
Automated Knowledge Distillation via Monte Carlo Tree Search

Lujun Li1†* Peijie Dong2† Zimian Wei2 Ya Yang3

1 The Hong Kong University of Science and Technology, 2 National University of Defense Technology
3 City University of Hong Kong

1
lilujunai@gmail.com

1{dongpeijie, weizimian16}@nudt.edu.cn, 3
yya9@outlook.com

Abstract

In this paper, we present Auto-KD, the first automated

search framework for optimal knowledge distillation design.

Traditional distillation techniques typically require hand-

crafted designs by experts and extensive tuning costs for

different teacher-student pairs. To address these issues, we

empirically study different distillers, finding that they can

be decomposed, combined, and simplified. Based on these

observations, we build our uniform search space with ad-

vanced operations in transformations, distance functions,

and hyperparameters components. For instance, the trans-

formation parts are optional for global, intra-spatial, and

inter-spatial operations, such as attention, mask, and multi-

scale. Then, we introduce an effective search strategy based

on the Monte Carlo tree search, modeling the search space

as a Monte Carlo Tree (MCT) to capture the dependency

among options. The MCT is updated using test loss and

representation gap of student trained by candidate distillers

as the reward for better exploration-exploitation balance. To

accelerate the search process, we exploit offline processing

without teacher inference, sparse training for student, and

proxy settings based on distillation properties. In this way,

our Auto-KD only needs small costs to search for optimal

distillers before the distillation phase. Moreover, we expand

Auto-KD for multi-layer and multi-teacher scenarios with

training-free weighted factors. Our method is promising

yet practical, and extensive experiments demonstrate that it

generalizes well to different CNNs and Vision Transformer

models and attains state-of-the-art performance across a

range of vision tasks, including image classification, object

detection, and semantic segmentation. Code is provided at

https://github.com/lilujunai/Auto-KD.

1. Introduction

Various visual tasks [18, 34, 53] have been successfully

tackled by Deep Neural Networks (DNNs). Despite the ap-

*Corresponding author, † equal contribution.
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Figure 1. Illustration on distiller search space on intermediate fea-

tures. Recent sadvancements in distillation methods (e.g., SP [69],

ICKD [49], CWD [64], LKD [42] and LR [55]) can be searched

with various options of transforms, distances and weights search.

pealing performance, the prevailing DNNs usually have large

numbers of parameters, leading to heavy costs of memory

and computation. Conventional techniques such as pruning

weights from networks [19, 36] and quantizing networks

to use low-bit parameters [10, 57, 85] have proven to be

effective for mitigating this computational burden. Recently,

Knowledge Distillation (KD) [70, 24], another promising

solution family to train compact yet accurate models, has

attracted increasing attention. The objective of knowledge

distillation (KD) is to transfer the acquired knowledge from a

high-capacity DNN model (i.e., teacher) to a lower-capacity

target DNN model (i.e., student), effectively balancing accu-

racy and efficiency during runtime.

Problem Statement: While numerous KD methods [54,

66, 82] have been proposed, one major challenge is the sen-

sitivity of their performance to hyperparameters and teacher-

student architecture pairs. Different hyperparameters, such

as the weighted factor used in the loss function, can have a

significant impact on the final performance of the distilled

student model (see Figure 2 (Left)). Similarly, the same

distiller performs quite differently under various teachers

(see Figure 2 (Right)). Therefore, the practical usage of KD

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Left: Top-1 mean accuracy (%) achieved by KD meth-

ods via various loss weights for ResNet20 (69.06%) with teacher

ResNet110 on CIFAR-100. Right: Top-1 mean accuracy (%) of

KD methods with different teachers for ResNet20 on CIFAR-100.

always involves time-consuming tuning of specific hyperpa-

rameter settings. Another problem is that existing distillation

methods depend on manual human design and expert knowl-

edge. Handcrafted distillations can be highly task or dataset-

specific, limiting their generalizability to new scenarios. For

these issues, an intuitive solution is to explore automated

tuning ways. However, it is not easy to implement such

an automatic search framework because of the following

aspects: (1) knowledge distillation involves various hyper-

parameter settings, loss functions, and transformation types,

making it more complex than traditional hyperparameter

optimization [21]. This complexity presents a significant

obstacle in designing a unified search space and identifying

optimal solutions. (2) In contrast to weight-sharing meth-

ods [27, 47] for acceleration, such a multi-variate joint search

task needs to use the expensive multi-trial route to prevent

weight-sharing errors and optimization collapse.

Our New Observations. To effectively build unified

search spaces and optimize search costs, we conduct detailed

analyses and experiments on different existing distillation

methods. For the search space, we find that (1) Decompos-

ability. Most advanced distillers can be decomposed into

basic transformation and distance functions units. As shown

in Figure 1, both SP [69] and ICKD [49] employ similar

distance functions but differ in transformation. Conversely,

ICKD [49] and CWD [64] share similar feature transfor-

mations but adopt distinct distance functions. (2) Com-

binability between different transformations and distance

functions. As shown in Figure 3 (Left), the attention [82]

and mask [78] transformations can be combined with multi-

scale operation [55] with additional gains. Sample-wise

transformations in SP with KL loss alternative to G − L2

loss yield better performance than the original form (see

Figure 3 (Right)). (3) Simplifiability. Some distillation op-

tions can be ignored in building the search space because of

their consistently poorer results (e.g., L1 in Figure 3 (Right)).

