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Abstract

Cross-modal Unsupervised Domain Adaptation aims to
exploit the complementarity of 2D-3D data to overcome
the lack of annotation in an unknown domain. However,
the training of these methods relies on access to target
samples, meaning the trained model only works in a spe-
cific target domain. In light of this, we propose cross-
modal learning under bird’s-eye view for Domain Gener-
alization (DG) of 3D semantic segmentation, called BEV-
DG. DG is more challenging because the model cannot ac-
cess the target domain during training, meaning it needs
to rely on cross-modal learning to alleviate the domain
gap. Since 3D semantic segmentation requires the clas-
sification of each point, existing cross-modal learning is
directly conducted point-to-point, which is sensitive to the
misalignment in projections between pixels and points. To
this end, our approach aims to optimize domain-irrelevant
representation modeling with the aid of cross-modal learn-
ing under bird’s-eye view. We propose BEV-based Area-
to-area Fusion (BAF) to conduct cross-modal learning un-
der bird’s-eye view, which has a higher fault tolerance for
point-level misalignment. Furthermore, to model domain-
irrelevant representations, we propose BEV-driven Domain
Contrastive Learning (BDCL) with the help of cross-modal
learning under bird’s-eye view. We design three domain
generalization settings based on three 3D datasets, and
BEV-DG significantly outperforms state-of-the-art competi-
tors with tremendous margins in all settings.

1. Introduction
Semantic segmentation of LiDAR point clouds is funda-

mental for numerous vision applications, such as robotics,
autonomous driving and virtual reality. Given a LiDAR
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Figure 1. DG results of methods under different levels of point-
to-pixel misalignment. The models are trained on A2D2 and Se-
manticKITTI datasets, and tested on nuScenes dataset. Area-to-
area methods significantly outperform point-to-point methods un-
der each level of misalignment. Moreover, point-to-point methods
degrade more dramatically with the increasing misalignment.

frame, the goal is to separate each point in the point cloud
into a cluster with corresponding semantic labels.

Recently, some 3D semantic segmentation approaches
continuously refresh the performance leader-boards on sev-
eral benchmark datasets [2, 3, 4, 7, 9]. Nevertheless, the
training and testing data for these approaches originate from
identical datasets (domains). As each dataset has a dif-
ferent configuration of LiDAR sensors, these methods can
significantly degrade under domain shift. Specifically, due
to the number of laser beams varying from LiDAR to Li-
DAR, the obtained point cloud is also quite diverse in terms
of density (resolution), which results in a tremendous do-
main gap. To improve the generalization of the model,
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some Unsupervised Domain Adaptation (UDA) methods
[14, 21, 25, 34, 36] are proposed for point cloud seman-
tic segmentation in a single-modal or cross-modal manner.
However, the training of these UDA methods relies on the
target domain data, which makes them only generalize well
to a specific target domain.

To this end, we are focused on investigating Domain
Generalization (DG) for 3D semantic segmentation. Com-
pared to UDA, DG is more challenging as it can not ac-
cess the target domain during training, and the model should
generalize well to an unseen target domain. Currently, many
cross-modal UDA methods [14, 21, 25, 36] are proposed for
3D semantic segmentation. To mitigate the negative effect
of domain shift, they utilize cross-modal learning to prompt
information interaction between two modalities (image and
point cloud). The mechanism behind this idea is that if one
modality is sensitive to one type of shift while the other
is robust, and the robust modality can guide the sensitive
modality. In light of this, we solve the DG problem using
cross-modal learning on multi-modal data.

However, current cross-modal learning achieves cross-
modal matching through a point-to-point manner, wherein
the 2D pixels and 3D points are matched using pre-existing
projections. Due to the inaccuracy of the extrinsic calibra-
tion between LiDAR and camera [6], there is a more or less
point-level misalignment in the projections. As a result,
existing cross-modal UDA methods degrade significantly
when extending them to DG task. Unlike UDA, which al-
lows fine-tuning on the target domain, the target domain
is unavailable in the DG setting. Thus these point-to-point
cross-modal UDA methods are more sensitive to inaccurate
cross-modal matching caused by point-level misalignment,
as seen in Fig. 1. Moreover, to model domain-irrelevant
representations, some cross-modal UDA methods [25, 36]
introduce adversarial learning, which is highly responsive
to hyperparameters and challenging to train.

To tackle these concerns, we propose cross-modal learn-
ing under BEV for domain generalization of 3D seman-
tic segmentation, which is inspired by 3D object detection
methods [16, 35, 39] that use the additional bird’s-eye view
of one modality (point cloud) to better the target posture and
boundary. For different modalities (image and point cloud),
with the help of an auxiliary bird’s-eye view, we allevi-
ate the cross-modal matching error caused by point-to-pixel
misalignment and optimize the domain-irrelevant represen-
tation modeling. Specifically, we first propose BEV-based
Area-to-area Fusion (BAF). Instead of conducting cross-
modal learning point-to-point, we divide the point cloud and
its corresponding image into areas with the help of a unified
BEV space. And then, based on point-to-pixel projections,
we match areas from two modalities to conduct area-to-
area fusion. The cross-modal matching between areas has
a higher fault tolerance for point-level misalignment. Be-

cause two projected point and pixel are more likely to be lo-
cated in the same area than sharing the same accurate loca-
tion. In this way, we significantly mitigate the influence of
point-level misalignment and achieve accurate cross-modal
learning in an area-to-area manner.

