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Abstract

Deploying deep visual models can lead to performance
drops due to the discrepancies between source and target
distributions. Several approaches leverage labeled source
data to estimate target domain accuracy, but accessing la-
beled source data is often prohibitively difficult due to data
confidentiality or resource limitations on serving devices.
Our work proposes a new framework to estimate model ac-
curacy on unlabeled target data without access to source
data. We investigate the feasibility of using pseudo-labels
for accuracy estimation and evolve this idea into adopt-
ing recent advances in source-free domain adaptation algo-
rithms. Our approach measures the disagreement rate be-
tween the source hypothesis and the target pseudo-labeling
function, adapted from the source hypothesis. We mitigate
the impact of erroneous pseudo-labels that may arise due
to a high ideal joint hypothesis risk by employing adaptive
adversarial perturbation on the input of the target model.
Our proposed source-free framework effectively addresses
the challenging distribution shift scenarios and outperforms
existing methods requiring source data and labels for train-

ing.

1. Introduction

When deep learning models are deployed for target ap-
plications, it is common to encounter a degradation in
the accuracy of the models. This degradation is typically
caused by a distributional discrepancy between the source
domain on which models were trained and the rarget do-
main where they are being applied. To ensure reliable de-
ployment, it is essential to continually monitor the perfor-
mance of the deployed model on target data. However, since
target labels are usually not immediately available, this ne-
cessity poses a challenging problem, unsupervised accuracy
estimation (UAE) for models.

A few approaches have been developed to predict the
target domain accuracy on unlabeled target data assuming

that labeled source data can be freely accessed [9, 10, 13].
Nakkiran and Bansal [28] have observed that the disagree-
ment rate between two separately trained source models
exhibiting a small test error of ¢, is remarkably similar to
€ across a range of models. Subsequent studies have ex-
panded this finding [5, 18]. They discovered that the ex-
pected disagreement rate of multiple pairs of models or
from iterative self-training with the ensemble can effec-
tively estimate model accuracy when tested on previously
unseen data. Despite the noteworthy outcomes, these meth-
ods have a crucial limitation: they are solely applicable to
in-distribution test data as indicated in [18]. In the most
realistic scenarios, source and target distributions are sup-
posed to have discrepancies for various reasons. Insufficient
training data is a common cause of generalization issues,
which is particularly relevant in scenarios where knowledge
from synthetic simulation data is applied in real-world ap-
plications, such as autonomous driving and robotic manip-
ulations. Also, distribution shifts can occur when input is
distorted during sensing and pre-processing.

Two recent approaches [5, 6] have adopted unsupervised
domain adaptation (UDA) methods, specifically, DANN
[11] to tackle out-of-distribution UAE. These methods train
supplementary models that learn domain-invariant repre-
sentations for both the source and the target distributions to
identify the maximum discrepancy between the adapted hy-
potheses and the source hypothesis [60] or to employ an en-
semble of the adapted hypotheses for iterative self-training
[5]. However, focusing on learning domain-invariant rep-
resentations through DANN can lead to suboptimal out-
comes when significant label distribution mismatches oc-
cur, increasing the lower bound of the ideal joint hypothesis
risk [35]. As a consequence, the estimation performance of
these methods is negatively affected.

Furthermore, all existing approaches require access to
source samples, except for a few naive techniques like AC
[13]. However, obtaining labeled source data, which are
used to train the model of interest, is often infeasible in
practice due to concerns over the confidentiality of sensitive
data or the computing and storage constraints on the serving
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Figure 1. Schematic illustration of the proposed SF-DAP (Source-Free Domain-Adaptive Pseudo-labeling) framework. SF-DAP employs
source-free UDA and introduces target-adaptive VAPs to tackle the UAE problem without accessing source samples.

device. Some methods, such as GDE [18], construct mul-
tiple source models using source samples in advance, thus
eliminating the need for source access. However, training
multiple models beforehand to estimate the accuracy of a
deployed model is not practical as it is a common practice
to train a single optimal model for deployment purposes. To
overcome these challenges, we propose a novel framework
for estimating the accuracy of models on unlabeled target
data without requiring access to source samples. Specifi-
cally, we derive a target labeling function that reduces the
target risk from a pre-trained source model without using
the source data. We then estimate the target accuracy of
the models by computing the disagreement rate between the
source and the target models under the target distribution.

