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Figure 1: Extreme weather synthesis. We fuse NeRF modeling and physical simulation to produce 3D consistent renderings

of scenes with simulated physical effects. We apply our method to climate effect simulation: what will it look like if the

playground floods? or is covered in snow? Note in particular reflections and ripple effects on water; accumulated snow on

horizontal surfaces; trees darkened by wintertime; and consistency of geometry (but not ripples!). Project page

Abstract

Physical simulations produce excellent predictions of

weather effects. Neural radiance fields produce SOTA scene

models. We describe a novel NeRF-editing procedure that

can fuse physical simulations with NeRF models of scenes,

producing realistic movies of physical phenomena in those

scenes. Our application – Climate NeRF – allows people to

visualize what climate change outcomes will do to them.

ClimateNeRF allows us to render realistic weather ef-

fects, including smog, snow, and flood. Results can be con-

trolled with physically meaningful variables like water level.

Qualitative and quantitative studies show that our simulated

results are significantly more realistic than those from SOTA

2D image editing and SOTA 3D NeRF stylization.

* Both authors contributed equally to this research.

1. Introduction

This paper describes a novel procedure that fuses graphic

simulations with NeRF models [50, 51] of scenes to pro-

duce realistic movies of physical phenomena in those scenes.

We apply our method to produce compelling simulations

of possible extreme weather outcomes – what would the

playground look like after a minor flood? a major flood? a

blizzard?

Our application is aimed at an important problem. Cu-

mulative small changes are hard to reason about, and most

people find it difficult to visualize what climate change out-

comes will do to them [9, 23, 26, 37]. Steps to slow CO2

emissions (say, reducing fossil fuel use) or to moderate out-

comes (say, building flood control measures) come with

immediate costs and distant benefits. It is hard to support

such steps if one can’t visualize their effects.

Traditional graphic simulations can produce realistic

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3227



Multi-view Input Images
3D Scene Modeling

Sect. 3.1

Neural Scene Stylization

Sect. 3.2

Physically-Inspired Simulation

Sect. 3.3, 3.4

Figure 2: Method overview. Our method takes multiple posed images, the targeted climate event simulation (e.g., snow),

and optionally a user-selected style image as inputs. First, we reconstruct the 3D scene using instant NGP [51] (a variant of

NeRF) (Sect. 3.1). The reconstructed radiance fields allow us to synthesize high-quality novel view imagery of the scene

efficiently. Second, we optionally finetune the learned instant-NGP model so that it captures the styles of the provided style

image (Sect. 3.2). Such 3D consistent stylization is particularly useful for modeling weather effects that are hard to capture via

physical simulation. Third, we simulate the climate events by integrating the relevant physical entities (snow, water, smog) to

the scene and rendering physically plausible images.

weather effects for 3D scenes in a conventional simulation

pipeline [62, 19, 27, 85, 15, 17, 24]. But these methods op-

erate on conventional polygon models. Building polygon

models that produce compelling renderings from a few im-

ages of a scene remains challenging. Neural radiance fields

(NeRFs) produce photorealistic 3D scene models from few

images [50, 4, 51, 10, 64, 72, 41] but (as far as we know)

have rarely been investigated together with graphics sim-

ulations. Our method draws from an extensive literature,

reviewed below, that explores editing these models.

Although there are numerous variants of NeRF, most

are primarily focused on the task of novel-view synthesis.

Integrating existing NeRF models for graphics simulation

yields unsatisfactory results (Fig. 4). Specifically, we found

the geometry of current NeRF models is not sufficiently

accurate to enable physics-inspired interactions, and they

cannot provide a realistic and complete illumination field

to relight the inserted physics entities, such as water and

snow. To address this challenge, we have systematically

investigated various techniques to improve NeRF models,

focusing on answering the critical research question of “what

constitutes a good simulatable NeRF representation?”. Our

resulting NeRF variant, ClimateNeRF, boasts high-quality

geometry, a complete illumination field, and rich semantics,

making it particularly well-suited for complex downstream

editing and simulation tasks (Sec. 3.1).