Furthermore, BEV-driven Domain Contrastive Learning
(BDCL) is proposed to optimize domain-irrelevant repre-
sentation modeling. First, with the aid of cross-modal learn-
ing under bird’s-eye view, we generate the BEV feature
map in a voxelized manner. This process is greatly af-
fected by point cloud density, which makes the BEV feature
map highly domain-relevant. Thus, using the BEV feature
map to drive contrastive learning can provide stronger su-
pervision for learning domain-irrelevant features. However,
domain attribute, i.e., LiDAR configuration, is reflected in
the global density of the point cloud. Therefore, we pro-
pose Density-maintained Vector Modeling (DVM) to trans-
form the BEV feature map into a global vector that main-
tains density perception. Then, we build contrastive learn-
ing that constrains consistency between BEV vectors before
and after changing domain attributes. Moreover, as the BEV
vectors contain domain-retentive multi-modal information,
BDCL can push both 2D and 3D networks to learn domain-
irrelevant features jointly.

We can summarize our contributions as follows:
• We propose BEV-DG for domain generalization of 3D

semantic segmentation. With the aid of cross-modal learn-
ing under bird’s-eye view, we optimize domain-irrelevant
representation modeling in a constraint manner.

• To relive the cross-modal learning from the suffering
of misalignment in point-to-pixel projections, we propose
BEV-based area-to-area fusion. The accurate area-to-area
cross-modal learning under bird’s-eye view can more effi-
ciently promote the information interaction between modal-
ities to confront the domain shift.

• We propose BEV-driven domain contrastive learning,
where the Density-maintained Vector Modeling (DVM) is
introduced to generate the global vector that sufficiently
embodies domain attributes. Furthermore, with the help of
Density Transfer (DT), we build contrastive learning based
on these vectors, pushing 2D and 3D networks to learn
domain-irrelevant features jointly.

• We design three generalization settings based on three
3D datasets and provide the results of some competitors
by extending cross-modal UDA methods to the DG setting.
Comprehensive experimental results illustrate that BEV-DG
consistently outperforms both the baseline and state-of-the-
art approaches across all evaluated generalization scenarios.

2. Related Work
Point Cloud Semantic Segmentation. In recent
years, significant advancements have been achieved in deep
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Figure 2. The framework of BEV-DG. When it is trained on the first source domain, the input is paired samples
{
x2d
s1 ,x

3d
s1

}
with 3D

label y3d
s1 . Through module (a), the BEV feature map fbev

s1 is obtained based on 2D and 3D features
{
f2ds1 , f3ds1

}
. Using point-to-pixel

projections, we sample from the dense 2D feature map to generate 2D features of the length N , i.e., the number of 3D points. Then, fbev
s1

is fused with f2d
s1 and f3d

s1 , respectively, to generate predictions. Moreover, fbev
s1 is fed into the module (b) to generate density-maintained

BEV vector vbevs1 to drive contrastive learning for domain-irrelevant representation modeling.

learning-based point cloud semantic segmentation[10, 12,
15, 27, 40]. However, these methods rely on fine-grained
annotations, which are costly to obtain. To this end,
weakly supervised semantic segmentation has attracted in-
creasing attention [31, 32, 33, 37, 38] as it reduces the re-
liance on labels. These fully or weakly supervised methods
achieve impressive performance on current datasets. How-
ever, these methods utilize training and testing data derived
from a shared dataset. Due to different data collection de-
vices, their data distribution is usually different. Therefore,
whether the model trained on one dataset can generalize
well to others is a critical question to consider.
Domain Adaptation for 3D Point Clouds. An increas-
ing interest task, Unsupervised Domain Adaptation (UDA),
has emerged in the past few years for 3D vision. 3D-CoCo
[35] utilizes highly transferable BEV features to expand
the concept of contrastive instance alignment to encompass
point cloud detection, aiming to push the model to acquire
domain-irrelevant features. For 3D segmentation, Complete
and Label [34] designs a completion network for recov-
ering the underlying surfaces of point clouds. The recon-
structed 3D surfaces act as a standardized domain, enabling
the transfer of semantic labels across various LiDAR sen-
sors. However, these UDA methods only utilize 3D modal-
ity (point cloud), neglecting the value of 2D images.

