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Abstract

Recent learning-based video inpainting approaches have
achieved considerable progress. However, they still cannot
fully utilize semantic information within the video frames
and predict improper scene layout, failing to restore clear
object boundaries for mixed scenes. To mitigate this prob-
lem, we introduce a new transformer-based video inpaint-
ing technique that can exploit semantic information within
the input and considerably improve reconstruction qual-
ity. In this study, we use the mixture-of-experts scheme
and train multiple experts to handle mixed scenes, includ-
ing various semantics. We leverage these multiple experts
and produce locally (token-wise) different network param-
eters to achieve semantic-aware inpainting results. Exten-
sive experiments on YouTube-VOS and DAVIS benchmark
datasets demonstrate that, compared with existing conven-
tional video inpainting approaches, the proposed method
has superior performance in synthesizing visually pleasing
videos with much clearer semantic structures and textures.

1. Introduction
A constant increase in demand for video content in our

daily lives (e.g., YouTube or TikTok) has led to the develop-
ment of video inpainting methods, which aim to complete a
missing region or erase unwanted areas such as watermarks
and captions from a given input video. In particular, recent
convolutional neural networks (CNNs) for video inpainting
tasks have shown promising results [34, 15, 2, 43, 37, 9].
In addition, transformer-based inpainting networks [39, 26,
23, 29] significantly escalate the quality of inpainting re-
sults through their large network capacity and superior lo-
cal/global connectivity based on attention mechanisms.

However, conventional approaches are unable to fully
utilize the semantic information within the input video or
distinguish the class-specific characteristics of objects with
different semantics. As a result, they frequently fail to
recover proper object structure, texture, and scene layout.
Several studies [32, 24, 19, 25] have suggested that utiliz-
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ing semantic information can lead to better results and pro-
duce visually more plausible images when filling missing
regions. However, research on video inpainting has yet to
explore the potential of incorporating semantic maps.

Video inpainting is a challenging task that requires to
render temporally consistent video frames. To address this
issue, optical flow has been extensively explored, although
it is computationally intensive [15, 37, 9, 23, 41, 40, 13].
In this study, we demonstrate that semantic information can
also be used to enforce temporal consistency, and we in-
troduce a new technique that further facilitates the use of
semantic cues in a video by dynamically mixing multiple
class-specific experts to handle objects with distinct seman-
tics adaptively.

Although previous semantic-guided inpainting networks
used the predicted segmentation map as additional in-
put [32] or developed a dedicated semantic-aware infer-
ence module [24] to learn semantic-aware parameters, the
restoration performance is limited, given the use of shared
network parameters for the different semantics. This prob-
lem has been addressed in a recent study [25] by using a
semantic-aware attention module that enables the features
to attend solely to regions with identical semantic labels.
However, the computational cost increases proportionally
to the number of classes because the attention mechanism
is separately carried out for each category.

To mitigate these problems, we propose a novel
semantic-aware dynamic parameter selection approach that
effectively utilizes the semantic information within input
video frames while retaining the number of operations dur-
ing the inference phase. Specifically, inspired by Cond-
Conv [38], we introduce conditionally parameterized lin-
ear operations to learn semantic-aware experts, and pro-
duce locally varying (dynamic) parameters by leveraging
the given semantic cues based on the notion of mixture-of-
experts [31, 30, 38]. Our linear operations with dynamically
determined parameters replace the standard feed-forward
operation within a conventional transformer block. No-
tably, we can keep the number of parameters for inference
by mixing the expert parameters before performing linear
operations rather than aggregating the output features cal-
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culated by each expert. Moreover, in contrast to the original
CondConv [38] that produces conditional, but locally uni-
form parameters, ours can generate conditional and locally
(token-wise) varying parameters, thus improving each to-
ken’s representation power.

Our extensive experiments witness the outstanding
performance of the proposed Semantic-Aware Video
Inpainting Transformer (SAVIT) in improving video in-
painting results. Specifically, SAVIT elevates quantitative
performance on conventional video inpainting benchmark
datasets (YouTube-VOS [36] and DAVIS [28]) and pro-
duces visually more superior results against state-of-the-art
methods. We summarize our contribution as follows:

• We tackle leveraging semantic information within the
given input video frames for the video inpainting task.

