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Abstract

Although 3D perception for autonomous vehicles has fo-
cused on frontal-view information, more than half of fatal
accidents occur due to side impacts in practice (e.g., T-bone
crash). Motivated by this fact, we investigate the prob-
lem of side-view depth estimation, especially for monocu-
lar fisheye cameras, which provide wide FoV information.
However, since fisheye cameras head road areas, it ob-
serves road areas mostly and results in severe distortion
on object areas, such as vehicles or pedestrians. To al-
leviate these issues, we propose a new fisheye depth es-
timation network, SlaBins, that infers an accurate and
dense depth map based on a geometric property of road en-
vironments; most objects are standing (i.e., orthogonal) on
the road environments. Concretely, we introduce a slanted
multi-cylindrical image (MCI) representation, which al-
lows us to describe a distance as a radius to a cylindri-
cal layer orthogonal to the ground regardless of the cam-
era viewing direction. Based on the slanted MCI, we es-
timate a set of adaptive bins and a per-pixel probability
map for depth estimation. Then by combining it with the
estimated slanted angle of viewing direction, we directly in-
fer a dense and accurate depth map for fisheye cameras.
Experiments demonstrate that SlaBins outperforms the
state-of-the-art methods in both qualitative and quantita-
tive evaluation on the SynWoodScape and KITTI-360 depth
datasets. For more information, you can visit our project
page https://syniez.github.io/SlaBins/.

1. Introduction

With the advent of autonomous driving, the importance

of 3D perception keeps growing for safety [20, 25, 44].

For example, ADAS systems pervading our daily driving

already, such as lane-keeping aid and forward collision-

*Equal contribution (alphabet order).
†Corresponding author.

Figure 1: SlaBins on the SynWoodScape dataset [34].
SlaBins predicts dense and accurate depth maps regardless of

the viewing directions using the slanted MCI representation.

avoidance assist, depend on various sensor modalities to ob-

serve 3D information [43, 5]. Here, one interesting point is

that various sensor modalities for 3D perception, including

many datasets related to autonomous driving, are focusing

on the frontal view predominantly [43, 38, 2, 6]. We can

easily deduce the reason by our common sense that it is im-

portant to keep an eye on the front while driving. However,

according to the National Transportation Highway Safety

Administration [1], 51% of fatal car accidents correspond

to T-bone crashes in which one car hits the side of another,

which is the second highest type of accident. This statistic

supports that side-view 3D perception is important to assist

drivers because they are hard to pay attention to the side

view due to the physical characteristics of the people look-

ing ahead and their position characteristics.

Motivated by this fact, 3D perception for side-view, es-

pecially fisheye-based depth estimation, has started to gain

the spotlight [31, 16, 41]. Fisheye cameras have several

advantages for 3D perception in road scenes. Specifically,

fisheye cameras provide broader FoV information (typically

greater than 180◦) in a single image, which allows us to ob-

serve road information (e.g., road, vehicles, and pedestri-

ans) at a low cost. In addition, we can directly utilize per-

spective camera 3D perception approaches because mathe-

matical mutual conversion between two camera models is

possible. Thus, if we can obtain side-view depth informa-
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tion using a single fisheye camera, we can efficiently handle

various vision tasks for autonomous driving.

However, despite the advantages of fisheye cameras,

monocular fisheye camera-based side-view depth estima-

tion is a challenging problem due to significant distortion.

In addition to inherent issues of monocular depth estima-

tion, such as scale ambiguity [8], severe distortion of fish-

eye cameras makes depth estimation more difficult by dis-

torting scene objects (e.g., close objects look closer and dis-

tant objects look more distant abnormally). Particularly, this

distortion problem could be more severe in road environ-

ments because fisheye cameras for ADAS systems gener-

ally look to the road areas, and vital objects such as vehicles

and pedestrians are located at the edge of the image. That

is, most regions of the image correspond to the road areas

and objects contain very few pixels, so depth estimation be-

comes more challenging.

To alleviate this problem, we pay attention to the ge-

ometric property of road environments; most objects are

standing on the road environments. Based on this geomet-

ric characteristic, we can easily imagine the visible region

of each object as a planar segment orthogonal to the road re-

gion. This approximation is connected to a multi-plane im-

age (MPI) concept [36] that represents a given scene as the

composition of multi-layered images according to depth.

Note that one significant difference is that a fisheye camera

looks down to the road region in our case (i.e., camera view-

ing direction is not parallel to the ground), unlike a camera

points to a given scene in the general MPI concept. Thus, a

naı̈ve MPI concept is not directly applicable.