As 3D datasets often consist of 3D point clouds and cor-
responding 2D images, utilizing multi-modality to solve do-
main shift problems for point clouds is convenient. Some
cross-modal UDA methods [14, 21, 25, 36] have recently
been proposed for 3D semantic segmentation. Beneath the
surface of such techniques lies the same essence of cross-
modal learning, i.e., the fusion of multi-modal informa-
tion. With the help of projections between points and pix-
els, these methods achieve cross-modal learning through
the constraint of the consistency between point and pixel

predictions. This point-to-point manner is significantly af-
fected by misalignment in projections. To achieve this
goal, in this paper, our focus is directed towards achieving
more accurate cross-modal learning that is less influenced
by point-level misalignment.
Domain Generalization. Domain Generalization (DG)
centers around the ability of the model to generalize to
unseen domains. Compared to UDA, the model can not
access data originating from the target domain during the
training phase. The common methods include learning
domain-irrelevant features based on multiple source do-
mains [13, 17, 18, 20, 24, 26] and enlarging the available
data space with augmentation [5, 28, 30, 41, 42]. Recently,
certain methods have also utilized regularization within the
context of meta-learning [19] and Invariant Risk Minimiza-
tion (IRM) [1] framework for DG. However, these methods
are focused on 2D vision tasks. There has been relatively
limited research focused on exploring domain generaliza-
tion for 3D point clouds. 3D-VField [17] attempts to im-
prove the generalization of 3D object detectors to out-of-
domain data by using proposed adversarial augmentation
to deform point clouds during training. Compared to these
methods, our BEV-DG aims to utilize multi-modal data to
investigate DG for 3D semantic segmentation.

3. Method
3.1. Overview of BEV-DG

Problem Definition. In DG for 3D semantic segmentation,
the problem is framed with the expectation of having paired
2D images and 3D point clouds. The DG task aims to ex-
ploit the knowledge from two source domains, S1 and S2,
to achieve generalization to the target domain T . Each do-
main contains images and point clouds

{
x2d, x3d

}
. For the

sake of simplicity, we exclusively utilize the front camera
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image and the corresponding LiDAR points that are pro-
jected onto it. The model is trained on S1 and S2, where
only the 3D label y3ds1/2 exists, and tested on T . In the DG
task, the model is not exposed to the target domain during
its training phase, i.e., T is unseen. Due to images and point
clouds being heterogeneous, x2d and x3d are fed into 2D
network h2d and 3D network h3d to output segmentation
results P 2d and P 3d, respectively. Cross-modal DG aims
to utilize the complementarity of x2d and x3d to improve
both P 2d and P 3d. Furthermore, the projections between
2D pixels and 3D points are supplied by preexisting data.
Method Overview. Our approach consists of BEV-
based Area-to-area Fusion (BAF) and BEV-driven Domain
Contrastive Learning (BDCL), aiming to optimize domain-
irrelevant feature modeling with the aid of cross-modal
learning under bird’s-eye view. The overall framework is
depicted in Fig. 2. Using the training on the initial source
domain as an illustration, the training for the second do-
main is identical. Given the paired 2D and 3D samples (i.e.,
x2d
s1 and x3d

s1), we first input them into BAF to generate BEV
feature map (i.e., f bev

s1 ) and output segmentation results (i.e.,
p2ds1 and p3ds1). Specifically, we process 2D and 3D features
(i.e., f2d

s1 and f3d
s1 ) in a unified BEV space to generate 2D

and 3D BEV feature maps (i.e., f bev
2d and f bev

3d ). Next, we
concatenate them to produce f bev

s1 and fuse it with f2d
s1 and

f3d
s1 respectively, obtaining f̄2d

s1 and f̄3d
s1 to further generate

the predictions. In addition, f bev
s1 is fed into BDCL to help

the networks learn domain-irrelevant features. Through
Density-maintained Vector Modeling (DVM), we use gen-
erated BEV vector (i.e., vbevs1 ) to form positive and nega-
tive pairs with other BEV vectors. For the positive pair,
we generate a density-transferred BEV vector (i.e., vbevs1→s2)
with the help of Density Transfer (DT), which transforms
the density of x3d

s1 into the second domain point cloud x3d
s2 .

3.2. BEV-based Area-to-area Fusion

Previous methods conduct cross-modal learning in a
point-to-point manner based on the projections between 3D
points and 2D pixels. However, due to the inaccuracy of
extrinsic calibration between LiDAR and camera [6], more
or less point-level misalignment exists, hindering the effec-
tiveness of such methods. Given this perspective, we pro-
pose BAF to conduct cross-modal learning under bird’s-eye
view in an area-to-area manner. In this way, we can ef-
fectively mitigate the influence of point-level misalignment
and achieve more accurate cross-modal learning.
BEV Transformation. Camera captures data in perspec-
tive view and LiDAR in 3D view. This view discrepancy
makes it difficult to appropriately divide the areas of the
image and point cloud and set the matching relationship be-
tween them. To this end, we introduce a unified BEV space
to transform the image and point cloud into the same view.
For point cloud x3d

s1 , we first quantize it along the x-axis and

y-axis to generate pillar voxels evenly, as shown in module
(a) of Fig. 2. These voxels can be regarded as different ar-
eas of point cloud under the bird’s-eye view. As a result, the
points are assigned to these areas according to their coordi-
nates. The feature of a voxel is obtained by max-pooling
the features of points inside it. For example, the feature in
the i, j-th grid cell is:

f3d
i,j =MAX(

{
h3d(p3d) | (i− 1)w < p3dx < iw,

(j − 1)w < p3dy < jw
}
),

(1)