• We introduce a novel semantic-aware video inpainting
transformer based on a mixture-of-experts scheme.

• We propose a semantic-aware dynamic linear opera-
tion to exploit local semantic cues effectively.

• Extensive experiments demonstrate the superiority and
efficacy of our method, especially in recovering se-
mantic structures and textures.

2. Related Work
Video inpainting. An active research topic in video in-
painting is generating a temporally consistent video. Vari-
ous approaches, including 3D-CNN-based, flow-based, and
transformer-based methods, have been proposed to fill in
a missing region inside a video plausibly. Despite their
ability to extract spatio-temporal information, 3D-CNN
methods [34, 2, 3] fail to fully utilize global correspon-
dence due to limited temporal receptive field. Flow-based
methods [15, 37, 9, 23, 41, 40, 13] first estimate motion
flow in the missing region and use the flow to predict
the missing pixels. However, these methods highly rely
on pre-trained inpainting networks and often require man-
ual operations [37, 9]. Recently, transformer-based meth-
ods [39, 26, 23, 29] have attracted research attention due
to their superiority in capturing information across long-
ranged frames. Built upon the vision transformer architec-
ture [8], FuseFormer [26] proposed soft tokenization with
spatial overlapping to interact information among neigh-
boring tokens. Followup studies have improved the perfor-
mance with dedicated modules such as focal attention [23]
or discrete latent mapping [29]. In our study, we develop
our method on top of transformers to capture long-range
dependencies and advocate the effectiveness of leveraging
semantic information.

Semantic-guided inpainting. Several works have been
proposed to utilize the semantic map for inpainting [32, 24,
25], and its related fields [14, 4, 22, 12]. Among them,
SPGNet [32] first fills the missing segmentation map, then

synthesizes the inpainted image based on the estimated se-
mantic results. Moreover, SGENet [24] introduced iterative
feature refinement using semantic map-based normaliza-
tion [27] to handle more complex holes in mixed scenes, in-
cluding objects with different semantics. Recent work [25]
proposed to calculate semantic-wise attention to learn the
corresponding semantic information. However, most of the
previous works have developed upon image inpainting, and
leveraging semantic cues within a video has yet to be ex-
plored due to the lack of annotated data. Our study mitigates
the data acquisition problem by gathering pseudo-annotated
videos with pre-trained segmentation network [17], and
demonstrates that semantic information can elevate video
inpainting performance.
Dynamic filter. As an alternative to fixed filter, scene-
adaptive dynamic filter networks [11, 7, 42] adapt their
parameters based on a given input image and/or features.
These methods allow flexibility in the network in treat-
ing various inputs with different characteristics. Notably,
CondInst [33] dynamically generates instance-aware pa-
rameters for instance segmentation. In this study, we adapt
the transformer parameters in reasoning each token condi-
tioned to its features and semantic information.
Mixture-of-experts. By combining the results from mul-
tiple expert models, the network can further improve its rep-
resentation power [30, 10, 31]. Instead of increasing the
computational cost during the inference proportional to the
number of experts, recent works [38, 5] parameterized the
mixed experts to combine the knowledge efficiently. Our
work is motivated by CondConv [38]; we mix the experts’
parameters before the feature calculation. Specifically, we
divide the experts’ roles by semantic categories, then com-
bine semantic-aware experts’ knowledge at each token.

3. Proposed Method
In this section, we first introduce the annotation proce-

dure to acquire the semantic maps for videos, followed by
a detailed description of the proposed framework SAVIT,
which leverages semantic information for video inpainting.

3.1. Semantic data acquisition
Unlike previous semantic-aware approaches [32, 25,

24], which simultaneously estimate the segmentation maps
for inpainting, we assume that semantic segmentation
maps are predictable from the given clean video frames,
which include unmasked regions to remove, using off-the-
shelf segmentation methods. However, currently avail-
able video segmentation datasets, such as DAVIS [28] or
CityScape [6], are limited to specific categories and/or par-
ticular objects, leading acquiring ground-truth segmenta-
tion maps for general video frames difficult. Alternatively,
we utilize a fully pre-trained panoptic segmentation net-
work [17] to predict the foreground and background seman-
tics in more general scenes.
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Figure 1: Overview of the semantic data preparation: (a) Temporally inconsistent rough prediction using a pre-trained
panoptic segmentation model; (b) Grouping raw predictions into corresponding super-categories; (c) Super-categorized seg-
mentation map produces temporally consistent labels.