Initially, we explore the viability of employing straight-
forward pseudo-labeling strategies [I, 3, 22, 26, 32] that
rely solely on target data. While a vanilla UDA method
such as DANN requires access to both labeled source and
unlabeled target data, recent advances in source-free UDA
methods [19, 22, 23, 24, 26, 34] remove the need for source
data access. Certain source-free UDA methods [22, 25, 26]
freeze the head classifier of the source model and aim to
train farget-specific feature generators. These feature gen-
erators are trained to learn target features that align with
the source distribution of the frozen head classifier under
the target distribution. These methods exhibit comparable
performance to the state-of-the-art vanilla UDA and align
with our goal of developing a source-free UAE approach
based on pseudo-labeling. To achieve this goal, we intro-
duce the SF-DAP (Source-Free Domain-Adaptive Pseudo-
labeling) framework, which incorporates source-free UDA
algorithms into the source-free UAE. As the adapted model
by UDA algorithms may not always approximate an ideal
target labeling function, computing disagreement in a naive
manner can lead to a less accurate estimation. To tackle
this issue, we develop a systematic method that leverages
perturbations, particularly virtual adversarial perturbations

(VAPs) [27], to target data during inference. Our domain-
adaptive VAPs account for predictive uncertainty and do-
main discrepancy, thereby mitigating the effects of distribu-
tion shifts. Extensive experimental results in various chal-
lenging scenarios demonstrate that our proposed method
outperforms existing approaches without requiring source
data. Our key contributions are summarized as follows:

* We propose SF-DAP, a source-free UAE framework
that employs source-free UDA for a viable pseudo-
labeling function under target distribution and com-
bines target-adaptive VAPs with it. As far as we know,
ours is the first source-free UAE approach that demon-
strates comparable performance to source-based ones.

* We illustrate the effectiveness of our proposed frame-
work through extensive experiments on various chal-
lenging cross-domain scenarios. Our approach con-
sistently outperforms existing methods, even without
labeled source data.

* We present Pseudo-labeling Assignment by Feature
Alignment (PAFA) algorithm for source-free UDA,
which extends existing methods by introducing mod-
ification that improves its efficacy. Empirical results
indicate that PAFA matches well with our framework.

2. Preliminaries
2.1. Notation

We use X, )V, and Z to denote the input, output, and
feature representation space, respectively. For simplicity of
exposition, we consider binary hypothesis h : X — {0,1}
and h is a composition of feature generator g : X — Z
and classifier f : Z — {0,1} i.e., h = f o g. We define a
domain as (D, h*). D denotes a distribution on input X and
a labeling function 2* is defined by h* : X — [0, 1] (h* can
have a fractional value). The error of a hypothesis h w.r.t.
the labeling function 2* under D is defined as ep (h, h*) :=
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Ex~p[|h(x) — h*(x)|]] = Exwp[L(h(x) # h*(x))] and
reduces to a disagreement probability such thatep (h, h*) =
Pran(h(x) # h* (x)).

ep(h) denotes the risk of h that is the error of i w.r.t.
the true labeling function under D, i.e., in case h* is the
true labeling function, ep(h) = ep(h, h*). To distinguish
source and target, we attach subscripts S and T, respectively.
e.g., Ds and Dy for the source and the target domain. For
simplicity, we use €5 1= ep, and €7 := €p,..

2.2. Unsupervised Accuracy Estimation

One of the early UAE approaches [10] draws on the
negative correlation between the distribution discrepancy
and model accuracy and builds a regression model between
these quantities for UAE. The correlation between the ro-
tation estimation and the classification tasks is observed
and used to build a simple regression-based UAE in the
same manner, [9]. AC and DoC [!3] approach the problem
from the prediction confidence. Similarly, ATC [12] utilizes
confidence measures after calibration to identify the source
data’s confidence threshold that matches the source accu-
racy, which is applied to calculate the target accuracy[14].
The initial UAE approach based on disagreement from ran-
dom subsets [28] was extended by GDE [18] to random
model ensembles. With a flavor of the UDA approach,
Proxy Risk [6] explored the maximization of proxy risks,
RI, and RM [5] employed the iterative ensemble as well.

Source-Free UAE. We consider the UAE problem where
we have m unlabeled target data {x; };":1 € X and a
model (hypothesis) h trained by n labeled source samples
{(x4, i)}, € (X x Y)™. In contrast to prior methods,
we adopt a more practical and widely applicable assump-
tion that the source samples are unavailable, as illustrated
in Fig. 1. The goal of source-free UAE is to find a func-
tion that correctly estimates accuracy, or equivalently, risk
of the source model on unlabeled target data under D (de-
noted by e (hg)) without source samples. We consider the
case where both domains have the same set of labels.

2.3. Unsupervised Domain Adaptation

The goal of UDA is to find a hypothesis h that cor-
rectly predicts the label y; of a new target sample x; by
learning from the labeled source and unlabeled target data.
The UDA problem considers that the learning algorithm
has access to a set of n labeled points {(x;,y;)}, €

(X x )™ R (Dg,h%) and a set of unlabeled points
{xj}}”:l c am i (Dr, k). Similarly to UAE, we as-
sume both domains share the same label set. DANN [11]

has received attention among earlier UDA works due to its
approach to learning a domain-invariant representation with

theoretical elegance. DANN is also employed by some ex-
isting UAE methods.

