learning
[11, 33, 29, 1], reinforcement learning (RL) [7, 17], and
optimization [59, 24, 36]. Although they produced attrac-
tive sketches and paintings, they are partly incompatible
with the concept of collages. For supervised learning, pub-
lic collage process data is hardly available, and generating
sufficient data is almost infeasible. Existing RL and opti-
mization methods assuming the fixed material structure for
every stroke do not align well with collages incorporating
dynamic materials. Overall, collage has received compara-
tively less attention in the artistic creation domain.

In this paper, we introduce a novel RL-based method for
learning how to generate a collage artwork using a given tar-
get image and materials. RL offers experience-based learn-
ing to handle various possible situations in the collage pro-
cedure without data cost, leading to the development of dis-
tinct creation styles. To effectively train the agent, we build
a novel environment, the collage Markov Decision Process
(MDP), which allows the agent to explore a wide range
of material spaces to learn appropriate material selection
and manipulation skills. We propose the model-based Soft
Actor-Critic (MB-SAC) to mitigate the burden of predicting
complicated dynamics in collage. At each training step, the
agent observes the canvas, the given material, and the target
image to decide on cutout shapes for the material and the
pasting locations on the canvas. The reward increases as the
canvas becomes more similar to the target image, encourag-
ing the agent to learn more elaborate behaviors to reproduce
the original content in a collage form. Moreover, we extend
the trained collage agent to make a multi-scale collage for
any size of the target images, considering the image com-
plexity for more aesthetic appeal.

Our extensive experimental results show that our pro-

posed method enables an agent to learn the nature of col-
lage autonomously without expensive collage datasets or
collage demonstrations. Moreover, the proposed method
can handle target images of any size, and the generated col-
lage produces sophisticated and aesthetic output. This is
because the agent can select appropriate scraps from ma-
terials and place more scraps in areas of high complexity.
Furthermore, through quantitative analysis, we have shown
that our approach outperforms other competitive methods in
terms of image similarity from the target image and seman-
tic consistency using CLIP [41]-based measures and user
study. These results demonstrate that our method success-
fully transfers the target image to collage style while pre-
serving its content.

2. Related Work
2.1. Neural Style Transfer

For the past couple of years, Neural Style Transfer (NST)
[21] has been the standout tool in artistic style transfer. NST
aims to convert a target image to the given target style pre-
serving the content of the target image. General approaches
of NST rely on pixel-wise gradient descent which is di-
rectly applied onto the converted image [8], or on using
models trained to approximate the target style distribution
[5, 16, 20, 57, 54, 56]. Some recent works support style
transfer from text prompts [25, 45]. Although advanced
NST models cover a wide range of styles, their utility for
collage style is limited since the original purpose of NST
may not match with collage. The purpose of their pixel-
wise style extraction is to look for patterns commonly seen
for each style type. However, as collages are composed of
separate images, common patterns are rarely detected ex-
cept for the edges between image pieces, thus not aligning
with the purpose of NST. This unique feature of collage de-
mands another approach for collage style transfer.

2.2. Stroke-based Rendering

Stroke-based Rendering (SBR) is a non-pixel-based au-
tomated approach for generating non-photorealistic im-
agery by arranging discrete elements such as paint strokes
or stipples [15]. Deep learning-based SBR was first pro-
posed in Sketch-RNN [11] where human sketch demon-
stration is provided to train the Recurrent Neural Networks
(RNNs). However, supervised methods suffer from severe
data collection and refinement costs. Instead, methods us-
ing RL [7, 17] train the painting agent without supervi-
sion. The gradient-based procedure optimization methods
[24, 59] leverages the design of a fully-differentiable paint-
ing. Studies using transformers [49, 1, 29, 33] or robotics
applications [27, 18] were also conducted.

Unfortunately, existing SBR-based research has mainly
focused on the environments in which stroke structure is
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Figure 2: Overview of collage MDP and its associated training process. The agent first observes an image triplet consisting of a canvas,
a target image, and a material image and then makes a scrap of the material that will make the canvas fit the target image as closely as
possible. Once the scrap has been pasted onto the canvas, the transition process is saved in replay memory for training later. During the
update stage, the discriminator in the reward function is updated using samples from the replay memory. The actor and critic are then
updated using the rewards obtained from these samples.

pre-modeled (e.g., sketches and paintings). These differ
from collage environments where the available strokes (ma-
terials) are only known during the process. In this paper, we
extend [17] to the collage domain, proposing a novel train-
ing environment and an alternative training algorithm.