Fig. 1 illustrates the overall semantic data acquisition
process used for training and inference. For training, we
first apply the panoptic segmentation network [17] to collect
estimated segmentation maps for video frames in conven-
tional video inpainting datasets (e.g., YouTube-VOS [36]).
The initial segmentation results consist of 53 background
and 80 foreground classes [1]. However, these initial seg-
mentation maps with a large number of classes are erro-
neous and temporally inconsistent, as shown in Fig. 1 (a).
Thus, we enforce the temporal consistency of semantics by
grouping the predicted labels to the corresponding super-
category of the class. For example, dog, horse, and sheep
regions are grouped into a super-category of animal (Fig. 1
(b)). Although we can lose semantic details to some extent
by the super-categorization, such constraint helps the train-
ing of our semantic-aware inpainting network through the
enforced temporal semantic consistency (Fig. 1 (c)).

In our work, we define eight different super-categories
based on the texture similarities and the frequencies of cat-
egories, which are measured on the entire training dataset.
Specifically, we have five super-categories for foreground
objects: ‘animal,’ ‘person,’ ‘vehicle,’ ‘plants,’ and ‘sports.’
Moreover, we have two super-categories for background ac-
cording to their texture; ‘plain’ and ‘patterned.’ Finally, we
group the rest of the remaining sub-categories into ‘etc.’
During the test phase, we also obtain the semantic maps
in the same fashion.

3.2. Semantic-aware dynamic transformer
To handle diverse scenes with various objects across dif-

ferent classes in videos, we propose a semantic-aware dy-
namic transformer. In particular, our transformer employs a
mixture-of-experts scheme, in which each expert is a single
fully connected layer with its parameters reserved for each

corresponding semantic class (i.e., super-category) obtained
from Section 3.1. Conditioned on the semantic features of
each token, we create a token-wise fully connected layer,
where its parameters are determined by weighted summing
the class-specific parameters, and the weights for the mix-
ture are produced by our semantic router as in the following.
Learning semantic router. To produce locally (i.e.,
token-wise) varying parameters conditioned on the seman-
tic information, the network requires a routing function that
predicts blending weights to mix the class-specific expert
parameters. Our router computes routing weights (i.e., mix-
ture coefficients) for each token by:

ri = MLP (fi) + hardmax(si), (1)

where ri ∈ RC is a produced mixture weight vector; fi
is the feature of an input token; si ∈ RC is a histogram
of class distribution on the segmentation map for the given
i-th token; C is the number of semantic experts (C = 8
in this work unless stated otherwise); and MLP is a stan-
dard multi-layer perceptron (MLP) composed of two fully-
connected layers with Leaky ReLU activation and sigmoid
output. Our router uses the most dominant semantic label
from the input histogram si by using a hard selection strat-
egy (hardmax operation) rather than a softmax result. In
addition, we model our router to be lightweight (i.e., two
layers) to minimize the overhead, keeping our framework
to have similar computational costs to the standard trans-
formers during inference.
Semantic-aware dynamic parameterization. By using
the routing weights ri generated by the router for the i-th to-
ken with features fi, we produce semantic-aware dynamic
parameters Wi for linear (fully-connected) layers of a trans-
former block. The formulation of semantic-aware dynamic
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Figure 2: Illustration of SAFFN. With the histogram of se-
mantic categories (e.g., hardmax) and additional linear lay-
ers, the semantic router outputs a routing weight for a spe-
cific token. Using the routing weight, SAL first acquires
token-specific parameters by the weighted sum of experts,
then operates the linear transformation of the token with the
parameters. Here, we illustrate the operational flow of a sin-
gle token. ⊕ indicates element-wise summation.

layer (SAL) is given by:

SAL(fi) = fi ·Wi, (2)

where the mixed expert parameter Wi for token fi yields:

Wi =

C∑
c=1

ri(c) · wc. (3)

Here, wc indicates the parameters of each class-specific ex-
pert, while ri(c) is the c-th element of routing weight vec-
tor ri and means the mixture coefficient for the correspond-
ing expert wc. Consequently, our semantic-aware dynamic
parameterization produces locally varying (token-wise) pa-
rameters. For example, a token corresponding to a goat in
the input frame can be handled by parameters specialized
for animal super-category, and another token on the rock
can be dealt with specific parameters for the plain back-
ground. Notably, our framework can also handle a token
of complex scenes where semantically different objects are
coexisting. This is because our router is designed to pro-
duce locally varying weights and give high routing weights

for experts corresponding to coexisting objects, rather than
choosing a single expert.