In this work, we propose a new fisheye depth estimation

framework, SlaBins, that exploits the geometric property

of the road environments (see Fig. 1). To be specific, we

adopt a multi-cylindrical image (MCI) representation1; es-

pecially, we introduce a slanted MCI of which the cylin-

drical layer is defined as orthogonal to the road ground re-

gardless of camera viewing direction. Based on the slanted

MCI, we estimate adaptive bins and the per-pixel probabil-

ity of the slanted cylindrical layers, which allows us to im-

plicitly preserve the geometric property of the road environ-

ments and improve the depth quality near the boundary be-

tween objects and the ground region. In addition, we inde-

pendently estimate the slanted angle of the camera viewing

direction w.r.t. the road ground. Then, by combining this

angle with the estimated depth information in the slanted

MCI domain, we can directly compute a dense and accurate

depth map for fisheye cameras. We validate the proposed

SlaBins framework on the SynWoodScape dataset [34]

and KITTI-360 depth dataset (a modified dataset of KITTI-

1Basically, depth in the fisheye model is defined as the Euclidean dis-

tance, which is connected to a multi-spherical image (MSI). In this work,

We adopt an MCI representation that combines the geometrical suitability

of MPI and the fisheye model fitness of MSI.

360 [24] for our scenario), where SlaBins outperforms the

baseline methods [3, 20, 21] and shows potential as scene

representations for downstream tasks, e.g., segmentation.

In a nutshell, our contributions are as follows:

• We propose a new fisheye depth estimation framework,

SlaBins, which infers dense depth based on the geo-

metric property of road environments.

• We newly introduce a slanted MCI representation as an

intermediate road scene representation, which allows us

to describe a given scene regardless of viewing direction

and improve the depth quality on the boundary areas be-

tween objects and the road.

• By decoupling the slanted angle of an input image, we

force the proposed model to learn the slanted MCI depth

information and then seamlessly compute a fisheye depth

map in a slanted-aware regression way.

2. Related Work
Monocular depth estimation. With the advent of break-

throughs in deep neural networks, such as CNN and trans-

former architecture, monocular depth estimation has shown

impressive performance [15, 33, 21, 32, 23, 18, 40, 11, 9,

12, 29, 19, 16, 17, 20]. As one of the recent trends, sev-

eral methods formulate a depth estimation task as a combi-

nation of classification and regression problems, which en-

ables training the network more easily and shows stable per-

formance [14, 3, 4]. For this formulation, they commonly

use an MPI according to depth, which is popularly used in

novel-view synthesis tasks [22, 39, 13]. The MPI notation

represents depth as quantized depth values w.r.t. the uni-

formly quantized planes and residuals from mapped planes.

To improve the uniformly quantized planes by uniform

bins, recent research works [3, 4] present a network that

predicts adaptive bins depending on the input scene and lo-

cal regions in the image. AdaBins [3] computes adaptive

bin-centers and per-pixel probabilities relying on each in-

put image. Inspired by AdaBins, LocalBins [4] improves

depth quality by considering both the global histogram and

local-region histograms of each input image. Nevertheless,

the predicted depth from the above models also depends on

the camera’s pose because they predict depth parallel with

the camera’s principal axis. This constraint makes it hard

to adopt the previous models into fisheye depth estimation,

which has a large FoV and uses the Euclidean distance in-

stead of depth. In this work, we introduce and exploit a

slanted MCI representation that is invariant to the viewing

angle of fisheye cameras w.r.t. road environments.

Fisheye depth estimation. Despite increasing demand for

fisheye cameras in the industry, like ADAS systems, there

are only a few previous research works in fisheye depth esti-

mation fields [20, 17, 19, 16, 40]. Kumar et al. [19] propose
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Figure 2: Overview of the proposed SlaBins. (a) Given an input fisheye RGB image, SlaBins framework first extracts features by

the encoder-decoder block. The extracted features are used as input to the slanted angle prediction module and the SlaBins module to get a

depth image. (b) Illustration of the coordinates and MCI representations defined in our model. (c) Illustration of the slanted angle predictor.

a camera-aware depth estimation network to handle the se-

vere distortion of fisheye cameras. They encode the cam-

era’s intrinsic parameters as a tensor named camera geom-

etry tensor and use it in the training step for camera-aware

depth estimation in fisheye images. With camera geometry

tensor, they propose a multi-task network for fisheye cam-

eras, called OmniDet [20], that simultaneously estimates

depth estimation, motion, semantic segmentation, and ob-

ject detection for synergy. However, since OmniDet relies

on the partial region in the whole image, they may miss in-

formation on image edges. Using a whole image, Yan et
al. [40] distill depth ordering information from a teacher

network trained on the large-scale dataset to train in fisheye

images, but FoV they cover is not large (e.g., vFoV=66◦).