2.3. Collage Generation

Several studies have explored collage generation, al-
though not specifically collage transfer. Picture collage
[51, 35, 31] aims to assemble a set of given pictures into a
complete image, while CLIP-CLOP [36] generates collage
artworks from text prompts using predefined strokes with
modifiable properties. In contrast, our method uses non-
predefined materials without unrealistic transformations for
image transfer. Additionally, while their goal is text-based
generation, our approach focuses on reproducing target im-
ages as natural collages. To the best of our knowledge, no
research has been conducted on achieving this specific goal.

3. Proposed Methods
3.1. Collage MDP

Preliminary. The problem of RL is formulated as
a Markov Decision Process (MDP) consisting of a tuple
⟨S,A,P,R, γ⟩, where S is state space, A is action space,
P : S ×A → S is the transition function, R : S ×A → R
is the reward function, and γ ∈ [0, 1] is the discount factor.
The MDP has a state st ∈ S at every time t. When the agent
takes action at ∈ A, the transition function P(·) of the en-
vironment decides the next state st+1 = P(st, at). Then
the environment gives the reward rt+1 = R(st, at) to the
agent. At every time t, the agent observes st and decides

the action at ∼ π(st) according to the policy π(·). In the
finite horizon MDP, value Vπ of the policy π is defined as
Vπ(st) = rt+1 + γrt+2 + · · ·+ γT−t−1rT , i.e., the sum of
discounted cumulative rewards until the end of the episode
t = T . The objective of RL is to find the optimal policy
π∗ = argmax

π
Vπ(s).

State and Transition. In constructing the collage MDP
for our RL agents, we highlight the three key components:
canvas Ct, target image I , and material Mt as illustrated
in Fig. 2. The collage MDP is initialized with white can-
vas C0, target image I ∼ I, and the initial material im-
age M0 ∼ M, where I, and M are respectively the sets
of target images and material images. If the agent takes
the action at observing the canvas Ct, the material Mt is
cut and pasted onto the canvas, resulting in the next can-
vas Ct+1 = δ(Ct,Mt, at). The function δ is responsi-
ble for cut-and-paste, as an essential mechanism of collage
state transition. The next material Mt+1 is randomly sam-
pled from M. Two additional components are included
in the state. One is CoordConv [32] c that is a constant
vector known to help DCNNs to boost its performance
in coordinating tasks. Another one is the remaining time
lt = (TM − tM )/TM about the number of material pieces
that need to be pasted, where the constant TM is the total
number of pieces to paste, and tM is the number of pieces
already pasted before t. In summary, the observable state
for the agent is st = (Ct, I,Mt, lt, c) at time t. The overall
transition function can be represented using P as st+1 =
P(st, at) = (δ(Ct,Mt, at), I,Mt+1, (TM − tM )/TM , c)
where Mt+1 ∼ M.
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Action Design. Each parameter of the agent’s action de-
termines the strategy for cutting and pasting the given ma-
terial. We define the action as a twelve-dimensional vec-
tor a = ⟨xcut, ycut, w, h, p1, p2, p3, p4, xglue, yglue, θ, υ⟩.
When cutting the material, the location, size, and shape are
determined for a rectangle by center coordinates xcut, ycut,
width w, and height h. Then the rectangle is divided into a
quadrilateral scrap, following four points on each side based
on the point ratio p1:4. When pasting the piece, the past-
ing location xglue, yglue and rotation θ are determined. The
material acceptor υ ∈ [0, 1] determines whether to use the
given material. The agent can deny a poor given material
and request another one if υ < 0.5, and tM increases only
when the agent accepts the material. If the agent denies the
material at t, a new material is given, but the canvas and
remaining time do not change as Ct+1 = Ct, lt+1 = lt.
The MDP normally terminates when tM = TM , but if the
agent has denied too many given materials by t = Tmax,
the MDP terminates even if tM < TM .