where f3d
i,j ∈ R1×C3d . C3d is the number of channels of 3D

features. MAX denotes the max pooling operation. The
size of a grid cell is w×w. p3dx /p3dy is the x/y coordinate of
3D point p3d, i.e., its locations in the BEV space. Finally,
the BEV feature map of x3d

s1 can be formulated as follows:

f bev
3d =

{
f3d
i,j | i ∈ {1, 2 . . . ,W} , j ∈ {1, 2 . . . , L}

}
, (2)

where f bev
3d ∈ RW×L×C3d . W and L denote the number of

grid cells along the x-axis and y-axis, respectively.
How to transform the image into bird’s-eye view is a

challenging problem. To tackle it, existing methods [22, 23]
usually utilize depth estimation or transformer, which are
very complex and costly. In contrast, we simply use the
point-to-pixel projections provided by data prior to conduct
view transformation for images. Specifically, for a pixel p2d

in image x2d
s1 , which projects to point p3d, its accurate loca-

tions in the BEV space may be different from p3dx and p3dy
due to misalignment. However, to transform the image into
bird’s-eye view, we only need to determine the proximate
locations of pixels, i.e., the voxels in which pixels are lo-
cated. A pillar voxel covers much more space than a point,
and even if p2d mismatches p3d, they are still likely located
in the same voxel. So we determine the voxels where pixels
are located based on the corresponding 3D points, effec-
tively mitigating the influence of misalignment. Finally, we
can obtain 2D BEV feature map f bev

2d as follows:

f2d
i,j =MAX(

{
h2d(p2d) | (i− 1)w < p3dx < iw,

(j − 1)w < p3dy < jw }),
(3)

f bev
2d =

{
f2d
i,j | i ∈ {1, 2 . . . ,W} , j ∈ {1, 2 . . . , L}

}
. (4)

Area-to-area Fusion. After BEV transformation, we di-
vide the image and point cloud into areas using the same cri-
teria and obtain 2D and 3D features of these areas, i.e., f bev

2d

and f bev
3d . Compared to point-to-point cross-modal learning,

our method does not need to match pixels and points based
on projections that may be misaligned. Instead, we just need
to match their areas. Compared with sharing the same ac-
curate location in BEV space, two projected point and pixel
are more likely to be located in the same voxel (area), which
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means matching between areas based on point-to-pixel pro-
jections has a higher fault tolerance for point-level misalign-
ment. So we directly concatenate f bev

2d and f bev
3d , followed

by a linear layer with ReLU, to achieve area-to-area fusion:

f bev
s1 = ReLU(FC1(f

bev
2d ⊕ f bev

3d )), (5)

where f bev
s1 is the fusion BEV feature map of x2d

s1 and x3d
s1 .

Next, we further fuse this area-level information with initial
point-level features for final semantic segmentation:

f̄p3d = ReLU(FC2(h
3d(p3d)⊕ f bev

i,j )), (6)

where f bev
i,j is the feature of voxel where point p3d is lo-

cated, i.e., the i, j-th feature in f bev
s1 . f̄3d

s1 consists of all
N fused point features f̄p3d . The process to obtain f̄2d

s1 is
identical. This fusion provides bird’s-eye-view multi-modal
contextual information for each point (pixel) in a point-to-
area manner. As only matching between the point (pixel)
with the area where it is located, this manner is also less
susceptible to point-level misalignment. In summary, each
stage of BAF effectively mitigates the impact of misalign-
ment, achieving more accurate cross-modal learning.

3.3. BEV-driven Domain Contrastive Learning

Previous methods usually utilize adversarial learning to
model domain-irrelevant representations, which are suscep-
tible to hyperparameters and challenging to train. Consid-
ering this, we introduce BDCL, which conducts contrastive
learning between different domains and samples with the
help of cross-modal learning under bird’s-eye view. Specif-
ically, we promote the consistency between samples be-
fore and after changing the domain attributes, providing
additional supervision for learning domain-irrelevant fea-
tures. For contrastive learning, the stronger the domain rel-
evance of the sample features, the stronger the supervision
will be. Thus we choose BEV feature map f bev

s1 generated
by cross-modal learning under bird’s-eye view to drive the
contrastive learning. It is produced in a voxelized man-
ner, which makes it highly related to the point cloud den-
sity. Concretely,due to the fixed size of a voxel, the quantity
of points it encompasses is notably contingent on the den-
sity. Therefore, compared to the initial point-level features
f2d
s1 /f

3d
s1 , f bev

s1 has stronger domain relevance. Moreover,
as f bev

s1 contains domain-retentive multi-modal information,
BDCL can push both 2D and 3D networks to learn domain-
irrelevant features jointly.