In contrast to previous approaches, we propose a fisheye

depth estimation network that predicts fisheye image depth

without any information loss such as crop, and narrow FoV.

Geometric cues for depth estimation. One way to im-

prove fisheye depth estimation is to exploit geometric cues

between the camera and the world. Liu et al. [26] use

a ground plane to get depth priors using camera elevation

and camera parameters. Moreover, Mahjourian et al. [29]

predict camera ego-motion and compute loss on both the

3D point cloud domain and the 2D image domain. In ad-

dition to driving scenes, several works use plane coeffi-

cients to give consistency on plane regions in depth esti-

mation [30, 27]. Patil et al. [30] estimate plane coefficients

instead of depth and then combine plane coefficients into

depth to use plane constraints (e.g., co-planarity, plane nor-

mals) in 3D space. Inspired by the previous works [3, 30],

we design a network that estimates a dense and accurate

depth map for fisheye cameras based on the slanted MCI

representation using some geometric constraints (i.e., or-

thogonality between ground and object).

3. Proposed Framework
Inspired by the geometric property of the road environ-

ments, we propose a new fisheye depth estimation frame-

work (see Fig. 2 for the overview). Specifically, we intro-

duce a slanted MCI representation, which allows us to de-

scribe a multi-layer cylindrical image orthogonal to the road

ground regardless of the viewing direction of the camera.

Based on the slanted MCI representation, our SlaBins mod-

ule estimates the adaptive bin widths and per-pixel prob-

ability map in the orthogonal coordinate, which provides

depth information invariant to the camera viewing direc-

tion. We then combine the estimated depth information with

the slanted angle estimated by the slanted angle prediction

module. Through this process, we can directly estimate a

dense depth map for fisheye cameras. Our approach is built

upon the previous AdaBins framework [3]. So, we call our

method SlaBins.

3.1. Slanted MCI Representation

As intermediate scene representation, we use multi-layer

images for fisheye depth estimation. Here, we briefly com-

pare two multi-layer image representations for fisheye im-

ages: multi-spherical image (MSI) and multi-cylindrical

image (MCI). We then present a slanted MCI representa-

tion, which is a suitable representation of our problem.

MSI vs. MCI. By nature of fisheye cameras covering over

180◦, it is common to use the Euclidean distance as its

depth; that is, a layer with the same depth value forms

a sphere in the fisheye domain. Thus, we can represent

a multi-layer image for fisheye cameras as an MSI in the

spherical coordinate, which is a naı̈ve representation. How-

ever, this naı̈ve MSI representation has inherent limitations

for fisheye depth estimation. We observed that such a repre-

sentation can result in ambiguous depth boundaries between

the ground and object regions, as shown in Fig. 3a. It may

neutralize the benefit of multi-layer images by separating an

object into two different layers, for example.

In the MCI representation, a cylindrical layer encodes

the same Euclidean distance w.r.t. the y-axis. In other

words, we can represent an object, such as a pedestrian on

the road, in a single cylindrical layer (see Fig. 3b). Further-
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(a) (b) (c)

Figure 3: MSI vs. MCI representation. Illustration of an exam-

ple scene and zoomed results with (a) MSI and (b) MCI, where

we can observe more accurate depth in the slanted MCI repre-

sentation near the boundary between pedestrians and the ground.

(c) Relationship between the original cylindrical layer Co
r (gray-

colored cylinder) in the world coordinate (arrows) and the slanted

cylindrical layer Cs
r⊥ (orange-colored cylinders) in the orthogonal

coordinate (dashed arrows).

more, we can directly exploit the geometric properties of the

road environment: most objects are standing (i.e., orthogo-

nal) on the road environment. For this reason, we adopt the

MCI as our intermediate scene representation.

Slanted MCI representation. Let X be a 3D point in the
world coordinate. Then, we can represent X according to
the coordinate systems:

X =

⎡
⎣
X
Y
Z

⎤
⎦ = ρ

⎡
⎣
X̂

Ŷ

Ẑ

⎤
⎦ = ρ

⎡
⎣
sin θ cosφ
sin θ sinφ

cos θ

⎤
⎦ , (1)

where X̂ = [X̂ , Ŷ , Ẑ]� is the normalized unit vector (i.e.,
ray direction), ρ indicates the Euclidean distance (i.e., depth

in the fisheye domain), and θ and φ denote the elevation and

azimuth angles, respectively.

Based on the cylindrical representation, we can form a

cylindrical layer according to a radius r as:

Co
r = {X | X2 + Z2 = r2;X ∈ R

3}. (2)

We call Co
r the original cylindrical layer at r. This original

MCI is inherently suitable for road environments and shows

less distortion than MSI on ambiguous depth boundaries.