Differentiable Collage. Since our training algo-
rithm requires a differentiable P(s, a) about the action a,
δ(C,M, a) should be differentiable. To ensure the function
δ is differentiable, all operations involved in the process,
from selecting an action to generating the next canvas, must
also be differentiable. As in Fig. 3, we generate a mask
that specifies where the location of the cutting region and
shape of the material, but the process of generating mask
is typically non-differentiable. To overcome this challenge,
we use a pre-trained shaping network ψ that is capable of
generating differentiable mask images. Additionally, the
material acceptor υ is a discrete factor that is also non-
differentiable. We address this issue by including υ in the
shaping network ψ, which has been pre-trained to output
an all-zero mask when the material is denied. To perform
the material pasting, we use a differentiable transformation
operation from Kornia [44] that allows us to translate and
rotate the material piece as needed. The new canvas is gen-
erated by adding the material piece to the current canvas,
while excluding the mask region. Through these modi-
fications, we have achieved a fully differentiable series of
connections that allows for the implementation of δ.

Reward Function. The main goal of collage trans-
fer is to create a final canvas CT that resembles the tar-
get image I as a collage artwork. As the style emerges
naturally during the collage creation process, we designed
a reward system that increases as the content of CT be-
comes more similar to I . To measure the similarity be-
tween CT and I , we used a reward scheme proposed in
[17], which calculates the amount of similarity change as
rt = sim(Ct−1, I) − sim(Ct, I). In this study, the dis-
criminator in the Wasserstein GAN with gradient penalty

Figure 3: The differentiable rendering process in our collage
MDP. The actions determining the cutting shapes are input into
the pre-trained shaper network ψ. The resulting mask is then used
to cut the material, generating a scrap to be pasted onto the canvas.

(WGAN-GP) [10] was used for sim. The sim discrimina-
tor is trained simultaneously with the collage agent to dis-
criminate the canvases-in-progress and the target images.
This dynamic reward system takes into account the agent’s
learning progress, resulting in better performance than us-
ing a constant reward, such as mean-squared error (MSE)
[17]. In addition, we add step penalty -1 to the reward at
every step to prevent the agent from neglecting materials.

3.2. Training

Model-based SAC. We propose a modified version of
model-free SAC [12], called model-based Soft Actor-Critic
(MB-SAC), to relieve the burden of learning collage dy-
namics in model-free RL. SAC is based on the maximum
entropy RL framework [58] and adopts a stochastic policy
approximating the optimal action distribution. Unlike tradi-
tional RL, the objective of the SAC policy update is not only
to maximize the rewards but also to maximize the entropy
of the policy.

The difference between the value functions of traditional
RL and SAC is described as

V RL
π (st) = Eat∼π [Q(st, at)] , (1)

V SAC
π (st) = Eat∼π [Q(st, at)− log π(at|st)] . (2)

This ensures that the policy being trained behaves as ran-
domly as possible while maximizing exploration, improv-
ing learning efficiency, and effectively finding improved be-
haviors. As an off-policy policy gradient method with an
actor-critic structure, Model-free SAC utilizes past experi-
ence for training. When the past experience is stored in D,
the objectives of SAC policy evaluation and policy improve-
ment are as follows [13].

JQ = E(st,at)∼D[
1
2 (Q(st, at)

− (r(st, at) + γEst+1∼P [V (st+1)]))
2] (3)

Jπ = Est∼D [Eat∼π [α log(π(at|st))−Q(st, at)]] (4)

Model-based RL (MBRL) [38] is an RL extension that
can be used when the transition P and the reward func-
tion R are known or approximated. If the model is correct,
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the training agent can leverage this knowledge about transi-
tions and rewards to alleviate the training burden. In collage
MDP, the P is known as a differentiable operator δ. The re-
ward function is also known as described in 3.1. Thus, we
can benefit from the model-based architecture. Zhou et al.
[17] modified Deep Deterministic Policy Gradient (DDPG)
[28] to a model-based version using the objective (1), but we
use the alternative objective (2) to enhance exploration and
performance of the agent. For our MB-SAC formulation,
we use the equation (2) and its interchangeable relationship

Q(st, at) = r(st, at) + Est+1∼P [V (st+1)] , (5)

to reformulate the objectives (3) and (4) as the following
objectives:

JV = E(st,at)∼D[
1
2 (V (st+1)− Eat+1∼π[r(st+1, at+1)

+ γEst+2∼P [V (st+2)]− α log(π(at+1|st+1))])
2], (6)

Jπ = Est∼D[Eat∼π[α log(π(at|st))
− (r(st, at) + Est+1∼P [V (st+1)])]]. (7)

Since P and R are differentiable, the above objectives allow
policy gradients on the known transition and reward dynam-
ics.