Our proposed BDCL consists of two components: (1)
Density-maintained Vector Modeling (DVM); (2) building
contrastive learning to help 2D and 3D networks jointly
learn domain-irrelevant features.
Density-maintained Vector Modeling (DVM). As the Li-
DAR configuration determines the global density of the
point cloud, the domain attribute of a sample should be

Figure 3. The distribution of areas in BEV space over dataset.
We divide point clouds from three datasets into areas in the BEV
space. Following that, we classify the areas into three groups ac-
cording to the number of points inside them. Different distribu-
tion patterns can be seen clearly when we show the percentage of
each type of area: points are spread more densely in nuScenes (32
beam) and SemanticKITTI (64 beam) than in A2D2 (16 beam).

characterized by its global feature. However, The BEV fea-
ture map consists of area-level features. Thus, we must
transform it into a global vector that can embody domain
attributes well. For a point cloud, the distribution of points
inside it varies greatly. Concretely, the density of the part
near the LiDAR is greater than the part away from the Li-
DAR. Thus, directly modeling the global vector from f bev

s1

by equally treating points in different areas can not main-
tain the perception of density. In light of this, we pro-
pose DVM to transform f bev

s1 ∈ RW×L×C into BEV vector
vbevs1 ∈ R1×C without undermining the density perception
of feature. Specifically, in the BEV space, we find the den-
sity of the point cloud is well reflected in the distribution of
areas, as shown in Fig. 3. This distribution pattern helps
us model density-maintained vector from BEV feature map
f bev
s1 . More analysis of DVM can be seen in the supplemen-

tary material. We can generate the BEV vector as follows:

vbevs1 =
N[1,10)

Nall
MAX

(
f bev
[1,10)

)
+

N[10,50)

Nall
MAX

(
f bev
[10,50)

)
+
N[50,+∞)

Nall
MAX

(
f bev
[50,+∞)

)
,

(7)
where N[1,10)/N[10,50)/N[50,+∞) is the number of areas
with [1, 10)/[10, 50)/[50,+∞) points inside. Nall is the
number of all areas. f bev

[1,10)/f
bev
[10,50)/f

bev
[50,+∞) is the feature

set of areas with [1, 10)/[10, 50)/[50,+∞) points inside.
Architecture of BDCL. To form the negative and posi-
tive pairs of BEV vectors, we first utilize Density Trans-
fer (DT) in Dual-Cross [21] to generate approximate BEV
vectors of the other source domain. Concretely, we trans-
form the densities of point clouds in the current batch into
densities of point clouds from the other source domain, as
depicted in module (b) of Fig. 2. In this process, the seman-
tic content of point clouds and their corresponding images
remain unchanged. Using these synthetic point clouds and
their corresponding images, we can generate a new batch
of density-transferred BEV vectors, which share the same
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semantic content but perceive the density of the other do-
main. On the one hand, we push the BEV vectors in the
same batch (domain) away from each other in the repre-
sentation space. Since negative sample pairs come from a
single domain and share identical domain attribute, domain-
irrelevant representations are learned to contrast them. On
the other hand, we pull the BEV vectors that share the same
semantic content but from different batch (domain) close in
the representation space, promoting the networks to learn
domain-irrelevant features jointly. The contrastive loss of
the first source domain can be formulated as follows:

Ls1
ct = −

1

B

B∑
i=1

log
exp(vs1

i · vs1→s2
i /τ)

B∑
j=1

exp(vs1
i · vs1

j /τ) +
B∑

k=1

exp(vs1→s2
i · vs1→s2

k /τ)

,

(8)

where B is the batch size, vs1i is the i-th BEV vector in the
first domain batch, and vs1→s2

i is the corresponding density-
transferred BEV vector of vs1i . τ is the temperature hyper-
parameter that controls the concentration level. The con-
trastive loss of the second source domain is the same.

3.4. Overall Objective Function

The segmentation loss of the first source domain can be
formulated as follows:

Ls1
seg(xs1, y

3d
s1 ) = − 1

NC

N∑
n=1

C∑
c=1

y
(n,c)
s1 log p(n,c)xs1

, (9)

where xs1 is either x2d
s1 or x3d

s1 , N denotes the number of
points, while C stands for the number of categories. The
segmentation loss of the second source domain is the same.
So the final segmentation loss and contrastive loss can be
written as:

Lseg = Ls1
seg + Ls2

seg, (10)

Lct = Ls1
ct + Ls2

ct . (11)

Finally, we train the model on source domains using Eq. 12:

Lall = Lseg + λctLct, (12)

where λct is the trade-off to control the contrastive loss.

4. Experiments
4.1. Datasets and Generalization Settings

We conduct experiments using three autonomous driving
datasets acquired by different LiDAR configurations. (1)
A2D2 [9]: The point clouds are acquired by a Velodyne
16-beam LiDAR. The LiDAR frames are labeled point by
point. The data is divided into ∼28K training frames and
∼2K validation frames. (2) nuScenes [4]: It contains ∼40K
LiDAR frames annotated with 3D bounding boxes. Follow-
ing previous methods [14, 21, 25, 36], we assign point-wise

labels based on the 3D bounding box where points are lo-
cated. Unlike the A2D2 dataset, it uses a 32-beam LiDAR
sensor. We train our model on ∼28K frames and evaluate
on ∼6K frames. (3) SemanticKITTI [3]: Different from
A2D2 and nuScenes, it uses a Velodyne 64-beam LiDAR.
We use sequences 00-07 and 09-10 to train model and eval-
uate it on sequence 08, resulting in ∼19K frames for train-
ing and ∼4K frames for evaluation. For each dataset, the
RGB camera and LiDAR are synchronized and calibrated.
The projections from 3D points to 2D pixels are given by
data. We solely utilize the image of front camera and the
corresponding projected LiDAR points for simplicity and
consistency across datasets. Only 3D annotations are used
for 3D semantic segmentation.