In addition, most distillers can obtain good results within

limited hyperparameter selections (e.g., four values of loss

weight in Figure 2 (left)). These observations inspire us

Figure 3. Left: Top-1 mean accuracy (%) of combinations of

different transformations for distilling ResNet20 (69.06%) with

teacher ResNet110 on CIFAR-100. Right: Top-1 mean accuracy

(%) of combinations of transformations and distances for ResNet20

on CIFAR-100. Mask-C and Mask-H×W denote channel-wise

mask and spatial-wise mask. MS-channnel and MS-sample refer to

our new combination transformations Multi-scale→Channel and

Multi-scale→Sample.

to build search spaces shown in Figure 1 that include vary-

ing key distillation operations in transformations, distance

functions, and weights. Regarding efficiency, we find that

offline storage of knowledge, sparse training for students,

and advanced distillation properties, such as data efficiency

and fast convergence, can be used to accelerate the distil-

lation process. These findings offer valuable insights that

contribute to the design of search space and the reduction of

search budget.

Our New Search Framework. Based on the exciting ob-

servations described above, we present Auto-KD, an effi-

cient and effective automated search framework that finds

optimal knowledge distillation designs for distilling a given

teacher-student model. Specifically, Auto-KD consists of

three important components: the unified tree-like distiller

search space, Monte Carlo tree search, and search acceler-

ation strategies. We organize the search space for feature

distillers into a tree-like structure consisting of different

options from global, intra-spatial, and inter-spatial feature

transformations, feature distance functions, and weight fac-

tors. The transformation options include attention [82, 83],

mask [78], multi-scale [6], sample-wise [69], and channel-

wise [49, 64, 86] operations. The distance functions include

KL, L2, G− L2. Following most logits KD [24], we also

further build a search space by extending the search for logits

distance function and temperature values. To find the optimal

candidate efficiently, we choose a powerful Monte Carlo tree

search to select, expand, simulate, and reward the values of

various nodes in the search tree. The reward determines the

test loss of the student and the representation gap between

teacher and student. To accelerate the search process, we use

offline storage of knowledge to replace teacher inference,

sparse training for student models with proxy training set-

tings (i.e., subsets and early stop). These strategies result in

at least 40× faster training and 15× more training parame-
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ters and memory savings. Finally, we extend Auto-KD to

multi-feature and multi-teacher distillation with train-free

fine-grained weighted factors, which condition on teacher

feature entropy and feature similarity of teacher-student.

Valuation and Evaluation In principle, our Auto-KD dif-

fers from previous hand-designed distillation methods and

opens new doors to automated distillation designs. Its merits

can be highlighted in three aspects: (1) Effective. Auto-

KD solves the distiller’s hyperparameter and architecture-

sensitive problem and helps to obtain stable distillation gain

in different scenarios. Extensive experiments on visual

tasks and models demonstrate the leading performance of

Auto-KD. On the CIFAR-100 dataset, Auto-KD achieves

3% ∼ 7% gain for CNN and 2% ∼ 13% gain for ViT

models, surpassing other SOTA methods with significant

margins. On the large-scale ImageNet dataset, ResNet18

and MobileNet with Auto-KD reach a 3% absolute gain

over the baseline model. For downstream tasks, Auto-KD

also improves the detector with 3.7 AP on MS-COCO and

the segmenter with 3.1% ∼ 3.7% mIOU in the cityscape.

(2) Efficiency. Auto-KD employs bags of efficient training

strategies based on the distillation properties and achieves

significant speed-ups. This framework greatly benefits the

following search methods and the application of distilla-

tion. (3) Insightful. Auto-KD in-depth analyzes existing

advanced distillation designs and explores their combina-

tions to generate many new distillers. Auto-KD not only

provides guidelines for practical applications, but also de-

velops a new research direction. We anticipate that our

endeavors in automating the design of distillers will, to some

degree, support and advance future research on automated

knowledge distillation.

Main Contributions:

• By exploring the decomposability, combinability and

simplifiability of distillation methods, we propose a new

automated distillation search framework for optimal

distiller design, which, to the best of our knowledge, is

not achieved in the area of knowledge distillation.

• Auto-KD organizes the unified distiller search space

as a Monte Carlo tree and performs Monte Carlo tree

search. In addition, Auto-KD leverages bags of efficient

strategies and achieves significant search acceleration.

• We perform thorough evaluations on classification, de-

tection, and segmentation. Auto-KD achieves state-

of-the-art performance across multiple datasets and ar-

chitectures (e.g., CNN and vision transformer). We

also successfully extend Auto-KD in multi-layer and

multi-teacher distillation.

2. Automated Knowledge Distillation

Figure 4 presents the search process in Auto-KD. In this

section, we first specify its three key components: search

space design, MCT search, and acceleration strategies. Then,

we introduce its applications and extensions.