It should be noted that the transition model is not com-
pletely accurate due to a small error in ψ, and the agent
is unaware of the upcoming material. However, for uncer-
tain future events, the expectations in equations (6) and (7)
combine the potential outcomes of P , and therefore do not
necessarily require knowledge of the upcoming material.
Hence, the agent simply samples a new random material
using the transition model to predict the next state.

Training Scheme. The agent learns to make a collage
on the defined MDP, over a time range from t = 0 to at
least t = TM (up to t = Tmax) as one episode following
the objectives (6) and (7). As the agent iterates through
episodes, it gains experience in various state combinations
(C,M, I, t). At the end of each episode, the RL and sim
are updated together. This creates a virtuous cycle as sim
gets tighter and tighter and the policy gets more and more
accurate.

3.3. Advanced Techniques

Active Material Selection. During training, the agent
makes binary decisions to accept or deny randomly given
materials. However, humans actively select the best choice
among multiple materials. We utilize the trained action-
value function Q denoted in (5) without needing an addi-
tional material selector to achieve active material selection

like a human. If Q is accurate, then the optimal material
for a given state is the one that maximizes Q, since Q rep-
resents the value of a state-action pair. The agent trains V
instead ofQ, butQ can be recovered using V and the reward
function R, as shown in (5). Therefore, the optimal mate-
rial m∗

t from the set M can be selected using the following
equation:

m∗
t = argmax

m
(r(st, at) + γV (st+1)) , m ∈ M,

at = Est∼P [π(st)] , st+1 = P(st, at). (8)

It is worth noting that the agent can still deny the material
even if it is optimal, especially if the canvas is already ma-
ture enough. In practice, the agent finds m∗

t from a subset
of M to avoid high computational costs.

Multi-Scale Collage. We employ a multi-scale collage
similar to the underpainting process to achieve a coarse-to-
fine strategy for any size of an image. We define the multi-
scale sequence U = (u1, u2, . . . , un), where u1 > u2 >
· · · > un and u, n ∈ N for the target image I with sizeW ×
H . Then I is divided into smaller images using a sliding
window with a window size of u × u and stride of ⌈ρ · u⌉,
where ρ is the stride ratio. The number of divided target
image regions on scale u is calculated as k(u) = (⌈(W −
u)/ρ⌉ + 1)(⌈(H − u)/ρ⌉ + 1). Finally, we acquire the set
of divided target images I(u) and the set of corresponding
initial divided canvases C(u)t=0 for every scale u.

I(u) = (I(u)1, I(u)2, . . . , I(u)k(u)) (9)

C(u)t=0 = (C(u)1t=0, C(u)
2
t=0, . . . , C(u)

k(u)
t=0 ) (10)

Each divided target image is resized uniformly to the
trained network’s fixed input size during multi-scale col-
lage. Therefore, the agent at earlier scales observes more
broad area than at later scales but with higher information
loss due to the resizing gap. We define “1-cycle” as one step
of progress at each pair (I(u)i, C(u)it) in a given scale u. A
multi-scale collage takes K-cycles for each scale u, in the
order u1, u2, . . . , un, to create the final collage. The initial
canvases on the first scale are all white, but the initial can-
vases of scales after the second inherit the final canvases of
the previous scales.

Complexity-Aware Multi-Scale Collage. When creat-
ing a multi-scale collage, we utilize the insight that areas
of a drawing with higher complexity require more intricate
touches. We measure image complexity Co(I) of the im-
age I using an image gradient-based complexity measure
introduced in [43]. We use the Sobel filter for the image
gradient. The complexity is high when high color changes
like edges are prevalent. Using this complexity measure, a
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(a) (b) (c)

Figure 4: The learning curves of the model-based collage RL: (a) the learning curves of different target image domains using DTD, (b)
the learning curves of agents trained to paste 10, 20, and 30 scraps using DTD, and (c) the learning curves of each agent using DTD and
using materials from the same target domain.

set of complexities Co(I)u of divided target images in (9)
can be calculated for every u.