However, depending on the principal axis of cameras (i.e.,
viewing direction) w.r.t. the road environments, the original

MCI may hinder layered scene representation like the MSI.

To alleviate this issue, we consider the 1D angle α be-

tween the principal axis and the road environments. Using

α, we can implicitly describe the slanted MCI representa-

tion that is orthogonal to the road areas (see Fig. 3c). To

this end, let X⊥ be a 3D point in the orthogonal coordinate,

of which the XZ plane is parallel to the ground. Similarly

to Eq. (2), we can form a cylindrical layer according to a

radius r⊥ in the orthogonal coordinate as:

Cs
r⊥ = {X⊥ | X2

⊥ + Z2
⊥ = r2⊥;X⊥ ∈ R

3}, (3)

which corresponds to a slanted cylindrical layer in the world
(camera) coordinate (see Fig. 2b for coordinate systems).

By α, we can derive the relationship between X⊥ in the
orthogonal coordinate and X in the world coordinate by:

X⊥ =

⎡
⎣
X⊥
Y⊥
Z⊥

⎤
⎦ =

⎡
⎣

X
Y cosα+ Z sinα
−Y sinα+ Z cosα

⎤
⎦ . (4)

Then, we can deduce the following relationship between

a 3D point X⊥ on Cs
r⊥ and its spherical representation in

the camera coordinate by using Eqs. (3) and (4):

r2⊥ = X2
⊥+Z2

⊥ = X2 + (−Y sinα+ Z cosα)2,

= ρ2
(
X̂2 + (−Ŷ sinα+ Ẑ cosα)2

)
. (5)

Furthermore, we can convert the relationship in Eq. (5) to a

function f as:
f(X̂, r⊥, α) = ρ, (6)

where r⊥ denotes a radius in the orthogonal coordinate. The

function f represents that if we know slanted angle α and a

radius r⊥ at a certain pixel location on the fisheye domain,

we can directly compute the corresponding depth value ρ.

A more detailed explanation for Eq. (6) is available in the

supplementary material. Using this relation, we implicitly

model the slanted MCI representation inside the network as

scene representation.

3.2. SlaBins framework

Based on the slanted MCI representation (cf. Sec. 3.1),

the proposed SlaBins framework estimates an accurate

and dense depth map. SlaBins consists of three mod-

ules: Encoder-decoder block, slanted angle predictor, and

SlaBins module, as shown in Fig. 2.

Concretely, given the input fisheye image, the encoder-

decoder block extracts a feature map containing useful in-

formation for depth prediction. Using the extracted feature

map, the SlaBins module estimates several key information,

such as adaptive bin-centers and per-pixel probability map

in the slanted MCI representation (i.e., the orthogonal coor-

dinate), using a transformer architecture. It should be worth

noticing that by virtue of this SlaBins module, we can im-

plicitly preserve the geometric relationship of objects on the

road environments. Then, by combining with the slanted

angle estimated by the slanted angle prediction module, we

can directly regress a fisheye depth map.

Encoder-decoder block. Given input fisheye image xi ∈
R

H×W×3, where H and W denote the height and the

width of the input, our encoder-decoder block first extract

features. We use the pre-trained EfficientNet B5 [37] as

the backbone for the encoder and standard feature upsam-

pling layers for the decoder, which returns decoded features

xd ∈ R
h×w×Cd , where h = H/2, w = W/2, and Cd indi-

cates the feature dimension.

Slanted angle prediction module. We design compact

MLP-based classification and regression modules that pre-

dict α from xd in a two-step. The classifier first classifies
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Figure 4: The details of the SlaBins module. Our SlaBins mod-

ule consists of two components: One is the mini-ViT block that

extracts the range-attention map and bin widths, which are invari-

ant to the slanted angle α from the decoded feature. The other is

the SlaBins-aware regression. This module receives the outputs of

mini-ViT and the slanted angle α as inputs and directly converts

the orthogonally estimated depth r⊥ for an arbitrary 3D point X
into the depth ρ of the spherical coordinate.

α in units of 5◦, and the following regressor estimates the

offset in the range of (−2.5◦, 2.5◦). This two-step angle

prediction enables us to estimate an accurate viewing direc-

tion angle and train more efficiently (see Fig. 2c).

Specifically, xd is downsampled to 1/4 size with two 3×
3 convolution layers and average pooling. Downsampled

features are flattened (we denote the flattened feature as xf )

and xf is used as input of classifier and regressor, which

are composed of 3 FC layers followed by softmax and 4

FC layers, respectively. The output of the classifier is a 19-

dimensional vector and that of the regressor is a normalized

angle offset in the range of (−1◦, 1◦).