2.1. Search Space Design

Problem formulation The aim of KD is to train a smaller

student model (S) to learn from the teacher model (T ). More

specifically, the teacher model’s outputs, referred to as pT
and fT , correspond to the logits and features, respectively.

Meanwhile, the outputs of the student model, denoted as pS ,

fS , are trained to match those of the teacher by minimizing:

LKD = Wf ×Df

(

Tf
〈

fS , fT
〉)

+Wp×Dp (pS/τ, pT /τ) ,
(1)

where Wf is the loss weighted factor, Tf is feature transfor-

mations, Df (·, ·) and Dp(·, ·) is distance function measuring

the difference of feature representations and logits.

Unified tree-structured search space. For efficient search

and optimal accuracies, we organize key operations in KD

into a tree-like structure in Table 1. (1) For feature trans-

forms, we observe that existing designs can be decomposed

into three categories: global feature, intra-spatial, and inter-

spatial transformations, respectively. For example, atten-

tion KD [82] generates attention factors to re-align teacher-

student features. Then, these features can be pooled into

multi-scale ones [6] and transformed by channel transforms

to achieve better channel-wise alignment [64]. The com-

bination of diverse operations allows our search space to

capture the transformations in recent SOTA KDs and many

new forms. For other transform parts, we employ a pooling

layer to align feature scales and 1 × 1 Conv to align filter

numbers. For converting logits KD, we apply intra-class

and inter-class transform [29] to improve performance. (2)

For the distance function, we select some potential distances

for the feature KD and logits KD. Other distances are not

included in our search space because of their poor perfor-

mance. (3) For the hyperparameters of loss weights and

temperature factors, we select common values as candidates

for loss weights of feature KDs and temperature factors for

logits KD. Our search space is highly uniform and tight, and

we achieve advanced searches on it, detailed in the following

sections.

Extended Search Space. In addition, we also extend the

search space with some distillation designs that we have

explored ourselves: (1) G− L2 and Renyi entropy for em-

bedding feature distillation. (2) Logits normalization with a

scaling factor for KL divergence in logits KD. (3) Additional

options for setting warm-up and early-stop for loss weights.
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Figure 4. The overall framework of Auto-KD, which models the search space into a MCT, then searches the optimal design of knowledge

distillation using Monte Carlo tree search (left) and search acceleration strategies (right).

Table 1. Various distillation operations and their forms in our search

space, which will be detailed in the Appendix.

Type Operation Expression

Global Tf

Attention α× fS , α× fT , α ∼ (fS , fT )

Mask M × fS ,M × fT ,M ∈ (0, 1)

Original fS , fT

Intra-spatial Tf

Multi-scale f
N,C,H/2,4,W/2,4
S , f

N,C,H/2,4,W/2,4
T

Local f
n2

×N,C,H/n,W/n
S , f

n2
×N,C,H/n,W/n

T

Original fS , fT

Inter-spatial Tf

Sample fN,CHW
S , fN,CHW

T

Channel fC,NHW
S , fC,NHW

T

Original fS , fT

Distance Df

G− L2

∣

∣

∣

∣fS · f⊺

S/||fS · f⊺

S || − fT · f⊺

T /||fT · f⊺

T ||
∣

∣

∣

∣

2

LKL σ(fT )× log[σ(fT )/σ(fS)]

L2 ||fS − fT ||
2

Distance Dp
LKL σ(pT )× log[σ(pT )/σ(pS)]

LPearson 1− cov(pS , pT )/
(

std(pS) · std(pT )
)

Weight Wf Constant 1,5,25,50

Weight Wp Constant 0.1, 0.5, 1, 5

Temperature τ Constant 1,2,4,8

2.2. Monte Carlo Tree Search

We perform the Monte Carlo Tree Search (MCTS) [71]

for the following reasons: (1) MCTS is a powerful and effi-

cient sampling-based tree search method to solve complex

decision problems [3, 65]. (2) MCTS could capture corre-

lations of operation candidates in our distiller search space,

improving interpretability and stability. The main steps of

the algorithm can be summarized as follows.

Selection: In this step, the algorithm selects the best node

from the current tree using an Upper Confidence Bound

(UCB) formula. The UCB formula balances exploration and

exploitation, allowing the algorithm to choose the node with

the highest potential for improvement. For a node ni, the

UCB is computed by:

ν(ni) = Ri/Ni + C ·
√

2 · lnNb/Ni, (2)

where Ri represents the reward for node ni, while Ni and Nb

indicate the number of visits to node ni and its parent node

nb, respectively. The control parameter C determines the

extent of exploration. In our approach, the reward value R
is dependent on the L CE(pS , Y ) loss of the student model

and the similarity between the teacher and student on the

validation set, as defined below:

R = 1−
(

LCE(pS , Y ) + LCKA(fS , fT )
)

, (3)

where LCKA(·, ·) is Centered Kernel Alignment (CKA) met-

ric [32] for representation similarity.

Expansion: During this step, the algorithm generates addi-

tional child nodes for the selected node, representing poten-

tial future states of the system.