Co(I)u = (Co(I(u)1), Co(I(u)2), . . . , Co(I(u)k(u)))
(11)

Assuming the divided image complexities follow a nor-
mal distribution, we have the standardized complexities
CoZ(I)u by the mean of complexity µ and the standard
deviation σ from Co(I)u.

Referring to cumulative probability Cop(I(u)i) for each
z-score in CoZ(I)u, the number of scraps for each divided
canvas can be assigned proportional to Cop. The scraps
can be adjusted if the number of cycles K for each divided
canvas are adjusted. Therefore, we applied monotonically
increasingK with respect to theCop by the following equa-
tion

K(Cop) = Kmax · Coτp , (12)

where Kmax is the maximum K for each divided canvas
and τ ∈ (0,∞) determines the sensitivity.

4. Experiments
To validate the proposed neural collage transfer method,

this section presents implementation details of the training
process, a comprehensive analysis of experimental results,
and a comparison of the outcomes with existing methods.

4.1. Training

Implementation Details. For the backbones of actor
and critic networks of the RL agents, ResNet-18 [14] with
weight normalization [46] was adopted. Batch normaliza-
tion [19] was applied to the actor. The discriminator used
vanilla CNN with weight normalization, followed by global
average pooling [30] at the end of the network. Trans-
lated ReLU [53] served as the activation function for all
networks. Prior to training, ψ was pre-trained with pixel
shuffle [47] for 100k epochs, using pairs of random ac-
tions and corresponding masks with batch size 64. During
training, the differentiable δ was only used for MB-SAC

updates, while a non-differentiable transition function was
utilized for the real MDP step, which excluded any errors
from ψ. The replay memory size was set to 20K, and the
agents were trained in 16 parallel environments. At the end
of each episode, 5 RL updates and one discriminator update
were performed, with a batch size of 64.

Datasets. For our experiments, we utilized various do-
main images, including MNIST [26], Flower [40], Scene1,
and ImageNet [3] as target image domains. For material im-
ages, we utilized Describable Textures Dataset (DTD) [2],
Times2, and Newspaper [50]. We adopted DTD as the pri-
mary material images for training due to its diverse textures
and colors. Newspaper and Times were used as materials
for multi-scale collage, as they are common types used in
general collage. The data was split into training and evalu-
ation images, ensuring that the agent encountered new im-
ages during evaluations.

Single-Scale Collage. To investigate the pure behavior
of our agents, we demonstrated the agent’s RL-based learn-
ing process and results on the fixed image size 128 × 128
without considering image division or complexities. Fig.
4a shows a learning curve of each agent trained using DTD
on four target image domains.The MSE between the target
image and the collage generated by the agent decreased as
the training episode progressed. However, owing to image
structure and domain variations, the range of MSE differed
across the target images. Fig. 5 illustrates each agent’s col-
lage results using DTD, with a different number of scraps
applied to each domain, as indicated in parentheses. For
MNIST, the numbers in results are clearly recognizable, be-
ing placed with appropriate scrap lengths and sizes. For
Flower and Scene, the scraps are correctly pasted consider-
ing their shapes and colors, even though the materials have

1https://www.kaggle.com/datasets/puneet6060/intel-image-
classification

2https://www.kaggle.com/datasets/thegupta/time-magazine-part-1-
1923-to-1930
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Figure 5: Single-scale collage results using DTD.

different properties than the target image domain. Notably,
for the result in the third column in Flower, the agent could
even consider textures if the materials permitted. As Im-
ageNet contains an extensive variety of images, the agent
focused on reproducing general colors and shapes, rather
than domain-specific collages. Overall, the agent selected
and arranged the materials at the appropriate level, result-
ing in collages that closely resemble the target images at
a glance, while each pasted scrap retains its independence
when viewed up close.