To evaluate the performance of BEV-DG, we design
three generalization settings. (1) A,S→N: the network is
trained on samples from A2D2 and SemanticKITTI, but
tested on samples from nuScenes. (2) A,N→S: we train
the network with A2D2 and nuScenes, but test it with
SemanticKITTI. (3) N,S→A: the network is trained on
nuScenes and SemanticKITTI, but tested on A2D2. We de-
fine 5 shared classes between the three datasets: car, truck,
bike, person and background. All of them are commonplace
and crucial for safety in self-driving scenarios.

4.2. Implementation Details

Backbone Network. To ensure an equitable comparison,
we utilize the identical backbone network as the previous
methods [14, 21, 25, 36]. Concretely, the 2D network is an
adapted U-Net [29] with a pre-trained ResNet34 [11] en-
coder from ImageNet [8]. The 3D network employs Spar-
seConvNet [10] with a U-Net [29] architecture, featuring
six levels of downsampling. Using a voxel size of 5cm in
SparseConvNet, we guarantee the presence of only one 3D
point within each voxel. We conduct training and evaluation
of our model using the PyTorch deep learning framework on
a single NVIDIA TITAN RTX GPU.
Configuration of Parameters. We select a batch size
of 8 and employ the Adam optimizer with β1 = 0.9 and
β2 = 0.999. We implement a learning schedule based on it-
erations, starting with an initial learning rate of 0.001. The
rate is divided by 10 at 80k and 90k iterations. BEV-DG
undergoes training for 100k iterations in each generaliza-
tion scenario. The w in Eq. 1 is set to 0.5m. We set both τ
in Eq. 8 and λct in Eq. 12 to 0.01. The accuracy is assessed
using the mean Intersection over Union (mIoU).

4.3. Experimental Results

We assess the effectiveness of our approach across
three distinct domain generalization scenarios, i.e., A,S→N,
A,N→S and N,S→A, and compare our method with
some representative state-of-the-art competitors. These ap-
proaches share the same 2D and 3D backbone networks as
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Table 1. Quantitative results (mIoU, %) in various DG scenarios. The baseline architecture only contains 2D and 3D backbone networks
with segmentation heads. The training of it is supervised by segmentation loss of source domains. In ‘Oracle’, the baseline model is trained
and tested on the target domain. ‘Avg’ represents the ensemble outcome achieved by averaging the softmax-predicted probabilities from
both 3D and 2D outputs. The highest value is indicated in red, while the second highest value is indicated in blue.

Method A,S→N A,N→S N,S→A

2D 3D Avg 2D 3D Avg 2D 3D Avg

Baseline 48.5 49.4 53.9 32.1 51.4 44.7 48.0 45.0 48.8

xMUDA[14] 49.8 49.1 55.9 32.8 52.0 44.9 50.9 44.9 50.8
xMUDA Fusion[14] 46.8 49.0 52.8 32.3 56.5 44.7 51.5 45.4 50.4

DsCML[25] 48.2 47.6 52.3 31.6 51.3 43.8 52.2 46.1 51.7
SSE-xMUDA[36] 44.9 48.6 53.9 36.1 52.7 47.3 55.3 44.8 52.0

Dual-Cross[21] 50.8 48.1 56.0 32.3 55.5 42.6 53.1 41.3 50.4
BEV-DG 58.0 59.3 59.0 47.9 54.7 60.2 55.0 55.1 56.7

Oracle 64.8 57.9 69.0 55.5 72.8 70.7 81.7 53.1 82.4

Table 2. Ablation experiment results (mIoU, %) of two modules.

BAF BDCL
A,S→N A,N→S

2D 3D Avg 2D 3D Avg

#1 Baseline 48.5 49.4 53.9 32.1 51.4 44.7

#2 ✓ 56.7 57.9 57.8 45.5 50.8 52.9
#3 ✓ 50.2 49.6 57.1 34.2 51.9 49.4
#4 ✓ ✓ 58.0 59.3 59.0 47.9 54.7 60.2

ours. BEV-DG outperforms others in all DG settings.
We provide some qualitative results in Fig. 4 and elabo-