Source-Free UDA. Source-free UDAs consider more
practical limitations of source sample unavailability. Unlike
vanilla UDA, source-free UDA addresses the same problem
without access to source samples, which aligns well with
the nature of source-free UAE. We pay close attention to
an earlier work SHOT [26] which proposed a source hy-
pothesis transfer strategy and achieved comparable perfor-
mance to vanilla UDAs. ISFDA [25] utilize SHOT to tackle
class-imbalanced scenarios. FAUST [22] also fixes the head
classifier but produces improved performance by enforcing
two consistency losses from multiple perturbed views of an
input. They typically learn a target-specific feature embed-
ding z = g(z) that can be aligned with the source distribu-
tion contained in the frozen (head) classifier f.

2.4. Analysis on Existing DANN-Based Approaches

We examine the theoretical framework associated with
the recent approaches [5, 6] that learn domain-invariant rep-
resentation using DANN [11]. Ben-David et al. [2] intro-
duced HAH-divergence which is determined by the dis-
crepancy between source and target distributions of the
hypothesis class H. Given domains Dg and Dr over
X, the HAH-divergence, dyaw(Ds,Dr), is defined by
supy, prey [€s(hy h') —er(h, h')|. This divergence leads to

Theorem 1 (Ben-David et al.). For any hypothesis h € H,
let A = ming ey eg(h') + er(h') is the risk of ideal joint
hypothesis. Then we have

er(h) <es(h) +duan(Ds, Dr) + A )]

Inequality 1 implies that no classifier can accurately predict
both domains when A is large, making it impossible to find
a high-quality target hypothesis through UDA. Later, Zhao
et al. [35] presented an information-theoretic lower bound
for the risk of ideal joint hypothesis as follows:

1
s +er z§<dJs<D§ ,Dy) —dys(DE, D7), ()

where djg, DY, and DZ denote Jensen-Shannon distance,
label distribution, and feature distribution, respectively.

By analyzing the inequality 1 and the inequality 2, we
can identify three drawbacks of current approaches that use
DANN. Firstly, HAH-divergence in the inequality 1 cannot
be accurately estimated from finite samples of arbitrary dis-
tributions, which limits its practical usefulness. Secondly,
as indicated in the inequality 2, relying solely on learn-
ing domain-invariant representation can increase the lower
bound of the risk of ideal joint hypothesis, which results in
unsuccessful UDA and negatively impacts estimation per-
formance. Thirdly, distance terms in the inequality 1 and the
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Figure 2. (Best viewed in color) Investigation on Office-31. The scatter plots show the error rate w.r.t. pseudo-labels (x-axis) vs the true
target risk (y-axis) of 192 different models trained on Amazon images. The green dashed line denotes the true target risk estimates. Each

pair is tested on Amazon (test), DSLR, and Webcam, in that order. Blue and red dots are produced based on [

inequality 2 require access to source samples, which does
not align with the objective of a more practical source-free
UAE.

3. Straightforward Pseudo-Labeling Approach

To achieve the goal of a source-free UAE, our focus is on
determining how to bound 7 using terms that can be com-
puted within the target domain. From the definition of risk
and triangular inequality, for any hypothesis hly € H, the
target risk 7 of the source hypothesis kg can be bounded
aser(hs) < er(hg, h) +er(h’). Substituting A’y with a
pseudo-labeling function h’%l on D leads to:

Proposition 1. Let h’}l be any pseudo-labeling function un-
der Dr. Then, for given hg, we have

er(hs) < er(hs, h2) + ep(hB). 3)

Proof. By definition, ep(hg) := Ep,.[|hs —h% || where b,
denotes true labeling function under Dy. Then, Ep . [|hs —
Wil = Epyllhs — B + Wy = hill < Ep,lhs -
h’}l || + Ep, [|h§~l — hk|] from triangular inequality. Hence,
er(hs) < ex(hs, ) +er (). O

Proposition 1 suggests that we can estimate the target accu-
racy of hg by identifying a suitable pseudo-labeling func-
tion for the target samples. This approach transforms our
source-free UAE problem into the task of finding an effec-
tive pseudo-labeling function under Dy that reduces the es-
timation error. It is worth noting that Proposition 1 is dif-
ferent from the inequality 1 or the inequality 2 in that the
right-hand side can be computed only using the unlabeled
target data in Proposition 1.

Based on Proposition 1, we investigate how well the
disagreement between the source model’s outputs hg and
pseudo-labels on target data h’%l matches true risk through
experiments. Among the previously proposed pseudo-
labeling strategies [, 3, 22, 32], we select (1) FixMatch
[32] approach that computes an artificial label by direct in-
ference of the source model hg and (2) weighted feature
prototype-based approach such as [1, 3, 22]. For the first

] and [22], respectively.

approach, we obtain the model’s predicted class distribution
q given a weakly perturbed view of an input, ', then use
hP! = arg max(q(z%)) as a pseudo-label, which is com-
pared with the model’s output for a strongly perturbed view
of the input, g(z*), as suggested by [32]. We also follow the
approach of [22] that obtains the feature prototype of each
class k by c* == 3", .5 ¢"(%;)g(;) where z; is drawn from
the empirical target data (in each mini-batch B) and ¢*(z;)
is the prediction probability of x; to class k. Then, the soft
pseudo-label of a target sample is defined by

hP = softmax(CT g(z)) 4)

where columns of the matrix C' are the prototypes.