Fig. 4b illustrates the learning curve of each agent
trained to paste 10, 20, and 30 scraps using DTD for the tar-
get images from Scene. As the number of scraps increases,
the MSE decreases because more room to refine representa-
tion is available when more scraps are given. However, it is
worth noting that using many scraps does not always lead to
high-quality collage; as too many scraps may harm the na-
ture of the collage. It depends on the user’s preferred style.
Fig. 4c displays the differences in MSE between using DTD
and the same materials as the corresponding target images.
Because images in the same domain have similar shapes and
colors, a lower MSE was achieved when the material image
domain was the same as the target image domain. Result-
ing images of these cases are depicted in Fig. 6. Although
the agents learned without labels, they used similar types of
scraps with a target area and sometimes placed scraps with
similar shapes and colors in different classes.

Complexity-aware Multi-scale Collage. To validate
our proposed multi-scale collage approach with complex-
ity comprehension, we trained the agent on ImageNet as
the target image domain and DTD. The agent was trained to
paste 10 scraps, and the input image size was 64 × 64. In
the single-scale collage, the agent tended to select smaller
scraps as tm increased. To encourage the agent to use more
detailed scraps, we fixed tm = 9 (not always good). For the
hyper-parameters, we used U = {512, 256, 128, 64, 32},
ρ = 0.5, Kmax = 8 and τ = 1. Newspapers and Times
materials are used with active material selection techniques.

Figure 6: Single-scale collage results using materials from the
same target domain.

The final results and the results for each scale are shown in
Fig. 1. As illustrated below, We found that as the scale
increased, the collage became more abstract and unique in
style but with higher distortion. On the other hand, smaller
scales focused more on precise representation but lost some
unique collage style. Overall, the number of scraps pasted
on the canvas differed depending on the target image’s par-
tial complexity.

4.2. Comparison with NST

To evaluate our method’s content maintenance and col-
lage style agreement comparable to NST, quantitative and
qualitative comparisons with the five NST methods [8, 16,
34, 22, 56] were conducted. For the quantitative compari-
son, metric-based evaluation and user study were taken.

For the metric-based evaluation, we prepared 30 target
images for each method. Using these 30 target images, we
collected 30 pairs of (target image, generated image) for
our multi-scale method. The 30 pairs for each NST method
were collected using style images consisting of five human-
made collage images and five cluttered paper images. We
adopted CLIP score [42] for both the content maintenance
metric and style agreement metric and adopted LPIPS [55]
only for the content maintenance metric. Here, the CLIP
score is the cosine similarity between the CLIP representa-
tion of the image and text. We considered CLIP as a precise
and reproducible protocol and even objective since CLIP
was trained with about 400M human-labeled data.

Table 1 demonstrates the metric-based evaluation. Each
value in the table is the means and standard deviations for
the 30 pairs. In CLIP score experiment, the methods are
evaluated using the following texts: (content) “a content
name”, (human) “a human-made collage image”, and (col-
lage) “a collage artwork”, where content name is the name
of each target image (e.g., a bird). We assumed the con-
tent score as the CLIP score of the text-image pair (content,
generated image) and the style score as the CLIP score of
the pair (human/collage, generated image). The rows un-
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Figure 7: Comparison of NST results using a given collage style images and the results from the proposed method. Ours (NM) used
numerous other materials, while Ours (SM) solely used the given collage-style image as materials.

Methods
CLIP score ↑ [42] CLIP vote ↑ LPIPS [55] ↓

content human collage collage VGG

Target 0.276 ± 0.027 0.213 ± 0.018 0.200 ± 0.017 0.633 -
AdaAttn [34] 0.278 ± 0.021 0.247 ± 0.018 0.241 ± 0.010 0.027 0.597 ± 0.103

Adain [16] 0.251 ± 0.019 0.239 ± 0.010 0.236 ± 0.008 0.017 0.662 ± 0.103

Gatys [8] 0.226 ± 0.013 0.260 ± 0.006 0.250 ± 0.006 0.290 0.708 ± 0.098

Perceptual [22] 0.239 ± 0.019 0.246 ± 0.006 0.234 ± 0.007 0.307 0.722 ± 0.117

StyTR-2 [4] 0.261 ± 0.023 0.238 ± 0.010 0.235 ± 0.009 0.027 0.613 ± 0.115

Ours (32) 0.280 ± 0.026 0.262 ± 0.017 0.281 ± 0.020 0.100 0.510 ± 0.111

Ours (64) 0.262 ± 0.028 0.272 ± 0.020 0.259 ± 0.015 0.667 0.565 ± 0.112

Ours (128) 0.225 ± 0.023 0.288 ± 0.015 0.272 ± 0.016 1.000 0.610 ± 0.115

Table 1: Quantitative results in terms of CLIP score and LPIPS
for the generated images from different NST methods and ours.