Simulation: Following the expansion of the selected node,

the newly added node undergoes evaluation through a tra-

jectory of random actions until a terminal state is reached.

The outcome of the simulation is then utilized to estimate

the quality of the child node.

Backpropagation: In the final step, the algorithm updates

the estimated quality of the parent nodes based on the simula-

tion results. The updated quality values are used to influence

future selections in the tree.

2.3. Search Acceleration Strategies

Offline processing and sparse training. Our approach

employs offline processing to reduce computational costs

without requiring teacher inference. Specifically, we store

the feature maps generated by the teacher after a single for-

ward pass and apply the same data augmentation techniques

used during training to ensure spatial alignment. In addition,

we introduce sparse training to reduce the memory budget

and computation. In distillation, we first set up a random

mask [50] to force certain weights of the student model to be

zero and then configure a dynamic strategy [15] to preserve

the distillation gains. The results in Table 2 indicate that

offline processing effectively reduces inference parameters
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Table 2. Ablation on acceleration techniques (i.e., offline process-

ing, student training with 50% sparsity, subsets & early-stop with

20% of original dataset & epochs) for ResNet-20 (69.09%) via

teacher ResNet-110 on CIFAR-100. Training time (GPU-seconds)

is measured on a single 2080Ti GPU and × represents the improv-

ing ratios than traditional KD. Acc-1. denotes student accuracy (%)

of candidate distiller in the search phase and Acc-2. represents the

final results (%) of our searched distiller in the distillation phase.
Method Params (M) Time (S) Acc-1. Acc-2.

Baseline 1.97 6,036 71.00 72.65

+ Offline 0.27 (7.29×) 4,654 (1.29×) 70.82 72.65

+ Sparse-50% 0.13 (15.15×) 3,816 (1.58×) 70.66 72.61

+ Subsets-20% 0.13 (15.15×) 793.2 (7.6×) 66.52 72.55

+ Early-stop-20% 0.13 (15.15×) 150.6 (40.07×) 48.98 72.52

and training time. Similarly, sparse student training sub-

stantially reduces training costs and marginally improves

searched accuracy.

Proxy settings. With diverse and informative knowledge

learned from a teacher, student models offer advantages in

terms of data efficiency and faster training speeds. Based on

these properties, we employ subsets and early stop the train-

ing process once the student model performs well enough to

determine the quality of the candidate distillation and use the

intermediate model to compute the reward signal. As shown

in Table 2, adopting proxy settings reduces search overhead

and ensures stability in the final searched accuracy.

2.4. Applications and Extensions

After the distiller search phase, we train the student net-

work S using the discovered distiller, denoted by LAuto−KD.

The optimization objectives are defined as follows, where

LCE is the cross-entropy loss:

LS = LCE(pS , Y ) + LAuto−KD, (4)

Extension for multi-layer & multi-teacher distillation.

Augmenting various features supervision from different lay-

ers of a single teacher or multiple teachers can enhance the

quality of distillation, but this approach also presents chal-

lenges in weight tuning. To address this issue, we scale the

weight of loss with Train-Free (TF) factors in multi-feature

distillation based on the information bottleneck theory. The

TF factors are determined by the information entropy of

teacher features and the similarity of teacher-student feature

pairs. Consider Q as a set comprising layer location pairs

for feature distillation. The optimization objective function

can be defined as follows:

LAuto−KD+TF = Wf

∑

q∈Q

µq ×Df

(

Tf
〈

fq
S , f

q
T

〉)

, (5)

µq = Dentropy(f
q
T )×DCKA(f

q
S , f

q
T ). (6)

where µq is the Train-Free (TF) fine-grained weighted factor,

Dentropy is the standard entropy metric and DCKA is the

CKA feature distance metric, respectively. TF factor µq

allows efficient adjustment of Wf in multi-layer, cross-layer,

and multi-teacher KD and achieves comparable results.

2.5. Detailed Analysis of Searched Distillers

A thorough understanding of the specific task and the

characteristics of the teacher-student network architecture

should guide the choice of knowledge distillation opera-

tion. From the searched distillers of Auto-KD for different

models, we can summarize some observations regarding the

applicability of different knowledge distillation methods as:

1. Channel-wise distillation operation is recommended for

wider teacher-student networks. By aligning the feature

maps of the teacher and student networks, this method

facilitates the transfer of knowledge from the teacher to

the student network.

2. Multi-scale distillation operation is a useful method

when there is a significant semantic gap between the

teacher-student networks. It can help to gain more in

most cases, especially for downstream tasks.

3. Mask distillation operation is more appropriate for

teacher-student with relatively large distillation gaps,

but it may also result in knowledge loss in the transfer

process.

4. Attention distillation operation is more advantageous

in heterogeneous teacher-student architectures, particu-

larly for Vision Transformer models.

5. Local distillation operations are recommended for

multi-label or local information-critical tasks, with av-

erage performance on datasets such as CIFAR-10/100.

6. Sample-wise distillation operation can benefit different

models, but it is influenced by the corresponding task

and batch size.

7. LKL has better generalizability for different tasks, and

LPearson is more practical for complex tasks.