Experiment. We investigate on Office-31 dataset which
contains 4,652 ImageNet[8]-like images across 31 objects
collected from three different domains: Amazon (A), DSLR
(D), and Webcam (W). We split the Amazon set into a de-
velopment set (90%) and a holdout set (10%), then train
192 different ResNet50 source models by sharing the de-
velopment set but different training options such as learn-
ing rate, input augmentation, optimizer, and label smooth-
ing. More details are described in Appendix A.Webcam,
DSLR, and Amazon holdout images are assigned as target
data on which we evaluate the pseudo-label based estima-
tors’ performance. The pseudo-labeling from weighted fea-
ture prototypes seems more noticeable as presented using
red dots in Fig. 2. For the in-distribution setting (A—A), the
mean absolute error (MAE) of the estimator is 3.07+2.15.
MAEs in the out-of-distribution settings (A—D, A—W) are
no more than 9.35. Their Pearson’s correlation coefficients
are all above 0.83, which is close to the ideal correlation
coefficient, 1.0.

4. Proposed Method

The observations presented in Sec 3 corroborate our no-
tion that the accuracy estimation performance can be en-
hanced by devising a pseudo-labeling function that more
closely approximates the true labeling function under the
target distribution. This concept logically leads to the ap-
plication of source-free UDA to generate an appropriate
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pseudo-labeling function since source-free UDA aims to
adapt the source model to enhance prediction accuracy on
unlabeled target data without access to source data.

Let hp be a target model adapted to target distribution
from the source model hg via a source-free UDA algo-
rithm and therefore h can be regarded as a pseudo-labeling
function that has relatively less target risk. By replacing
hEE with hp, for any (adapted) target hypothesis hy € H,
Proposition 1 comes to er(hg) < er(hg,hr) + er(hr).
This inequality indicates that the target risk of the source
model 7 (hg) becomes closer to the disagreement between
source and target models under Dy as the source-free UDA
algorithm improves, i.e. the target risk of the adapted model
er(hr) becomes less.

However, UDA cannot fully approximate a true labeling
function on Dr in general due to limitations imposed by
the classification problem itself as acknowledged by [6]. To
tackle this limitation, we propose a target-adaptive pseudo-
labeling technique that combines the pseudo-labeling func-
tion of each target sample with the inference over its e-
neighbors that maximally disagrees with its own output.
Then its disagreement with hg naturally estimates the de-
sired target risk. Based on these ideas, we introduce a
novel source-free UAE framework called SF-DAP (Source-
Free Domain-Adaptive Pseudo-labeling), which comprises
source-free UDA and target-adaptive estimation.

4.1. Source-Free UDA Selection

For the selection of the source-free UDA algorithm, the
empirical results in Sec 3 allow us to consider two factors:
(1) preservation of the ample information inherent in the
classifier f delivered from the source domain, which can
confer an advantage in a source-free scenario, and (2) align-
ment of the target feature representation with the source
distribution, as a proxy for successful adaptation, since
pseudo-labeling in the feature space has demonstrated more
favorable performance.

SHOT [26] freezes the head classifier f and focuses on
training the feature generator g, which satisfies the afore-
mentioned criteria. Its simpler variant, SHOT-IM, trains the
feature generator g using an information maximization ob-
jective that combines entropy minimization loss and mean
entropy maximization loss. However, SHOT requires aug-
mentation of the source network prior to training (such as a
bottleneck layer and two normalization layers), which does
not align with our scenario of estimating the performance of
an already trained source model. Therefore, we introduce a
modified version of SHOT in this work.

Instead of augmenting the network, we adopt a self-
training approach that incorporates two input views into the
training objective of SHOT-IM. This approach is motivated
by previous works [1, 22, 32] and aims to alleviate the neg-
ative impact of not meeting network augmentation require-

ments. Specifically, we generate pseudo-labels based on
the nearest feature prototype classifier defined in Eq. 4 us-
ing the weakly perturbed view, while the strongly perturbed
view is utilized for forward pass prediction. We refer to
the proposed source-free UDA training objective as PAFA
(Pseudo-label Assignment by Feature Alignment) and for-
mulate it as follows:

mgin H(h(z™)) + Dk (ﬁ(xw)H[l(lK) —logK

+ a H(hP ("), h(z®)). (5)