rate on the 3D semantic segmentation comparison outcomes
in Tab. 1. It is noticeable that across all three generalization
settings, BEV-DG consistently enhances results for both 2D
and 3D in comparison to competitors. On A,S→N, BEV-
DG outperforms the baseline by 9.5% (2D), 9.9% (3D) and
5.1% (Avg). In the first row of Fig. 4, we notice that the
baseline misclassifies a person as a trunk, whereas BEV-
DG avoids this error. Furthermore, when compared to the
second-best values, BEV-DG outperforms them by 7.2%
(2D), 9.9% (3D) and 3.0% (Avg). On A,N→S, BEV-DG
outperforms the baseline by 15.8% (2D), 3.3% (3D) and
15.5% (Avg). In the third row, it is evident that the baseline
misclassifies a car, while BEV-DG avoids this misclassifi-
cation. In addition, BEV-DG outperforms the second-best
values by 11.8% (2D) and 12.9% (Avg) but is slightly worse
on 3D. On N,S→A, BEV-DG outperforms the baseline by
7.0% (2D), 10.1% (3D) and 7.9% (Avg). In the second row,
it is evident that the baseline struggles to accurately classify
the bike and person, whereas BEV-DG accurately identifies
them. Compared to the second-best values, BEV-DG out-
performs them by 9.0% (3D) and 4.7% (Avg) but is slightly
worse on 2D. These results demonstrate that BEV-DG sig-
nificantly improves the generalization ability of the model
through BEV-based area-to-area fusion and BEV-driven do-
main contrastive learning.

Figure 4. Qualitative results in three domain generalization set-
tings: A,S→N, N,S→A and A,N→S. Additional qualitative re-
sults are available in the supplementary material.

4.4. Ablation Experiments

Impacts of BAF and BDCL. To show the impacts of
BAF and BDCL, we systematically present the performance
of each module by incrementally integrating them into the
baseline. The corresponding outcomes are detailed in Tab.
2. In BAF, we conduct cross-modal learning area-to-area
under BEV, aiming to alleviate the influence of misalign-
ment. In BDCL, DVM generates density-maintained BEV
vectors for contrastive learning, enabling the 2D and 3D
networks to jointly learn domain-irrelevant features.

In Tab. 2, comparing #1 and #2 reveals that BAF leads
to substantial enhancements in Avg performance, with im-
provements of 3.9% and 8.2% on A,S→N and A,N→S
settings, respectively. More importantly, compared to the
point-to-point methods [14, 21, 25, 36] in Tab. 1, BAF
consistently outperforms all of them on both 2D and 3D
modalities, indicating it effectively mitigates the influence
of point-level misalignment. When applying BDCL to base-
line, i.e., removing the fusion between f bev

s1 and f2d
s1 /f

3d
s1

in BEV-DG, we can observe that BDCL brings about en-
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Table 3. Ablation experiment results (mIoU, %) of BEV transfor-
mation and fusion of BEV feature maps.

Method A,S→N A,N→S
2D 3D Avg 2D 3D Avg

#1 Ours w/o Trans. 56.1 56.2 56.2 38.7 38.9 38.7
#2 Ours w/o Fusion 53.6 48.8 58.3 37.2 50.9 45.3
#3 Ours-full 58.0 59.3 59.0 47.9 54.7 60.2

hancements of 3.2% and 4.7% on A,S→N and A,N→S sce-
narios in Avg performance, respectively. Furthermore, by
applying both BAF and BDCL to the baseline, we present
the results in #4. BEV-DG brings 9.5% (2D), 9.9% (3D)
and 5.1% (Avg) enhancements on A,S→N and 15.8% (2D),
3.3% (3D) and 15.5% (Avg) enhancements on A,N→S.
These results evaluate the effects of our BAF and BDCL.
Analysis of BAF. There are two crucial steps in the BAF
module. One is that we transform initial point-level fea-
tures into BEV feature maps. The other is that we further
fuse the 2D and 3D BEV feature maps for following predic-
tion and contrastive learning. To further demonstrate the ef-
fects of BAF, we conduct additional experiments by remov-
ing the two steps from BEV-DG respectively, and results
are shown in Tab. 3. We first experiment by removing the
BEV transformation step. Specifically, in module (a), we
directly concatenate initial 2D and 3D features using point-
to-pixel projections for semantic segmentation. And then,
we generate a global vector by performing max pooling on
these concatenated point-level features to drive contrastive
learning in module (b). The results are shown in #1 of Tab.
3. Comparing #3 and #1, we can find a sharp drop in the
performance, indicating that the BEV feature is the crucial
reason why our method works.

Next, we experiment by removing the fusion of 2D and
3D BEV feature maps. Specifically, in module (a), we di-
rectly fuse initial 2D features with the 2D BEV feature map
for semantic segmentation. The 3D branch is the same.
Moreover, in module (b), contrastive learning is conducted
by using the 2D BEV vector and 3D BEV vector, respec-
tively. The results are displayed in #2 of Tab. 3. Compar-
ing between #2 and #3, it is evident that “ours-full” gains
4.4% (2D), 10.5% (3D) and 0.7% (Avg) improvements on
A,S→N and 10.7% (2D), 3.8% (3D) and 14.9% (Avg) im-
provements on A,N→S, which demonstrates the effective-
ness of area-to-area fusion.
Analysis of BDCL. In BDCL, we propose DVM to gen-
erate the density-maintained vector, which can sufficiently
embody the domain attributes, to drive contrastive learn-
ing. Moreover, we utilize DT to generate the density-
transferred vector to form positive pairs. Therefore, to pro-
vide further insight into the impact of BDCL, we perform
supplementary experiments by individually excluding the
two components from BEV-DG, and results are shown in
Tab. 4. We first experiment by removing DVM. Specifi-

Table 4. Ablation experiment results (mIoU, %) of DVM and DT.