8. Adjusting the temperature coefficient is useful for most

tasks, and the optimal value of feature weights is gener-

ally between 1 and 25.

3. Experiments

In this section, we assess the efficacy of our proposed

Auto-KD approach on classification, detection, and segmen-

tation tasks, while also comparing its performance against

other knowledge distillation methods. To ensure fair com-

parisons, we employ identical training settings and report

the mean results obtained from multiple trials conducted

throughout the experiments. For more comprehensive imple-

mentation details, please refer to the Supplementary Materi-

als.
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Table 3. Comparison of results on CIFAR-100. Most of the results of other methods refer to the original papers [6, 66]. W40-2, R32×4,

R8×4, MV2, SV1 and SV2 stand for WRN-40-2, ResNet32×4, ResNet8×4, MobileNetV2, ShuffleNetV1 and ShuffleNetV2. We report

top-1 “mean ” accuracies (%) for Auto-KD over 3 runs.

Model Same architectural style Different architectural style

Teacher W-40-2 R56 R110 R110 R32×4 VGG13 VGG13 R32×4 R32×4 W-40-2

Student W-16-2 R20 R20 R32 R8×4 VGG8 MNetV2 SNetV1 SNetV2 SNetV1

w
/o

lo
g

it
s

K
D

Teacher 75.61 72.34 74.31 74.31 79.42 74.64 74.64 79.42 79.42 75.61

Student 73.26 69.06 69.06 71.14 72.50 70.36 64.60 70.50 71.82 70.50

FitNets [61] 73.58 69.21 68.99 71.06 73.50 71.02 64.14 73.59 73.54 73.73

AT [82] 74.08 70.55 70.22 72.31 73.44 71.43 59.40 71.73 72.73 73.32

SP [69] 73.83 69.67 70.04 72.69 72.94 72.68 66.30 73.48 74.56 74.52

RKD [54] 73.35 69.61 69.25 71.82 71.90 71.48 64.52 72.28 73.21 72.21

CRD [66] 75.48 71.16 71.46 73.48 75.51 73.94 69.73 75.11 75.65 76.05

LR [55] 76.12 71.89 71.82 73.89 75.63 74.84 70.37 77.25 77.18 77.14

Auto-KD 76.62±0.18 72.12±0.17 72.23±0.19 74.29±0.18 77.35±0.21 75.06±0.16 70.42±0.12 77.26±0.17 77.31±0.34 77.21±0.36

w
lo

g
it

s
K

D

KD [24] 74.92 70.66 70.67 73.08 73.33 72.98 67.37 74.07 74.45 74.83

DIST [29] 75.35 71.78 71.68 73.86 75.79 73.86 69.17 75.23 76.08 75.85

CRD+KD [67] 75.64 71.63 71.56 73.75 75.46 74.29 69.94 75.12 76.05 76.27

ICKD-C [49] 75.57 71.69 71.91 74.11 75.48 73.88 69.53 74.86 75.86 76.12

Auto-KD 76.86±0.23 72.44±0.15 72.52±0.22 74.60±0.18 77.61±0.36 75.36±0.15 70.58±0.18 77.56±0.21 77.52±0.16 77.46±0.32

Table 4. Accuracy results on ImageNet. Results of other methods quote the original papers report [6, 66].

Teacher Student Acc. Teacher Student KD [24] AT [82] OFD [22] SRRL [30] CRD [66] KR [55] MGD [78] Auto-KD

ResNet-34 ResNet-18
Top-1 73.40 69.75 70.66 70.69 70.81 71.73 71.17 71.61 71.58 72.45

Top-5 91.42 89.07 89.88 90.01 89.98 90.60 90.13 90.51 90.35 90.69

ResNet-50 MobileNet
Top-1 76.16 70.13 70.68 70.72 71.25 72.49 71.37 72.56 72.35 73.26

Top-5 92.86 89.49 90.30 90.03 90.34 90.92 90.41 91.00 90.71 91.17

3.1. Experiments on CIFAR100

Dataset and Implementation. CIFAR-100 dataset [33]

is a widely evaluated classification benchmark in distilla-

tion. During the distiller search phase, we adopt a basic

tree structure search space and training acceleration settings,

including 48 early-stop training epochs, 20% training data

subsets, 50% sparsity of student model training, and offline

storage of teacher’s knowledge. Our MCT search performs

100 iterations for each teacher-student pair. In the distillation

phase, the teacher-student networks are trained with standard

training settings, employing a training epoch of 200. A mini-

batch size of 128 and a standard SGD optimizer are utilized.

The learning rate follows a multi-step schedule, starting at

0.1 and decaying by 0.1 at 100 and 150 epochs.