Here, % and x° denote weakly and strongly perturbed
views of the input x, which are generated by standard flip-
crop-rotation augmentation and by RandAugment [7], re-
spectively. The function #(-) represents the Shannon en-
tropy, while #(-,-) denotes cross-entropy. The term h(x)
refers to the mean embedding of K-dimensional predic-
tion outputs under the target distribution, and 1 is a K-
dimensional vector with all ones. The positive constant «
is a scaling factor for the self-training gradient. We note
that the %1 x term assumes that the target label distribu-
tion is uniform as SHOT [26] did. This assumption is rea-
sonable since we lack any prior knowledge about the tar-
get label distribution. Therefore, we also assume a uniform
label distribution as a non-informative prior [17]. Never-
theless, our proposed method, PAFA, performs well even
with non-uniform target label distributions as demonstrated
in Sec 5. The UDA performance of PAFA is summarized in
Sec 6. Additionally, we evaluate some other source-free
UDA methods within the proposed framework and show
there are no significant difference between their results (see
Appendix C.3).

4.2. Enhancing the Quality of Estimation

An adapted model obtained through UDA, as presented
in Sec 4.1, can serve as a target labeling function in con-
structing the estimator using the following formulation:

ESTnaive = E1~DT []]-(hS (33) 7é hT(x))] (6)

Though the adapted model has reduced target risk when
compared to the source model, it may not accurately ap-
proximate the true labeling function under a severe distri-
bution shift. Consequently, computing the disagreement be-
tween the source model hg and the adapted target model hp
in a straightforward manner like Eq. 6 often result in less
accurate estimation. Therefore, we need to explore methods
to enhance the quality of estimation.

4.2.1 Random Perturbation (RND)

While evaluating the effectiveness of EST;,y. using
CIFAR-10 [20] and CIFAR-10-C [15] benchmarks, we ob-
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Figure 3. (Best viewed in color) The accuracy trends from different test-time perturbations as UDA progresses on CIFAR-10-C tasks. The
plot consists of the UDA training iteration (z-axis) vs. the target risk (y-axis). The blue line denotes the true target risk of hgs, and the other
lines denote the estimated target risk of hs using the disagreement rate E,~p,. [|hs(x) — hr(z)|] where the input data = are augmented in
different fashions. In each red, green, and orange line, inputs are strongly augmented, weakly augmented, and not augmented, respectively.

served that applying a test-time perturbation to target sam-
ples before computing disagreement can improve the qual-
ity of estimation. This observation is depicted in Fig. 3,
where we can see that the estimation quality often increases
with the strength of the perturbation. Our finding suggests
that perturbing the input to hp can reduce the estimation er-
ror, particularly when stronger perturbations (indicated by
red lines in Fig. 3) are applied, resulting in improved esti-
mation. We can express this estimator as follows:

ESTing = Epp, [L(hs(z) # hr(z"))], 7

where =" denotes a randomly perturbed view of the in-
put. Though generating multiple perturbed views and en-
sembling inferences of them can further improve estimation
performance (see Appendix C.5), we have opted to present
only a single perturbation for the sake of simplicity. As
depicted in Fig. 3c, random perturbations often lead to im-
proved performance but may sometimes underestimates.

4.2.2 Adversarial Perturbation (ADYV)

Sec 4.2.1 suggests that adding random perturbations to the
inputs of the target model can frequently enhance the es-
timation performance, but this is not always the case. To
ensure appropriate randomness during estimation, we con-
sider the virtual adversarial perturbation (VAP) [27], which
can adapt to the target distribution. In addition to enforcing
local smoothness of the conditional label distribution given
unseen target inputs [27], VAP promotes the discovery of e-
neighbors for each target sample that maximally disagrees
with its own output. The disagreement between the pseudo-
label function and the source model output naturally esti-
mates the target risk. As an illustrative example: if a target
sample resides far away from the decision boundaries, its
pseudo-label will mostly agree with its own. However, if
the sample is close to the decision boundaries, its adversar-
ially estimated pseudo-label may indicate a different class
label. Hence, we define the accuracy estimator as follows:

ESTuay = Eonpy [1(hs(2) # hr (T + Tvaan))] . (8)

The virtual adversarial perturbation 7,4, is computed as

Tvadv =

argmax Dygp (hT(ac) | hr(z + 6)), 9)

d s.t. ||6]|2<e

where € is a hyperparameter that determines the magnitude
of the adversarial perturbation. We note that VAP is com-
puted during inference through the frozen target model. SF-
DAP (ADV) comprises PAFA and EST,q .

4.2.3 Adaptive Adversarial Perturbation (AAP)

By employing Eq. 8, we achieved estimation performance
comparable to that of existing methods that require access
to source samples, as presented in Sec 5. Nonetheless, we
identified certain concerns, including instances where the
estimation errors were unacceptably large in specific sce-
narios. The proposed method is able to address this issue
by adjusting the sole hyperparameter e. This section out-
lines how to quantify the factors influencing the magnitude
of € and concludes with an improved formulation.