Finally, we devise a semantic-aware dynamic feed-
forward network (SAFFN) as depicted in Fig. 2. SAFFN in-
cludes two SAL using the dynamically generated semantic-
aware parameters as:

SAFFN(fi) = SAL(ReLU(SAL(fi;W l
i ));W

l+1
i )

= max(0, fi ·W l
i ) ·W l+1

i .
(4)

In our SAFFN, each SAL is parameterized by our dynamic
parameters W l

i , where l denotes the layer index of the linear
transformation, and ReLU activation is included between
two layers. Bias parameters are omitted for brevity.
3.3. Overall architecture

Fig. 3 illustrates the overall pipeline of the proposed
video inpainting network SAVIT. The network is composed
of encoder, decoder, and multiple transformer blocks be-
tween the encoder and the decoder. First, the encoder pro-
duces output features by taking N consecutive video frames
with masks and the corresponding semantic segmentation
maps as input. We employ the encoder in FuseFormer [26]
and additionally concatenate corresponding semantic maps
to input. Next, we carry out the tokenization procedure [26],
then forward to several transformer blocks to extract pow-
erful features. Finally, the tokenized features are rearranged
into the image-like shape, which is then fed into the de-
coder that predicts N inpainted video frames as previous
works [26, 23].

Note that our semantic-aware mixture-of-experts
schemes can be plugged into any conventional transformer-
based approach (e.g., FuseFormer [26], E2FGVI [23]),
where a conventional transformer block is just replaced
with our semantic-aware transformer block. In our ex-
periments, we embed our dynamic transformer within
FuseFormer [26]. Specifically, SAVIT contains eight
FuseFormer blocks, each of which consists of a multi-head
self-attention (MHSA) operation and fusion feed-forward
network (F3N). We replace one of the eight FuseFormer
blocks with our dynamic transformer block. Precisely,
within the F3N in the fourth FuseFormer block, we modify
the two standard linear layers with our dynamic ones and
add a semantic router.
Semantic-aware dynamic discriminator. To facilitate
each expert’s learning of the corresponding category’s rep-
resentation and texture details, we employ a semantic-aware
discriminator (SAD) that predicts the real/fake score for
each token. Fig. 4 illustrates the architecture of SAD, which
has similar structures to the encoder of SAVIT, except for
the last layer, where a single SAL is added. Notably, we
utilize the same mixture coefficients for dynamic parame-
ters for both SAVIT (generator) and SAD (discriminator),
encouraging each expert to learn detailed and discrimina-
tive category-specific representation.
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Figure 4: Schematic illustration of SAD. With the spe-
cific mixture-of-experts parameters produced by using the
same routing weight from the generator, SAD discriminates
whether the inpainted results are realistic or not.

3.4. Loss function
Auxiliary token classification loss. In the mixture-of-
experts scheme, it is crucial that each expert is assigned with
distinct role [18, 30]. If our semantic experts have been as-
signed properly to each corresponding category, the output
tokens from the semantic-aware dynamic block should be
helpful for classification. We drive collaborative role divi-
sion across our semantic experts. Specifically, we regular-
ize the learning of experts during training by performing
auxiliary classification tasks on the output tokens from the
semantic-aware dynamic block. Such token-wise classifica-
tion is performed by an auxiliary single linear layer classi-
fier. The classifier predicts the semantic labels of the output
tokens, as illustrated with the green box in Fig. 3. As a
result, each expert can effectively learn the feature repre-
sentation corresponding to a specific semantic label.
Overall objective function. Our overall objective func-
tion Ltotal is the weighted sum of the following four differ-
ent loss terms:

Ltotal = Lpix + λadvLadv + λclsLcls + λsadLsad, (5)

where Lpix is a pixel-wise reconstruction loss, Ladv is an
adversarial loss, Lcls is token classification loss, and Lsad

is semantic adversarial loss, while {λadv , λcls, λsad} con-
trol the weight of associated loss term. Given the predicted
video frame Ŷ and its ground truth counterpart Y , we em-
ploy the L1 pixel-wise reconstruction loss as:

Lpix = ||Ŷ − Y ||1. (6)

As for the adversarial loss, we train our inpainting network
to fool a discriminator D as follows:

Ladv = −EŶ [D(Ŷ )]. (7)

Based on a temporal patch discriminator [26, 23], the dis-
criminator D is trained to optimize

LD = EY [ReLU(1−D(Y ))] + EŶ [ReLU(1 +D(Ŷ ))].
(8)

The token classification loss term is given as

Lcls = −
∑
i

C∑
c=1

yci log(softmax(ŷi)), (9)

where ŷi ∈ RC is the predicted score from the single-
layer classifier conditioned on the output tokens from the
semantic-aware dynamic block, while yci is the target prob-
ability for class c at the i-th token. For the ground truth
target yci , we use the input semantic segmentation map (i.e.,
yci = si(c)). The semantic-aware adversarial loss Lsad is
similar to Ladv in that (8) and (7) are used, but with the
semantic-aware discriminator (SAD) instead of D.

4. Experiments
In this section, we quantitatively and qualitatively

demonstrate the effectiveness of SAVIT. Please refer to the
supplementary material for more experimental results.
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YouTube-VOS [36] DAVIS [28]

Method PSNR↑ SSIM↑ VFID↓ Ewarp(%)↓ PSNR↑ SSIM↑ VFID↓ Ewarp(%)↓
VINet [15] 29.20 0.9434 0.072 0.1490 28.96 0.9411 0.199 0.1785
LGTSM [3] 29.74 0.9504 0.070 0.1859 28.57 0.9409 0.170 0.1640
CAP [21] 31.58 0.9607 0.071 0.1470 30.28 0.9521 0.182 0.1533
STTN [39] 32.34 0.9655 0.053 0.0907 30.67 0.9560 0.149 0.1449
E2FGVI [23] 33.71 0.9700 0.046 0.0864 33.01 0.9721 0.116 0.1315
ISVI [41] 31.19 0.9569 0.053 0.1173 32.28 0.9669 0.129 0.1589

FuseFormer [26] 33.16 0.9673 0.051 0.0900 32.54 0.9700 0.138 0.1362
SAVIT (Ours) 33.97 0.9727 0.043 0.0436 33.14 0.9748 0.107 0.0673

Table 1: Quantitative comparison of SAVIT against state-of-the-art methods. SAVIT outperforms the existing approaches in
terms of various evaluation metrics. Notably, SAVIT significantly elevates the inpainting performance of FuseFormer [26],
which is our baseline architecture, witnessing the superiority of leveraging semantic cues within the input video.

Configuration PSNR↑ VFID↓

A FuseFormersmall [26] 30.51 0.182

B + super-categorized segmentation map 30.90 0.161
C + SAL 30.92 0.164
D + token classification loss (λcls) 31.19 0.165
E + SAD 31.01 0.157

Table 2: Ablation experiments on various network config-
urations under DAVIS [28] dataset. Starting from the per-
formance of the baseline architecture [26], the inpainting
performance gradually increases as the configurations are
added since the network can benefit from the semantic cues
within a video.

4.1. Implementation details
Datasets and evaluation metrics. We use two conven-
tional video inpainting datasets, YouTube-VOS [36] and
DAVIS [28], for our experiments. YouTube-VOS dataset
consists of 3471 training, 474 validation, and 508 test
videos from mixed scenes. Meanwhile, DAVIS dataset
comprises 150 video clips, 60 of which are used for train-
ing and the remaining 90 clips are used for evaluation. Fol-
lowing previous works [26, 23], we use only the training
videos in the YouTube-VOS for training, while the evalua-
tion is conducted on YouTube-VOS testset and 50 selected
clips of DAVIS testset. During training, we create random
mask shapes for input masked frames as in [39, 26, 23] and
use the method discussed in Section 3.1 to obtain a segmen-
tation map for the entire dataset.