Comparison results. Table 3 presents a comparative anal-

ysis of our Auto-KDf method (without logits KD) with

state-of-the-art (SOTA) feature distillations and Auto-KD

with other KD methods. For teacher-student pairs with the

same architectural style, Auto-KDf and Auto-KD outper-

form the baselines by margins ranging from 3% ∼ 5% and

3% ∼ 5%, respectively. Compared with other KDs, our

approach achieves absolute accuracy gains of 1% ∼ 3%
for Auto-KDf and 1% ∼ 3% for Auto-KD. Notably, our

approach exhibits even stronger performance when dealing

with different architectural styles. At the same time, most

of the other KD methods suffer from a noticeable reduction

in accuracy compared to the same architecture. Specifically,

Auto-KD outperforms the baseline by margins of 5% ∼ 7%
and the random search results by margins of 1% ∼ 3%,

demonstrating the effectiveness of our design for different

structures. Compared with other SOTA multi-layer KD meth-

ods, our method achieves an additional gain of 0.3% ∼ 2%
with only a single layer of feature knowledge. Finally, when

combined with the distillation of output logits, Auto-KD

provides additional improvements and clearly outperforms

complex methods like CRD+KD, and ICKD. These results

show that Auto-KD can improve each student model with

simple settings under different teacher-student pairs.

3.2. Experiments on ImageNet

Dataset and Implementation. We additionally perform ex-

periments on the ImageNet dataset (ILSVRC12)[62]. Due to

computational limitations, it is difficult to search directly on

the original ImageNet. Consequently, we address this issue

by searching on a subset of ImageNet, namely ImageNet-100.

This subset is randomly selected from the original training

set and consists of 500 instances of 100 categories. Fol-

lowing experiments on the CIFAR-100 dataset, we employ

similar MCT search settings to identify optimal distillers

for ImageNet. Subsequently, we conduct full student model

training on the entire ImageNet dataset using standard ar-

chitectures such as ResNet-18[20] and MobileNet[26]. The

training configuration aligns with the majority of distilla-
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tion methods, entailing a 100-epoch training duration with

a multi-step learning rate. The learning rate commences at

0.1 and undergoes decay by a factor of 0.1 at 30, 60, and 90

epochs.

Comparison results. In Table 3, we present the performance

results of our auto-kd on the ImageNet dataset. Our Auto-

KD method significantly improves over baseline models, as

we observe gains of 2% ∼ 3% in Top-1 accuracy for ResNet-

18 and MobileNet, respectively. Notably, Auto-KD performs

better than other KD methods and outperforms CKD with

margins ranging from 1% ∼ 2%. These results demonstrate

the superiority of Auto-KD over other methods on a large-

scale dataset. These results demonstrate the effectiveness of

Auto-KD for improving the performance of DNNs on the

ImageNet dataset.

Table 5. Top-1 mean accuracy (%) comparison on CIFAR-100.

Student Vanilla KD [25] AT [82] SP [69] LG [37] Auto-KD

DeiT-Ti [68] 65.08 73.25 73.51 67.36 78.15 78.58 ±0.32

T2T-ViT-7 [81] 69.37 74.15 74.01 72.26 78.35 78.62 ±0.18

PiT-Ti [23] 73.58 75.47 76.03 74.97 78.48 78.51 ±0.21

PVT-Ti [72] 69.22 73.60 74.66 70.48 77.07 77.48 ±0.35

PVTv2-B0 [73] 77.44 78.81 78.64 78.33 79.30 79.37 ±0.24

3.3. Experiments on Vision Transformer

Implementation. Distillation techniques allow Vision Trans-

former (ViT) to be trained from scratch easily with CNNs

as teachers. To assess the efficacy of Auto-KD, we search

ViT-based distillation strategies on the CIFAR-100 dataset.

We perform the MCT search with the same settings as the

CNN experiment. Subsequently, we train the ViT with the

optimal distiller obtained and ResNet-56 as CNN teacher.

The training process involves images of 224×224 resolution

and spans 300 epochs. The initial learning rate is set to 5e-4,

and a weight decay of 0.05 is applied using the AdamW

optimizer.

Comparison results. Table 5 presents the results of the

vanilla and distillation models employing different distilla-

tion methods. The results indicate that Auto-KD can signifi-

cantly improve the performance of vision transformers with

2% ∼ 13% margins and consistently yields superior perfor-

mance than other methods. In addition, it is noteworthy that

our proposed method applies to various ViT architectures,

thereby validating its effectiveness.

3.4. Experiments on Object Detection

Datasets and implementation. We perform experiments

on the MS-COCO dataset [46], which consists of 80 object

categories. The training set comprises 120k images, while

the testing set consists of 5k validation images. To evaluate

the optimal distiller of Auto-KD on the MS-COCO dataset,

we utilize the widely used open-source framework MMDe-

tection

citemmdetection as the strong baseline. Our application

of Auto-KD includes two-stage detectors such as Faster R-

CNN [60] and one-stage detectors like RetinaNet [45], both

well-established object detection frameworks. Following

established practices [45], all models are trained using a

2× learning schedule spanning 24 epochs. The models are

trained using the SGD optimizer with a momentum of 0.9

and a weight decay of 0.0001.

Comparison results. As shown in Table 6, Auto-KD demon-

strates its effectiveness and generality by surpassing other

state-of-the-art methods [64, 77, 83] for both object detec-

tors, improving the average precision (AP) by 3.7 on Reti-

naNet and 4.0 on Faster R-CNN. This success in tackling

challenging object detection tasks showcases the broad ap-

plicability and efficacy of Auto-KD.