SlaBins module. Given decoded features xd, the proposed

SlaBins module first learns intermediate depth information,

such as bin widths and probability maps in the slanted MCI

representation, which are invariant to the viewing direction

(i.e., slanted angle α), as shown in Fig. 4. To this end, we

adopt mini-ViT (mViT) architecture in [3].

The decoded features xd are fed into the mViT with

learnable positional encodings. To make a fixed-size patch-

embedded input, we embed the decoded features to the Cp

dimensional flattened tensor xp ∈ R
S×Cp using patch em-

bedding before feeding into the mViT (here, S indicates

w× h/p2 and p denotes the size of patch and stride). Then,

the sum of flattened tensor xp and positional encodings are

fed into the mViT and the output of the mViT has the same

shape as input tensor xo ∈ R
S×Cp . The first MLP head

of the output xo means slanted bin widths and it is normal-

ized into bi for further depth regression. The other features

followed by the 1× 1 convolution layer perform pixel-wise

dot product with a 3× 3 convolution output of xd to get the

range-attention map. Softmax function with 1 × 1 convo-

lution layer is used to represent the range-attention map as

a probability of each pixel pk in N bin-centers. These nor-

malized slanted bin-width bi and per-pixel probability pk
with α are used for SlaBins-aware regression.

Our final depth ρ̃ is computed by the linear combination

of the two outputs from mViT (i.e., slanted bin-width bi and

per-pixel probability pk) and the transformation function in

Eq. (6). To compute final depth, slanted depth bin-centers cs

are computed with normalized bin-width bi (i.e.,
∑

bi=1):

cs(bi) = rmin
⊥ + (rmax

⊥ − rmin
⊥ )(bi/2 + Σi−1

j=1bj), (7)

where rmin
⊥ and rmax

⊥ mean the lower and upper bound of

the radius in slanted MCI representation. Then, orthogonal

coordinate radius r⊥ is calculated using the cumulative sum

of csk and psk (i.e., ΣN
k=1c

s(bk)pk) and transformed to our

final depth ρ̃ using Eq. (6):

ρ̃ = f
(
X̂,ΣN

k=1c
s(bk)pk, α

)
, (8)

where X̂ is a known normalized vector computed by pixel

location and camera intrinsic, and α denotes the estimated

slanted angle by the slanted angle predictor.

3.3. Loss function

Here, we introduce a set of loss functions used for train-

ing SlaBins. Specifically, we compute loss in both or-

thogonal and spherical coordinates to make our SlaBins
framework can estimate fisheye depth that has better dis-

crimination between objects and road environments.

Bin loss. Following [3], we use Chamfer loss[7] to make
adaptive bins:

Lbins = chamfer(r⊥, c
s(b̃)) + chamfer(cs(b̃)), r⊥), (9)

where b̃ indicates the predicted slanted bin widths from the

SlaBins module, and r⊥ is the ground truth cylinder radius

in the slanted MCI representation. In our case, to gener-

ate slanted bins (i.e., bins in the orthogonal coordinate), the

ground-truth depth is converted to the ground truth radius

r⊥ at the orthogonal coordinate by Eq. (5) and the slanted

MCI.

Pixel-wise depth loss. We apply a scaled version of the

Scale-Invariant (SI) log loss introduced by Eigen et al. [42]:

Lpixel = β

√
1

T
Σig2i −

λ

T 2
(Σigi)

2
(10)

where gi = log ρ̃ − log ρ with the ground truth depth ρ
and predicted depth ρ̃. T denotes the number of pixels con-

taining valid ground truth values. Following [3], we set

λ = 0.85 and β = 10 for all our experiments.
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Table 1: Quantitative evaluation on SynWoodScape [34].

Method RMSE ↓ RMSE log ↓ Abs Rel ↓ Sq Rel ↓ δ1 ↑ δ2 ↑ δ3 ↑
OmniDet∗ [20] 5.623 0.740 1.080 3.133 0.031 0.064 0.753
BTS [21] 2.998 0.325 0.179 0.459 0.653 0.845 0.932
AdaBins [3] 1.524 0.104 0.070 0.127 0.971 0.993 0.997

SlaBins (ours) 1.040 0.056 0.022 0.055 0.988 0.997 0.999

Slanted angle loss. As mentioned in Sec. 3.2, we predict

slanted angle α through a two-step module: classification

and regression. For the classification module, we use the

cross-entropy loss LCE . As for the regression module, we

utilize the mean squared error (MSE) loss LMSE between

the estimated residual and the ground truth residual. We

define the sum of the CE loss and MES loss as the slanted

angle loss:
Langle = LCE + LMSE . (11)

Total loss. Finally, the total loss for our problem is:

Ltotal = γLbins + Lpixel + Langle, (12)

where γ is a balancing parameter (we set γ = 0.1).