der CLIP score show that our generated images achieved a
relatively high content and style score. However, the con-
tent score significantly decreased as the scale grew, indicat-
ing that larger scales emphasized collage style over content.
The style scores of our generated images were always the
highest. In CLIP vote experiment, CLIP predicted the prob-
abilities of how much the generated image matches with the
following two texts: (collage) “human-made collage”, (nst)
and “neural style transferred artwork.” This was intended
to investigate if CLIP can distinguish between the NST re-
sults and our results based on the semantics of “collage” and
“neural style transferred.” The rows under CLIP vote show
that our generated images at larger scales gained the highest
probability on collage compared to nst, but it decreased at
scale 32, showing the scale-dependent style-content trade-
off of our method.

Further content-focused evaluation using LPIPS with

style ↑ content ↑ aesthetic ↑ ai ↓ human ↑
AdaAttn 18.3± 9.2 38.4 ± 14.8 30.0 ± 10.3 34.2 ± 6.5 31.6 ± 11.2

AdaIN 24.9 ± 8.4 21.1 ± 8.2 26.7 ± 1.5 35.8 ± 5.1 24.3 ± 5.8

Gatys 35.5 ± 5.4 17.4 ± 6.5 26.6 ± 10.2 35.6 ± 6.2 27.4 ± 9.4

Perceptual 26.2 ± 8.2 6.7 ± 3.4 25.4 ± 5.0 37.0 ± 7.9 25.1± 7.6

StyTR-2 30.5 ± 3.2 44.1 ± 20.3 41.4 ± 8.5 30.4 ± 8.1 31.5 ± 9.1

Ours 64.6 ± 13.2 72.2 ± 13.3 49.9 ± 8.9 27.0 ± 6.0 60.2 ± 13.4

Ours (32) 51.8 ± 4.5 92.8 ± 4.7 73.4 ± 5.3 - -
Ours (64) 72.5 ± 0.6 67.0 ± 0.8 70.4 ± 2.8 - -

Ours (128) 75.7 ± 5.1 40.2 ± 3.8 56.2 ± 8.1 - -

Table 2: Quantitative analysis from user study.

VGG [48] was conducted. According to the values in rows
under LPIPS, our approach achieved a relatively low LPIPS
distance, confirming that the proposed method can stably
maintain the content of the target image. Since NST treats
the target image’s color as style, LPIPS distance was rela-
tively low for our approach, which treats the color as con-
tent. These results make sense since NST does not use var-
ious materials and does not actually create a collage.

We also conducted a user study on 111 non-conflicting
respondents, as in Table 2. Each user responded to the
three to four question sets. Each set firstly displayed the
user a target image and the generated images from NSTs
and our method. Then it required the user to rank the top
three images for the following five questions: “Which one
is the most ...” (style) “collage-style?” (content) “content-
preserving?” (aesthetic) “aesthetically appealing?” (ai) “AI-
generated?” (human) “human-created?”. The scores were
averaged, with weights of 3, 2, and 1 for each rank. Sur-
prisingly, the result aligns well with the metric-based evalu-
ation. Each user also responded to the two additional ques-
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tion sets to rank our generated images at scales 128, 64,
and 32 for the questions style, aesthetic, and human. Once
again, the result supports findings from the metric-based
evaluation.

Fig. 7 illustrates the transfer examples of our and NST
methods. Ours (NM) refers to numerous materials, which
means that other images were used as materials, regard-
less of the style image. Ours (SM) refers to single mate-
rial, meaning only the given style image was used as mate-
rial. Although NST produced aesthetically appealing trans-
ferred results, it did not achieve the intended collage style.
Ours (SM) constructed the collage artwork from white can-
vas, even though only the single style image was given as
a material. While NST refers to a single style image and
follows the colors in the style image, our method can se-
lect materials with proper colors from other image sources
to construct content-color-maintaining collages if materials
are abundant, as illustrated in the results of Ours (NM).