Predictive Uncertainty. According to the cluster as-
sumption [4], data points with low predictive uncertainty
are typically located far from the class decision boundary,
resulting in more accurate model predictions. Conversely,
data points with high predictive uncertainty often reside in
the low-density regions of the feature space, near or over-
lapping the class decision boundary, leading to less accurate
model predictions. Therefore, to enhance estimation perfor-
mance, we suggest reducing perturbation in data points with
low uncertainty while increasing perturbation in those with
high uncertainty. This can be achieved by scaling the pertur-
bation magnitude based on the predictive uncertainty mea-
surement. We define the uncertainty factor C',,. as the stan-
dard deviation (std) of the class probabilities predicted by
the target model that ranges within 0.5. To evaluate uncer-
tainty, we apply Monte-Carlo dropout inference sampling
n-times (see Appendix C.4 for more details):

n

Clune = std {qgk)}l ,

i=1

(10)
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Table 1. Overall benchmark results on various UAE tasks. Average mean absolute errors (MAES, %) of each group and overall averages
are reported. Bold numbers indicate the superior results and bold-italic do the next best results. Full results are presented in Appendix A.6.

source access approach source-free approach (ours)

datasets settings subset description DoC [13] Proxy [6] RI[5] RM [5] GDE [18] | SF-DAP (ADV) SF-DAP (AAP)
Digits 6 MNIST, USPS, SVHN 14.62+0.80  9.63+1.44  9.50+1.51 11.33+1.36 27.80+0.75 2.18+0.56 2.15+0.58
Office-31 6 Amazon, DSLR, Webcam 5.00+£1.26  4.64+1.23  8.69+1.62 2.73£1.28  9.79£1.10 4.72+1.13 2.51+1.10
Office-Home 12 Art, Clipart, Product, Real-World 25.62+0.50 8.754+1.41 12.13£1.58 3.66+1.25 37.52+0.51 8.73+0.65 4.98+0.68
VisDA 1 Synthetic images, MSCOCO 15.72+4.35  8.90+1.71 7.50+4.70  4.41+2.52 29.314£3.73 4.41+1.10 1.73+0.93
CIFAR-10 19 CIFAR-10 and CIFAR-10-C subsets 1891+1.56 10.47+0.83 3.20+£0.94  2.17+1.18  2.99+1.24 2.34+1.47 3.06+1.46
CIFAR-100 19 CIFAR-100 and CIFAR-100-C subsets | 48.64+1.99 26.34+£2.46 5.84+1.67 1.90+0.84 6.33+1.75 6.81£1.59 3.28+1.35
micro average (of all 63 settings) 27.37£1.50 14.27+1.67 6.89+1.46 3.33+1.14 14.00£1.29 5.15+1.29 3.33+1.20
macro average (of the above 6 averages) 21424132 11.45+£1.23  7.81+142 4374118 18.96+1.23 4.86+1.04 2.95+1.01

where q,l(k) is the probability of the k-th class in the pre-

dicted class distribution ¢ obtained from the i-th Monte-
Carlo dropout sample. The class index & is determined by

argmaxje{l,... K} (% 27;:1 qi) ! .

Domain Divergence Though the C,,. incorporates the
cluster assumption into individual data points, bias may ex-
ist due to inaccurate predictions stemming from the distri-
bution gap between the source and the target. To tackle
this bias, we consider the divergence between both distribu-
tions. We cannot access the source dataset in the source-free
scenarios, so we compute the divergence from the individ-
ual data point perspective instead of focusing on datasets.
Hence, we define the divergence factor C'y;, using Jensen-
Shannon Divergence (Djs) between hg(z;) and hr(z):

Caiv = Dys(hs(z¢)||hr (). 1D

By selecting base-2 logarithm, the Djg value is bounded be-
tween 0 and 1, being able to provide normalized adjustment
to alleviate bias. Adding this factor to C',,. yields an ad-
Justed predictive uncertainty factor Cyugj_une.

Data Volume Density The density of data points in a
dataset is often a crucial factor in determining the mag-
nitude of the VAP. For instance, images that are syntheti-
cally contrast reduced have an increased color space den-
sity, while natural images typically have a much lower den-
sity than synthetic images. We can enhance the estimation
performance by adjusting the magnitude of VAP in propor-
tion to the relative density of the data points. To this end,
we consider the standard deviations calculated for each axis
of the three-dimensional RGB color space that can be eas-
ily computed from the image dataset. For the inaccessi-
ble source dataset, these values are still commonly available
in the definition of data transform used for image normal-
ization during training. The natural adjustment approach
scales the perturbation magnitude by the relative density of
the target data to that of the source data. For consistent
application to both black-and-white and color images, we

define the density scaling factor C'y.,, as follows:

1 (stdfb std¥ stdtB)

C en — o
¢ 3 \stdF = stdS  stdB

12)

where std? and stdS denote the standard deviation of the
source dataset in the red axis and that of the target dataset
in the green axis, respectively (B denotes blue).