4. Experiments
We evaluate the proposed method from various perspec-

tives. We introduce datasets and evaluation metrics in

Sec. 4.1 and implementation details in Sec. 4.2. We then

offer quantitative and qualitative comparisons to state-of-

the-art methods in Sec. 4.3 and an ablation study in Sec. 4.4.

4.1. Datasets and evaluation metrics

For evaluation, we use two fisheye depth datasets: the

SynWoodScape dataset [34], which is a synthetic dataset,

and the KITTI-360 depth dataset, which is a modified

dataset of real-world KITTI-360 [24] for our scenario. Note

that we additionally augment two datasets for our purposes

and will release these datasets for research communities.

SynWoodScape dataset [34]. The SynWoodScape dataset

is a synthetic surround-view fisheye camera dataset for au-

tonomous driving, which is a synthetic version of the real-

world WoodScape dataset [42]2. This dataset provides pairs

of synthetic fisheye images and depth maps for the front,

left, right, and rear of the driving situation. Each view con-

tains 500 images with 190◦ FoV and a size of 1280×966.3

Additionally, we augment the SynWoodScape dataset in

terms of the viewing direction of fisheye cameras to vali-

date the proposed framework. Specifically, we warp fisheye

images and the corresponding depth maps by changing a

total of nine viewing directions, of which rotation angles

w.r.t. the x-axis are between 0◦ and 90◦ (between the view-

ing direction and the normal of the ground), including the

original viewing direction. So, we have 18K fisheye images

2Unfortunately, the real-world WoodScape dataset [42] does not pro-

vide the ground truth depth data.
3Currently, the SynWoodScape dataset is partially released to the pub-

lic. We perform the experiments using the partial dataset.

Table 2: Quantitative evaluation on KITTI-360 depth.

Method RMSE ↓ RMSE log ↓ Abs Rel ↓ Sq Rel ↓ δ1 ↑ δ2 ↑ δ3 ↑
OmniDet∗ [20] 1.917 0.150 0.086 0.246 0.908 0.975 0.992
BTS [21] 1.787 0.153 0.093 0.243 0.906 0.976 0.992
AdaBins [3] 1.590 0.129 0.074 0.185 0.940 0.984 0.994

SlaBins (ours) 1.537 0.130 0.077 0.177 0.941 0.983 0.994

in total. We split the augmented dataset into 14.4K training,

1.8K validation, and 1.8K test samples. Following the pre-

vious work [16], we train the model and evaluate the range

of depth up to 40m because fisheye cameras undergo high

data compression and can perform up to this range, unlike

the KITTI dataset [10] covering up to 80m.

KITTI-360 depth dataset. The KITTI-360 dataset [24]

is a suburban driving dataset for 2D/3D semantic and in-

stance segmentation tasks that include various input modal-

ities, semantic instance annotations, and precise localiza-

tion. KITTI-360 provides fisheye images, raw LiDAR point

clouds, and semantic and instance labels with 185◦ FoV of

left and right in the driving situation, with a resolution of

1400×1400. Note that since KITTI-360 does not provide

the ground truth for fisheye depth estimation, we generate

the corresponding ground truth using raw LiDAR data. We

call this modified dataset for fisheye depth estimation as

KITTI-360 depth dataset.

Concretely, we first make dense LiDAR by aggregating

LiDAR data of twenty neighbor frames. We then project

the dense LiDAR point clouds on the fisheye camera image

domain and conduct occlusion handling [18] because of the

displacement between the fisheye camera and the LiDAR

(see Fig. 6). We then consider depth values, of which dis-

tance is less than 40m, as the ground truth. We sample 4K

samples of the training set from sequence 0 to 7, 0.4K sam-

ples of the validation set from sequence 9, and 0.4K samples

of the test set from sequence 10. To make dense depth maps,

we resize samples to 700×700. In addition, as we did for

SynWoodScape, we augment the viewing directions of the

KITTI-360 depth dataset; the angle between the viewing di-

rection and the normal on the ground to 30◦, 50◦, 70◦, and

90◦ (the original viewing angle). So, we have 19.2K fish-

eye images in total. We split this augmented dataset into

16K training, 1.6K validation, and 1.6K test samples.