The inpainting performance is evaluated under two stan-
dard scenarios: fixed region inpainting and foreground ob-
ject removal. For the fixed region inpainting, we use
free-form fixed masks for each video provided by Fuse-
Former [26]. As for the foreground object removal, we re-
move the main objects using frame-by-frame annotations
provided by the stakeholders. Notably, we employ a simple
k-nearest neighbors algorithm to complete the missing ob-
ject region in the segmentation maps for the object removal
task (please refer to supplementary material for detail).

We compare the results with respect to four evaluation
metrics: PSNR, SSIM, temporal warping error Ewarp [20],

and Video-based Fréchet Inception Distance (VFID) [35].
PSNR and SSIM are traditional metrics used to measure the
average quality of produced frames. VFID and Ewarp mea-
sure the video’s perceptual quality and temporal stability
(consistency), respectively, and low values indicate better
quality.

Training settings. We follow the training settings of our
baseline network FuseFormer [26]. Specifically, we ran-
domly sample five frames from a video, resize the frames to
240×432, and utilize random horizontal flipping augmenta-
tion. The network is trained for 500k iterations with Adam
optimizer [16] and a batch size of eight. The initial learn-
ing rate is 1e-4 and decreases to 1e-5 after 400k iterations.
The coefficients for our loss functions, λadv , λcls, and λsad

are 0.01, 0.01, and 0.001, respectively. We implement our
network on the PyTorch framework and use eight NVIDIA
RTX A6000 GPUs for training.

4.2. Video inpainting results
Quantitative results. Table 1 quantitatively compares our
video inpainting results on fixed region inpainting set-
ting against seven state-of-the-art video inpainting net-
works: VINet [15], LGTSM [3], CAP [21], STTN [39],
E2FVGI [23], ISVI [41], and FuseFormer [26]. The result
shows that our method remarkably elevates the performance
of FuseFormer [26], on which we base our architecture, and
achieves superior performances on both YouTube-VOS and
DAVIS datasets compared to the state-of-the-art methods.
Notably, the warping error has also significantly improved,
indicating that semantic information benefits in generating
temporally consistent video. These results show the effec-
tiveness of employing mixture-of-experts to dynamically
leverage the semantic cues within given frames for video
inpainting.

Qualitative results. Fig. 5 shows that SAVIT has visu-
ally pleasing inpainting results, especially in synthesizing
semantic structure, boundary, and texture of objects. No-
tably, unlike the baseline methods that rely solely on inher-
ent video clues and cannot accurately restore the shape of
the human body, SAVIT effectively completes the region
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Masked Frames STTN FuseFormer E2FGVI SAVIT (Ours)

Figure 5: Qualitative comparison of SAVIT with baseline video inpainting networks in fixed region inpainting and object
removal. SAVIT more accurately recovers the object’s boundaries and appropriate textures.

Ours
62.4%

FuseFormer
37.6%

Figure 6: User
study result.

Configuration PSNR↑

hardmax (SAVIT) 31.01
softmax 30.91
random routing weight 19.86

Table 3: Effect of the routing weight
on the DAVIS [28] dataset.

by leveraging additional semantic information (third and
fourth rows). Furthermore, SAVIT demonstrates the capa-
bility of generating more semantically plausible textures, as
observed from the detailed textures of synthesized grass and
wall (second and fifth rows).

User study. We conduct a user study on the foreground
object removal task, where ground truth target video frames
for evaluation are not available, to investigate the real-world
applicability of our method using DAVIS [28] testset. We
ask 24 raters to choose a better video between two ran-
domly ordered videos, including the inpainted results by
FuseFormer [26] and ours, fifteen times per rater. The re-
sult presented in Fig. 6 shows that raters prefer ours to the
baseline, indicating the impact of exploiting semantic cues
in completing missing object regions.

5. Ablation studies
We perform ablation experiments based on a smaller

FuseFormer network (FuseFormersmall) by halving the di-
mension of the hidden layer.

SAVIT w/ SADSAVIT w/o SAD

Figure 7: Effect of semantic-aware discriminator (SAD).
The texture of the black swan’s body is blurry in the case
without SAD.