Class Complexity We also consider the number of
classes (K) that affects the scale of the VAP. KL divergence
tends to increase as K increases, as the volume of the prob-
ability space grows exponentially with K. While the behav-
ior depends on specific distributions, our empirical analysis
has shown that compensating for the increase of the KL di-
vergence in Eq. 8 by logK improves the accuracy. Based
on this observation, we introduce the class complexity fac-
tor Clys:

C.1s = log (the number of categories) . (13)

Proposed Accuracy Estimator. Considering the factors
mentioned above, we propose EST,,, that employs adap-
tive adversarial perturbations (AAPs). EST,,,, is, in fact, a
modification of EST,q, in Eq. 8, with the only difference
being the definition of hyperparameter € as:

€= EOCclstenCadj,uno (14)

Here, the base constant ¢ is typically set to 1.0 as suggested
by [27]. According to Eq. 14, € is re-scaled by the ad-
justed predictive uncertainty (C'y4j_unc) that adaptively con-
trols the perturbation on individual data points. Then the
updated e is multiplied by the class complexity (C;) of the
target dataset and by the relative data point density of the
target dataset compared to the source dataset (Cyey, ). Thus,
PAFA and EST,,, collaboratively compose SF-DAP (AAP).

5. Experiment

Setup. We evaluate and report absolute estimation error
to measure the performance of UAE. For natural distribu-
tion shift, we experiment on Digits [16, 21, 29], Office-31

16449



Table 2. Ablation study on Office-31. Uniformly scaling e for all data instances within the dataset can hurt performance (Configuration
0). With instance-wise scaling (Cqg;_unc), incorporation of scaling factors gradually improves accuracy estimation overall.

Method VAP magnitude (¢) A—D A—-W D—A D—-W W—A W—D Avg.
SF-DAP (ADV) | €y(=1.0) 1.85+1.22 4.43+£2.10 9.05£1.78 2.97+0.52 9.56+1.77 0.46+0.24 | 4.72+1.13
Configuration 0 | €9ClenCeis 9.39+4.01 5.64+520 52443.02 7.644+2.75 2.75+£2.53 3.90+1.47 | 576+1.78
Configuration 1 | €0Cagj_unc 3.33+1.12 1.85£1.14 10.47£1.92 0.34+0.28 11.98+1.80 0.22+0.14 | 4.70£1.03
Configuration 2 | €0CgenCadjunc 4.70+1.13  2.15£1.39  8.20+1.93  0.574+0.27 10.82£1.58 0.16+0.15 | 4.43+1.04
Configuration 3 | €0CeisCadjunc 1.53£0.76  2.00+£1.09 4.84+1.82 2.63£0.71 6.03£1.99 1.254+0.56 | 3.05+1.07
SF-DAP (AAP) | €0Cc1sCaenCladjunc | 0.96£0.87 1.621+0.98 3.28+1.97 3.08+0.89 5.23£2.03 0.88+£0.49 | 2.51+1.10
10.00 —Macro Avg. ---SF-DAP (ADV) ---SF-DAP (AAP) Table 3. Comparison of PAFA with SHOT-IM [ ] and FAUST
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Figure 4. (Best viewed in color) SF-DAP (AAP) outperforms the
optimal result (at € ~ 1.5) achieved by uniform e scaling.

[31], Office-Home [33], and VisDA [30] datasets referring
to the UDA literature. We note that a few challenging sce-
narios are included, such as MNIST—SVHN and VisDA
sim-to-real. For synthetic distribution shift setting, we use
CIFAR-10 and CIFAR-100 [20], paired with CIFAR-10-
C and CIFAR-100-C[15], respectively. The CIFAR-10-C
and CIFAR-100-C datasets contain 19 distinct types of cor-
ruptions applied to CIFAR-10 and CIFAR-100 images, re-
spectively. We employed an identical backbone for each
scenario across all methods for a fair comparison. To be
specific, we use a LeNet variant for Digits, ResNet18 for
CIFAR-10 and CIFAR-100, ResNet50 for Office-31 and
Office-Home, and ResNet101 for VisDA. More detailed
experimental setups, including datasets, network architec-
tures, and training options, are described in Appendix A.

Evaluation. As our baselines for comparison, we con-
sider Difference of Confidence (DoC) [13], Proxy Risk
(Proxy) [6], Random Initialization (RI) [5], Representa-
tion Matching (RM) [5], and Generalization Disagreement
Equality (GDE) [18]. We re-implement all baselines and
compare them under the same experimental setup. We re-
peat experiments on ten independently-trained source mod-
els and report the mean and standard deviation of the com-
puted MAE. Evaluation protocols of the baselines and their
details are described in Appendix A.5 and Appendix B, re-
spectively.