Evaluation metrics. We use the standard depth estima-

tion metrics used in the previous work [21]. For error met-

rics, we calculate mean absolute relative error (Abs Rel),

root mean square error (RMSE), root mean square log er-

ror (RMSE log), the root mean square relative error (Sq

Rel). For accuracy metrics, we calculate threshold accu-

racy δi = 1.25i for i ∈ {1, 2, 3}. Generally, the smaller the

error, the better, and the higher the accuracy, the better.

4.2. Implementation details

Our proposed method is implemented in PyTorch and

trained on 4 RTX A6000 GPUs. Our model is trained for
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RGB OmniDet∗ [20] BTS [21] AdaBins [3] Ours Ground truth

Figure 5: Qualitative comparison on the SynWoodScape dataset. Sky-blue boxes are enlarged views of specific objects to show detail.

Overall, our method shows distinct boundaries compared to the other models. In particular, we can observe the detailed structure from our

results, such as bicycle wheels in the first row and the boundary of two overlapped vehicles in the second row.
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Figure 6: Qualitative comparison on the KITTI-360 depth dataset. For visualization, we crop the object region in the fisheye image. In

contrast to the other methods, our method shows clear boundaries near the object regions, as shown in sky-blue and green boxes.

10 epochs on SynWoodScape and 20 epochs on KITTI-

360 depth using AdamW [28] optimizer with weight-decay

10−2, with a batch size of 8. We use the same 1-cycle pol-

icy [35] as AdaBins [3] for the learning rate with max lr =

3.5 ×10−4. For the first 30% of iterations, the linear learn-

ing rate warm-up technique is utilized. For the learning rate

decay, the cosine annealing learning rate strategy is applied.

4.3. Comparison

We compare our SlaBins with several baseline ap-

proaches: OmniDet [20], BTS [21], and AdaBins [3].

OmniDet is a fisheye depth estimation method using self-

supervised learning. Based on the released code of the au-

thors, we modify OmniDet to a supervised one for fair-

ness (we denote this modified one OmniDet*). As base-

line methods for pinhole cameras, we compare BTS and

AdaBins, especially AdaBins is a bins-based fundamental

method for depth estimation. It should be noted that we tar-

get depth estimation fisheye cameras, but we additionally

compare it with conventional pinhole camera-based meth-

ods due to the lack of fisheye camera-based methods.

Quantitative evaluation. Table 1 shows the quantitative

comparisons on the SynWoodScape dataset. The arrow

next to the metric indicates the direction of better perfor-

mance. Overall, SlaBins outperforms the other baseline

approaches [3, 20, 21]. In particular, RMSE and Abs-Rel er-

rors are significantly improved; 31.7% and 68.6% decreased

compared to AdaBins, which shows the effect of the slanted

MCI representation in the fisheye domain.

On the KITTI-360 depth dataset, our method still outper-
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Figure 7: Depth histogram on the object regions. Left: RGB

data (top) and the concept of depth histogram in the orthogonal

coordinate (bottom). Middle: depth maps of only object regions

for each model and the ground truth. Right: depth histograms

(AdaBins, original MCI, slanted MCI, ground truth in that order).

forms the comparison methods (see Table 2). Specifically,

RMSE and Sq-Rel errors are improved; 13.9% and 27.1%
decreased compared to BTS and 3.3% and 4.3% decreased

compared to AdaBins. Note that even though the KITTI-

360 depth dataset captured in suburban scenes does not per-

fectly fit our scenario of road environments, SlaBins still

shows competitive performance, which demonstrates the ef-

fect of the proposed framework.

Qualitative evaluation. Figure 5 shows the estimated

depth maps for the test scenes on SynWoodScape. Due to

the nature of fisheye cameras, we can observe ambiguous

boundary regions in the comparison methods. Even Ad-

aBins, which is our baseline and a naı̈ve MSI representation

by the Euclidean distance of fisheye, shows bleeding depth

estimation results near the boundaries between objects and

ground regions. In contrast, thanks to the slanted MCI rep-

resentation, SlaBins shows accurate depth results with

distinct boundaries regardless of camera viewing directions.

Specifically, we can observe that sharp objects with details

(e.g., human legs and bike) are preserved in our method,

unlike the other methods that smooth object details. In ad-

dition, we can observe a similar trend on the KITTI-360

depth dataset, as shown in Fig. 6. Compared to the baseline

methods, SlaBins shows better depth consistency even on

sharp objects (e.g., third and fourth columns in Fig. 6). Ad-

ditional results are available in the supplementary material.