Table 6. Results comparison of object detection on MS-COCO. T:

teacher; S: student. CM RCNN: Cascade Mask RCNN.

Model AP APL APM APS

Two-stage detectors

CM RCNN-X101[T] 45.60 26.20 49.60 60.00

Faster RCNN-R50[S] 38.40 21.50 42.10 50.30

KD [24] 39.70 23.20 43.30 51.70

FKD [83] 41.50 23.50 45.00 55.30

CWD [64] 41.70 23.30 45.50 55.50

DIST [29] 40.40 23.90 44.60 52.60

FGD [77] 42.00 23.80 46.40 55.50

MGD [78] 42.10 23.70 46.40 56.10

Auto-KD 42.40 24.20 46.70 55.90

One-stage detectors

RetinaNet-X101[T] 41.00 23.90 45.20 54.00

RetinaNet-R50[S] 37.40 20.00 40.70 49.70

KD [24] 37.20 20.40 40.40 49.50

FKD [83] 39.60 22.70 43.30 52.50

CWD [64] 40.80 22.70 44.50 55.30

DIST [29] 39.80 22.00 43.70 53.00

FGD [77] 40.70 22.90 45.00 54.70

MGD [78] 41.00 23.40 45.30 55.70

Auto-KD 41.10 23.30 45.50 55.80

3.5. Experiments on Semantic Segmentation

Datasets and implementation. We conduct an evaluation

of Auto-KD on the CityScapes dataset [9], which comprises

2,975 training images, 500 validation images, and 1,525

testing images. Following previous research, we employ

PSPNet-ResNet101 [84] as the teacher model, while the

student models consist of PSPNet and DeepLabV3 [5] with

the ResNet18 backbone. During the distillation process,

we use a batch size of 8 and train the models for 40,000

iterations using the SGD optimizer with a momentum of

0.9 and a weight decay of 0.0005. The results are reported

based on the mean Intersection-over-Union (mIoU) under
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the single-scale evaluation setting.

Comparison results. As shown in Table 7, the student Psp-

Net and DeepLabV3 get 3.1 and 3.7 mIoU improvement

by adding our Auto-KD loss. The obtained results clearly

demonstrate that our method outperforms the current state-

of-the-art distillation approach for semantic segmentation.

This finding provides strong evidence that the searched dis-

tillers effectively enhance the learning process of the student

model.

Visualizations. Figure 5 showcases the visualization re-

sults of DeepLabV3-ResNet18 trained with Auto-KD and

traditional KD methods. The Auto-KD approach results in

more consistent dense-pixel classification, as demonstrated

through the superior segmentation performance of the re-

sulting segmenter. Accurate and consistent pixel labeling

is of utmost importance for downstream tasks like object

recognition and tracking, making this particularly crucial for

image segmentation tasks [56]. The results of the study indi-

cate that the proposed Auto-KD approach is more suitable

for distilling knowledge from a teacher to a student model,

resulting in enhanced segmentation performance.

Table 7. mIoU (%) results of CityScapes segmentation.

Teacher DeepLabV3-R101(78.07)

Student DeepLabV3-R18(74.21) PSPNet-R18(72.55)

SKD [52] 75.42 (1.21↑) 73.29 (0.74↑)

IFVD [74] 75.59 (1.38↑) 73.71 (1.16↑)

CWD[64] 75.55 (1.34↑) 74.36 (1.81↑)

CIRKD [75] 76.38 (2.17↑) 74.73 (2.18↑)

Auto-KD 77.35 (3.14↑) 76.25 (3.70↑)

3.6. Ablation Study

In this section, We analyze the impact of each component

of Auto-KD in isolation and explore different variations of

these components.

Search space & algorithm. Our well-designed search space

with a tree-based structure reduces the problem’s complex-

ity, enabling the MCT search to explore promising distillers

more efficiently. Results in Table 8 illustrate the clear ad-

vantages of our search method over naı̈ve organizations. In

addition, we involve other advanced distillation operations

into the extended space, resulting in additional gains. For

the search algorithm, our MCT search obtains stable benefits

compared to random search.

Table 8. Ablation of search space for ResNet-20 on CIFAR-100.

Space Naı̈ve Ours Ours+ Extension

Random 69.82%±0.44 71.55%±0.51 71.98%±0.42

MCTS 70.32%±0.24 72.52%±0.22 72.65%±0.16

Comparing different reward functions. The design of the

reward function is crucial as it guides the search for optimal

Table 9. Ablation on reward for ResNet-20 on CIFAR-100.

Reward Acc. LCE LCE +LL1 LCE +LCKA

Top-1 (%) 72.25± 0.25 72.36±0.21 72.45±0.18 72.52±0.22

solutions for the MCT search. In Table 9, we compare the

performance of using accuracy, LCE , and other losses of the

student models on the validation set. The results indicate that

employing the loss value is better than direct accuracy and

involving the CKA distance or L1 distance of the teacher

model results in stable improvements.