4.3. Ablation Studies

Ablation studies were conducted to investigate the ef-
fects of the main components of training. In this study,
agents were trained using Scene as target images and DTD
as materials. The agents were trained with 800K episodes
for five seeds using input image size 64× 64.

RL Algorithm. To confirm if the proposed MB-SAC
outperforms existing algorithms, we evaluated four RL al-
gorithms, model-free DDPG [28], model-free SAC [12],
MB-DDPG [17], and MB-SAC. Three evaluation metrics,
MSE, PSNR, and SSIM, are used as image distance mea-
sure. The resulting values are described in table 3. The
model-free DDPG almost failed to learn, while the model-
free SAC succeeded. DDPG’s failure was likely due to the
high complexity and uncertainty of the collage procedure,
which SAC was able to withstand. Model-based approaches
show better performance than model-free as the model-
based approach successfully reduced the learning burden
of the transition and reward of the MDP. As expected, our
MB-SAC achieved the best performance by leveraging the
strengths of both SAC and model-based approach.

Reward Function. Since the reward is a vital signal for
RL, we investigated alternative discriminators [37, 52] pro-
posed after WGAN-GP as demonstrated in table 3. Among
them, WGAN-GP is still the most potent signal for our RL
agent, though SNGAN [37] and GNGAN [52] are reported
to perform better in general GAN training. Both meth-
ods stabilize general GAN training by limiting the output
of the discriminator, but it seems that they distort the dis-
tance metric between images, making them less informative
when used as rewards for RL. Generally, a dense reward
with a precise scale is considered helpful than a sparse re-
ward; in that regard, WGAN-GP, which mostly maintains

MSE ↓ PSNR ↑ SSIM ↑
RL algorithms
DDPG [28] 0.305 ± 0.144 6.092 ± 3.919 0.213 ± 0.034

SAC [12] 0.042 ± 0.002 13.78 ± 0.285 0.191 ± 0.013

MB-DDPG [17] 0.039 ± 0.004 14.06 ± 0.514 0.204 ± 0.016

MB-SAC (ours) 0.031 ± 0.001 15.09 ± 0.219 0.220 ± 0.004

Rewards
MSE 0.122 ± 0.025 9.191 ± 0.893 0.101 ± 0.018

WGAN-GP [10] 0.031 ± 0.001 15.09 ± 0.219 0.220 ± 0.004

SNGAN [37] 0.040 ± 0.002 13.96 ± 0.256 0.205 ± 0.014

GNGAN [52] 0.084 ± 0.035 11.06 ± 1.933 0.144 ± 0.038

Table 3: The results of ablations under the different RL algorithms
and reward components.

the Wasserestein distance was the most informative discrim-
inator for reward signals. The MSE reward signal showed
poor performance, even in the MSE evaluation. It indicates
that using the reward signal relative to the performance (e.g.
GANs) of the learning agent was critical in training.

5. Conclusion and Future Works

This paper presented a novel RL-based training architec-
ture, MB-SAC, and complexity-aware multi-scale collage
techniques for stroke-based collage transfer. The exper-
imental results demonstrated that our method enables the
agents to autonomously learn to create collage with its dis-
tinct style without demonstration data. The agents could
handle target images of any size and generate sophisticated
and aesthetically pleasing output while maintaining collage
style and content.

Since this study represents the first exploration of neu-
ral collage transfer using materials as-is, several limitations
provide ample opportunity for future improvements. Fol-
lowing the proposed method, the stroke shape is limited to
quadrilateral, so extending it to more unconstrained shapes
is a promising future direction. The stroke choice only con-
siders color and shape, disregarding semantics. Incorpo-
rating semantics or contexts of materials and targets would
also be an interesting extension. Adding custom reward
factors to reflect intentional distortions or style variations
is also possible. For practicality, adding interactive com-
mands to cater to the users’ tastes would be a powerful use
case. Additionally, the proposed methods can be extended
beyond collage to other art forms that may not align with
traditional pixel-based or fixed-stroke-based approaches.
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