4.4. Ablation study

Multi-layered representation. We compare the proposed

slanted MCI with the MSI used in AdaBins and the original

MCI on the orthogonal coordinate. We measure the depth

histogram for only object regions on the orthogonal coordi-

nate. As shown in Fig. 7, compared to the other represen-

tations, SlaBins reveals the most similar trend (i.e., peak

points) with the ground truth histogram. Furthermore, we

compare slanted MCI and original MCI in terms of depth

consistency. Figure 8 shows that the slanted MCI provides

Figure 8: Slanted MCI vs. original MCI in depth and cluster-
ing. All the results including the ground truth are converted to the

XZ distance in the orthogonal coordinate.

Table 3: Ablation study for the slanted angle predictor on Syn-
WoodScape and KITTI-360 depth. We report the depth error

(Abs Rel) and mean angle error. C and R denote classification-

only and regression-only, respectively.

SynWoodScape KITTI-360 depth

Method Abs Rel ↓Angle error ↓Abs Rel ↓Angle error ↓
R 0.075 27.031 0.604 48.32

C 0.026 0.842 0.103 5

C+R (ours) 0.022 0.031 0.077 0.017

more consistent results in object regions both on depth and

depth-based clustering results. Hence, we believe that the

slanted MCI can provide robust geometric constraints for

various tasks in fisheye domains.

Slanted angle prediction. As shown in Table 3, we per-

form an ablation study for the angle prediction module. Un-

like a conventional regression module having the advantage

over classifications, in our case, it is hard to converge be-

cause of the trade-off with the depth estimation part in the

SlaBins module. That is why regression-only module is

poor on the angle prediction. On the contrary, our two-step

prediction module, composed of classification and residual

regression, shows the best performance with stable training.

5. Conclusion
We have proposed a novel fisheye depth estimation net-

work, called SlaBins, based on the geometric property

of the road environments. We newly introduce the slanted

MCI representation, which allows us to represent a given

road scene as a set of cylindrical layers orthogonal to the

road ground. By virtue of the slanted MCI, our network

can implicitly encode scene depth information invariant to

the camera viewing direction while preserving boundary in-

formation of scene objects w.r.t. the road region. Thus, we

achieve state-of-the-art performance on monocular fisheye

depth estimation.

Acknowledgments. This work was supported by 42dot Inc., In-

stitute of Information & communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government (MSIT)

(No.2020-0-01336, Artificial Intelligence Graduate School Pro-

gram (UNIST)) and the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIT) (No. NRF-

2021R1C1C1005723).

8772



References
[1] T-Bone Accident Statistics And Other Legal Information.

https://www.injurytriallawyer.com/faqs/
how-dangerous-are-t-bone-accidents-.cfm.

1

[2] Ashutosh Agarwal and Chetan Arora. Attention Attention

Everywhere: Monocular Depth Prediction with Skip Atten-

tion. arXiv preprint arXiv:2210.09071, 2022. 1

[3] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

Adabins: Depth estimation using adaptive bins. In CVPR,

2021. 2, 3, 5, 6, 7

[4] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

LocalBins: Improving Depth Estimation by Learning Local

Distributions. In ECCV, 2022. 2

[5] Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu,

Xiangwei Geng, Hongyang Li, Conghui He, Jianping Shi, Yu

Qiao, et al. PersFormer: 3D Lane Detection via Perspective

Transformer and the OpenLane Benchmark. arXiv preprint
arXiv:2203.11089, 2022. 1

[6] Liang-Chieh Chen, Huiyu Wang, and Siyuan Qiao. Scal-

ing wide residual networks for panoptic segmentation. arXiv
preprint arXiv:2011.11675, 2020. 1

[7] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In CVPR, 2017. 5

[8] Olivier Faugeras and Quang-Tuan Luong. The geometry of
multiple images: the laws that govern the formation of mul-
tiple images of a scene and some of their applications. MIT

press, 2001. 2

[9] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, 2018. 2

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In CVPR, 2012. 6

[11] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017. 2

[12] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-

tos, and Adrien Gaidon. 3d packing for self-supervised

monocular depth estimation. In CVPR, 2020. 2

[13] Yuxuan Han, Ruicheng Wang, and Jiaolong Yang. Single-

View View Synthesis in the Wild with Learned Adaptive

Multiplane Images. arXiv preprint arXiv:2205.11733, 2022.

2

[14] Adrian Johnston and Gustavo Carneiro. Self-supervised

monocular trained depth estimation using self-attention and

discrete disparity volume. In CVPR, 2020. 2

[15] Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu

Joo, Sehwan Chun, and Junmo Kim. Global-Local Path Net-

works for Monocular Depth Estimation with Vertical Cut-

Depth. arXiv preprint arXiv:2201.07436, 2022. 2

[16] Varun Ravi Kumar, Sandesh Athni Hiremath, Markus Bach,

Stefan Milz, Christian Witt, Clément Pinard, Senthil Yo-
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