Method A,S→N A,N→S
2D 3D Avg 2D 3D Avg

#1 Ours w/o DVM 56.1 56.2 56.7 40.4 47.8 50.0
#2 Ours w/o DT 56.3 57.1 57.0 46.7 41.5 49.1
#3 Ours-full 58.0 59.3 59.0 47.9 54.7 60.2

cally, we directly perform max pooling on BEV feature map
f bev
s1 ∈ RW×L×C to generate a global vector with a size of
1×C to drive contrastive learning. Compared with density-
maintained vector vbevs1 , it can not maintain the perception
of point cloud density because it is generated by treating
different areas of the point cloud equally. The results are
shown in #1 of Tab. 4. Comparing between #1 and #3, we
can find that “ours-full” gains 1.9% (2D), 3.1% (3D) and
2.3% (Avg) enhancements on A,S→N and 7.5% (2D), 6.9%
(3D) and 10.2% (Avg) enhancements on A,N→S, which
demonstrates the effectiveness of DVM. It also confirms
that more domain-related features for contrastive learning
can achieve better domain-irrelevant feature learning.

Next, we experiment by removing DT. Specifically, in
module (b), we replace density-transferred vector vbevs1→s2

with a copy of vbevs1 . The results are shown in #2 of Tab.
4. Comparing between #2 and #3, we can find that “ours-
full” achieves 2.0% and 11.1% improvements on A,S→N
and A,N→S in Avg respectively, which indicates that DT
can help the BDCL model domain-irrelevant features by in-
troducing density discrepancy.
Analysis of Misalignment. To demonstrate the influence
of point-to-pixel misalignment, we evaluate two representa-
tive point-to-point methods (xMUDA [14] and Dual-Cross
[21]) on A,S→N. Furthermore, we compare them with our
proposed BAF and BEV-DG, which conduct cross-modal
learning area-to-area. We randomly select a fraction of the
points in the point cloud and perturb their projections to pix-
els. The results (Avg) are shown in Fig. 1. We can ob-
serve that BAF and BEV-DG with 20% misalignment even
perform better than xMUDA and Dual-Cross with 5% mis-
alignment. Moreover, these point-to-point methods degrade
more dramatically with increasing misalignment. These re-
sults suggest that approaches based on point-to-point cross-
modal learning are more sensitive to point-level misalign-
ment. In contrast, with the help of cross-modal learning
under bird’s-eye view, our BAF and BEV-DG effectively
mitigate the influence of misalignment.
Hyperparameter Sensitivity Analysis. To investigate
the impact of two important hyperparameters, i.e., area size
w and contrastive loss weight λct, we conduct additional
experiments on A,S→N by changing their values in BEV-
DG. w is critical to BAF because it determines the size of
an area, directly affecting the effectiveness of area-to-area
cross-modal learning. We change the value of w between
0.05m and 1m. The outcomes are depicted in Fig. 5. We
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Figure 5. Results of BEV-DG with different w.

Figure 6. Results of BEV-DG with different λct.

can observe that the performance of BEV-DG is best when
w is set to 0.5m. For λct, it controls the importance of con-
trastive learning loss, which is crucial to BDCL. We change
the value of λct between 0.001 and 0.1. The results are
presented in Fig. 6. We can find that the model works best
when λct is 0.01 and our method is not sensitive to λct. Tak-
ing into account the aforementioned information, we assign
the values of w and λct as 0.5m and 0.01 respectively.
Area Distribution in the BEV Space. The area distribu-
tion in BEV space depends on how to divide areas with dif-
ferent points inside into different types. In BEV-DG, we di-
vide areas into three types, i.e., [1, 10)/[10, 50)/[50,+∞),
because the distribution pattern generated by this criterion
can obviously embody the difference in point cloud density
of datasets. To verify the rationality of our criterion for clas-
sification, we show the area distribution generated by some
other criteria in Fig. 7. We can observe that these distribu-

Figure 7. The distribution of areas in BEV space over datasets.

tion patterns can not obviously embody domain attributes
compared to ours, which is shown in Fig. 3.

5. Conclusion

This paper proposes cross-modal learning under BEV for
domain generalization of 3D semantic segmentation, aim-
ing to optimize domain-irrelevant representation modeling
with the aid of cross-modal learning under BEV. Specifi-
cally, we propose BEV-based area-to-area fusion to achieve
cross-modal learning under BEV, which has a higher fault
tolerance for point-level misalignment. Accurate cross-
modal learning can more efficiently utilize the comple-
mentarity of multi-modality to confront the domain shift.
Furthermore, we propose BEV-driven domain contrastive
learning to optimize domain-irrelevant representation mod-
eling. With the help of cross-modal learning under BEV and
density-maintained vector modeling, we generate the BEV
vector to drive contrastive learning, pushing the networks
to learn domain-irrelevant features jointly. Extensive ex-
perimental results on three designed generalization settings
highlight the superiority of our BEV-DG.
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