Results. As shown in Table 1, our proposed framework
outperforms existing methods in 63 cross-domain scenarios
across six benchmark groups, even without the need to ac-
cess source samples. The proposed SF-DAP (AAP) demon-
strates comparable or superior results to the state-of-the-art

[22] on the six UDA benchmark tasks. Source-only denotes the
target accuracy of the source model without applying UDA. (S:
SVHN, M: MNIST, U:USPS, Syn: SYNSIG, G:GTSRB)

Method S—M M-S M-=U U—=M Syn—G VisDA | Avg.
Source only | 70.0 47.8 714 84.9 77.1 56.6 69.0
PAFA 99.5 83.5 97.8 98.5 99.4 83.8 93.8
SHOT-IM 98.5 11.0 97.8 97.6 97.2 82.0 80.7

FAUST 99.2 88.0 98.9 97.6 99.7 84.0 94.6

methods like RM and RI. Despite its simpler approach, SF-
DAP (ADV) also exhibits comparable or often better perfor-
mance than previous approaches that require source sample
access. While some existing methods such as GDE [18],
RI, and RM [5] show strong results on synthetic distribution
shift scenarios, they have limitations under natural distribu-
tion shift settings. We emphasize that our proposed frame-
work requires only unlabeled target data, whereas all these
baseline methods cannot be applied if additional access to
source samples is prohibited. All detailed results of 63 sce-
narios are presented in Appendix A.6.

6. Analysis

Ablation. We conduct an ablation study on the Office-
31 dataset by incrementally introducing scaling factors of
SF-DAP (AAP), starting from SF-DAP (ADV). Configura-
tion 0 in Table 2 indicates that including the adjusted uncer-
tainty factor (Cagj_unc) 18 critical without prior knowledge
of €g. Given Cogj_une, both the class complexity (Ces) and
the data volume density (Cy.,,) factors contribute substan-
tially to enhancing the estimation performance. As a conse-
quence, SF-DAP (AAP) surpass other configurations. Ad-
ditional ablation studies can be found in Appendix C.1.

MAE on a Smooth e-Axis. We investigate the MAE tra-
jectory over a smooth e-axis as depicted in Fig. 4, with the
blue line representing the macro average MAE across all 63
scenarios. Fig. 4 suggests that an optimal estimation can be
realized at e ~ 1.5 under a uniform VAP scaling constraint
applied to all target datasets. Though SF-DAP (ADV) em-
ploying € = 1.0 (green dashed line) might be sub-optimal,
SF-DAP (AAP) — illustrated by the red dashed line — fur-
ther diminishes MAE beyond the optimal MAE at € ~ 1.5.
This reduction is achieved by introducing Cgj_unc Which
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enables adaptive VAP scaling per target instance, contrast-
ing with the fixed scaling of C,;s and Clyey,.

Applying AAP Directly to the Source Model. In the ap-
plication of AAP to the source model (without UDA) for
Digits and Office-31 datasets, a notable 3.0% increase is
observed in average MAE compared to our SF-DAP (AAP)
that incorporates UDA. This result underlines the crucial
role of the source-free UDA element within the proposed
SF-DAP framework.

Estimation Time. We compare the runtime of various
methods that require additional training. Our method shows
a competitive running time to other methods. In particu-
lar, the proposed SF-DAP framework runs faster than RM
and Proxy Risk, which also perform UDA during estimation
(see Appendix C.2 for details).

PAFA Performance in UDA. To contribute to the pro-
posed SF-DAP framework as a source-free UDA algorithm,
it is important for PAFA to produce a comparable perfor-
mance to the existing state-of-the-art methods like SHOT-
IM [26] and FAUST [22]. We evaluated PAFA’s perfor-
mance on six commonly used UDA benchmarks and found
that it achieved comparable results to SHOT-IM and FAUST
as shown in Table 3. Notably, when adapting from an
MNIST (source) model to the SVHN (target) dataset, PAFA
achieved a target risk of less than 20%, which is the state-
of-the-art result in UDA literature.

UAE Performance during UDA. We track the perfor-
mance trend of accuracy estimation as the proposed source-
free UDA, PAFA, progresses to each target domain. Our
proposed framework, SF-DAP, starts producing accurate es-
timates surprisingly early and remains steady throughout
the rest of the UDA iterations as illustrated in Appendix
C.6.

7. Conclusion

In this work, we proposed a novel framework that es-
timates model accuracy under unseen target distributions
without access to source data. Our approach utilized source-
free UDA algorithms to produce a viable pseudo-labeling
function and employ virtual adversarial perturbations to en-
hance the accuracy estimation. We also developed a sim-
ple yet effective source-free UDA algorithm, PAFA, which
achieved comparable performance to existing methods on
six popular UDA benchmarks, while avoiding the need for
network augmentation of the source model. To further im-
prove the estimation quality, we introduced adaptive adver-
sarial perturbations based on adjusted predictive uncertainty
and domain discrepancy information. Our experimental

evaluation demonstrated that both AAP and ADV config-
urations in our proposed framework outperformed existing
methods. To the best of our knowledge, this is the first study
to address source-free scenarios in the UAE literature.
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