3.7. MultiLayer & MultiTeacher Extensions

Multi-layer distillation. As a generic framework, Auto-KD

can be naturally used in multi-layer and cross-layer scenarios

with our Train-Free factor (TF). To explore its potential, we

choose KR and DistPro [11] as the references and train the

student model with the same setting. Table 10 shows the

results from which we can observe Auto-KD combined with

TF can achieve better performance than KR+DistPro. In

addition, the TF strategy with KD also achieves competitive

gain over DistPro and is superior in efficiency by avoiding

the meta-optimization process.

Table 10. Top-1 accuracy (%) of different multi-layer distillations.

Method KR [55] KR+DistPro [11] KR+TF Auto-KD+TF

Multi-layer 71.89±0.05 71.93±0.26 72.05±0.12 72.55±0.08

Cross-layer 71.92±0.16 72.03±0.28 72.18±0.18 72.62±0.17

Multi-Teacher distillation. Our Auto-KD with a train-free

factor can also be employed for multi-teacher distillation

incorporating intermediate features. The results in Table 11

demonstrate that TF and Auto-KD+TF consistently outper-

form AVEG and AEKD. The experimental results validate

the applicability of Auto-KD in multi-teacher KD.

Table 11. Top-1 accuracy (%) ofdifferent multi-teacher distillations.

Model
Teacher-3 Teacher-2 Teacher-3 Student

ResNet8×4 ResNet20×4 ResNet32×4 VGG8

Vanilla Acc 72.79 78.39 79.31 70.74±0.40

KD [24] AVEG [63] AEKD [63] TF Auto-KD-TF

KD Acc. 74.55±0.24 74.69±0.29 75.38±0.25 76.52±0.15

4. Related Work

Knowledge Distillation. Inspired by pioneering stud-

ies [1, 4], the original Knowledge Distillation (KD) [24]

leverages soft logits from a pre-trained teacher as additional

supervision to guide the training of the student, alongside

ground truth labels. Subsequently, various feature distillation

techniques [61, 79, 82, 51] are proposed, which focus on the

intermediate feature representations. Additionally, relation

distillation methods demonstrate that capturing relations [54]
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Figure 5. Qualitative segmentation results on the validation set of Cityscapes using the DeepLabV3-ResNet18 network: (first row) the

original student network with channel-wise distillation, (second row) the original student network with our method. The yellow box

highlights some of the incorrect classifications for comparison methods.

and higher-order dependencies [66] between logits or inter-

mediate feature representations learned by the teacher pro-

vides valuable structural information. Furthermore, KD has

been extended to multi-teacher models [63, 39], self-KD sce-

narios [2, 16, 38, 41, 40]), and diverse applications [17, 31]).

Researchers have designed advanced transformations [29],

distance functions [64], and weight-tuning strategies [48] to

further enhance the effectiveness of distillation. However,

these KD designs heavily rely on expert knowledge and man-

ual tuning, leading to performance variations across different

settings. Auto-KD addresses these challenges by introducing

automated searches, ushering in a new era for KD research

and applications.

Compared to Meta-KDs. These works [11, 48] only focus

on hyperparameters tuning and involve complex optimiza-

tion challenges. In contrast, our approach not only searches

for hyperparameters but also for specific KD designs, result-

ing in additional performance improvement.

Automated Machine Learning. AutoML [21] is presented

to automate Neural Network Architecture Search (NAS)

and HyperParameter Optimization (HPO) and make them

accessible to non-experts. NAS exploits gradient [47, 8], one-

shot [27, 80, 14, 28, 13], and train-free strategies [7, 44, 12]

to choose architecture rather than KD designs.

Compared to HPO methods. HPOs [58, 76] build search

spaces and utilize search strategies to select the optimal

values for the hyperparameters that control the behavior of

the model. Recent methods search for loss formation [43,

35]. In contrast, our search space is complex, consisting

of hyperparameters like loss weights and other searches

for transformations & distances. In addition, our method

employs advanced MCT search [3] and first explores the

organization of search space and cost optimization in KD.

Compared to Auto-Zero. Auto-Zero methods [35, 59] opt

to search from scratch and typically yield marginal gains due

to the search space’s sparsity and the search’s inefficiency.

To address these issues, the Auto-KD search starts with

successful distillation operations, greatly improving search

efficiency and generalizability.

5. Conclusion

In this paper, we present the Auto-KD framework, a novel

method for automatically designing distillers. Auto-KD in-

volves constructing a versatile and cohesive distiller search

space, incorporating successful search operators derived

from a thorough understanding of the decomposability, com-

binability, and simplicity exhibited in existing distillation

methods. To enhance the efficiency of distiller search and

enhance the performance of student models during distilla-

tion training, we employ Monte Carlo tree search and search

acceleration strategies. Through extensive experimentation

on three benchmarks, including CNNs, Vision Transformer

models, object detection, and semantic segmentation, we

demonstrate the effectiveness and broad applicability of the

Auto-KD framework. We aspire that our work serves as an

inspiration for future research in the design of knowledge

distillation methods.

Limitations. Following general KD and AutoML methods,

we search on classification tasks and transfer searched dis-

tiller to downstream tasks to verify generalization. In future

work, we will make efforts to expand the Auto-KD with task-

specific search space design for object detection, semantic

segmentation and other downstream tasks.
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