Network configuration. Table 2 compares the inpaint-
ing performance for various configurations of SAVIT. First,
we observe that the baseline network’s performance im-
proves with additional segmentation map inputs (rows A
and B). However, a subtle additional performance improve-
ment (0.02dB PSNR gain, rows B and C) is achieved when
we naı̈vely add our proposed dynamic linear layer to the
network. Rather, applying the proposed token-wise classi-
fication loss to the objective boosts the performance (0.2dB
PSNR gain, row D). Overall performance improvement
by applying mixture-of-experts (rows C and D) highlights
the importance and effectiveness of employing mixture-of-
experts to handle semantics dynamically. Moreover, using
a semantic-aware dynamic discriminator (row E) degrades
PSNR while improving VFID. However, as shown in Fig. 7,
utilizing the semantic-aware discriminator produces more
visually plausible results, which solidifies the advantage of
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Figure 8: Visualization of the semantic router results. (1) to (8) are the visualization of routing
weights of the corresponding super-category. The routing weights are rearranged to the image-
like features. Brighter pixel values indicate higher routing weights.

# Experts PSNR↑ VFID↓

4 30.83 0.165
6 30.90 0.168
8 31.01 0.157

Table 4: Inpainting re-
sults by changing the num-
bers of experts under the
DAVIS [28] dataset. More
experts render better inpaint-
ing results.

Segmentation map Softmax Hardmax

Figure 9: Qualitative com-
parison on different routing
weight strategies.

# blocks # params. PSNR↑

1 26.0M 30.40
2 33.1M 30.45

Table 5: Ablation on dif-
ferent number of semantic
blocks.

the discriminator in improving perceptual quality.

Visualization of routing weights. Fig. 8 visualizes the
routing weights of each expert from the trained semantic
router. We rearrange the tokens to image-like features for
visualization, and brighter values indicate higher routing
weights in the corresponding region. The bright regions
among different experts indicate that the experts collaborate
during the inpainting procedure rather than simply utilizing
a specific expert. We see that routing weights tend to change
locally smoothly while the input segmentation map changes
abruptly.

Designing choice on semantic router. Table 3 compares
different design choices of our semantic router. The perfor-
mance drop by replacing the trained routing weights (i.e.,
mixture coefficients) with random weights indicates the dis-
criminative role of trained experts. Moreover, the results
of softmax routing strategy show a noticeable performance
degradation against hardmax strategy quantitatively. Fig. 9
also shows that softmax results tend to have blurry texture,
especially on the edge area. Therefore, Hardmax was cho-
sen for our final model to facilitate role division between
experts better, as it enables the learning of distinct parame-
ters by dividing the input for each expert before the router
blends the token based on its features.

Impact of the number of experts. Table 4 compares the
inpainting performance by changing the number of experts.
Notably, as the number of experts (i.e., semantic categories)
increases, the network can benefit from more diverse se-
mantic clues in terms of PSNR and VFID values, and we
set the number of experts for our final model to eight.

Impact of the number of semantic blocks. Table 5 com-
pares the inpainting performance by applying our semantic
module on a different number of blocks. The result indi-
cates that using more semantic blocks produces a slightly

Method Mask ratio PSNR↑ VFID↓

FuseFormersmall 30% 22.57 0.554
60% 18.10 1.059

FuseFormersmall + Ours 30% 23.57 0.412
60% 19.21 0.750

Table 6: Comparison on varying mask ratio.

better inpainting performance. Although we apply our se-
mantic module one time due to hardware limits for our final
model, it is expected that the results will be naturally im-
proved by increasing the number of semantic blocks.

Input video with large corruption. Table 6 compares
our method against FuseFormersmall under different cor-
rupted region ratio settings. It is shown that, despite larger
masks, our method still outperforms the baseline by a large
margin by exploiting the semantic information.

6. Conclusion and Future Works
In this study, we have explored leveraging semantic in-

formation within a given video for transformer-based video
inpainting. Accordingly, we propose an effective semantic-
aware dynamic transformer with the notion of mixture-of-
experts. Our dynamic transformer contains class-specific
expert parameters where experts are efficiently combined
to perform token-wise dynamic linear operations based on
the token feature and its semantic information. The exper-
iments demonstrate the effectiveness of our method, espe-
cially in recovering semantic structures. Although we have
utilized pseudo labels for our study, we believe more ac-
curate and denser annotated datasets can improve the in-
painting performance further since our method relies on the
quality of the segmentation label.
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