ClimateNeRF allows us to render realistic weather ef-

fects, including smog, snow, and flood. These effects are

consistent over frames so that compelling movies result. At

a high level, we: adjust scene images to reflect the global

effects of physics; build a NeRF model of a scene from those

adjusted images; recover an approximate geometric repre-

sentation; apply the physical simulation in that geometry;

then render using a novel ray tracer. Adjusting the images

is essential. For example, trees tend to have less saturated

images in winter. We use a novel style transfer approach in

an NGP framework to obtain these global effects without

changing scene geometry (Sec. 3.2). Our ray tracer merges

the physical and NeRF models by carefully accounting for

ray effects during rendering (Sec. 3.3). An eye ray could, for

example, first encounter a high NeRF density (and so return

the usual result); or it could strike an inserted water surface

(and so be reflected to query the model again).

We demonstrate the effectiveness of ClimateNeRF in

various 3D scenes from the Tanks and Temple, MipNeRF360,

and KITTI-360 datasets [4, 33, 40]. We compared to the

state-of-the-art 2D image editing methods, such as stable

diffusion inpainting [55], ClimateGAN [60]; state-of-the-art

3D NeRF stylization [78]. Both qualitative and quantitative

studies show that our simulated results are significantly more

realistic than the other competing methods. Furthermore,

we also demonstrate the controllability of our physically-

inspired approaches, such as changing the water level, wind

strength and direction, and thickness of snow and smog.

Our approach results in view consistency (so we can

make movies, which is difficult to do with frame-by-frame

synthesis); compelling photorealism (because the scene is a

NeRF representation); and is controllable (because we can

adjust physically meaningful parameters in the simulation).

As Fig. 1 illustrates, results are photo-realistic, physically
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plausible, and temporally consistent.

Our contributions are three-fold:

1. We investigate the challenging problem of repurpos-

ing NeRF for realistic simulation and develop a novel

framework that can effectively reduce NeRF modeling

errors and facilitate graphical simulation.

2. We propose ClimateNeRF, a novel solution that can

render realistic weather effects, including smog, snow,

and flood, over real-world images.

3. We demonstrate that our proposed approach can pro-

duce compelling, photorealistic, geometrically consis-

tent, and controllable free-viewpoint movies.

2. Related Work

Climate simulation: The importance of making climate

simulations accessible is well known. [59] collects cli-

mate images dataset and performs image editing with Cycle-

GAN [83]. [16, 60] leverage depth information to estimate

water mask and perform GAN-based image editing and in-

painting. [25] simulate fog and snow. These methods offer

realistic effects for a single image but cannot provide im-

mersive, view-consistent climate simulation. In contrast,

ClimateGAN allows the view to move without artifacts.

Novel view synthesis: Neural Radiance Field (NeRF) [50,

3, 4, 68] leverage differentiable rendering for scene re-

construction producing photorealistic novel view synthe-

sis. Training and rendering can be accelerated using mul-

tiple smaller MLPs and customized CUDA kernel func-

tions [54, 41]. Sample efficiency can be improved by model-

ing the light field [2] or calculating ray intersections with ex-

plicit geometry, such as voxel grids [44, 72, 54], octrees [76],

planes [71, 41], and point cloud [74, 86]. Explicit geometric

representations improve efficiencies [63, 22, 47, 74, 80]. We

build on Instant-NGP [51] as it offers fast learning and ren-

dering, is more memory efficient than grid-like structures,

and accelerates our simulation pipeline.

Manipulating neural radiance fields: NeRF entangles

lighting, geometry, and materials, making appearance editing

hard. A line of work [61, 56, 81, 79, 39, 7, 8] decomposes

neural scene representations into familiar scene variables

(like environment lighting, surface normal, diffuse color, or

BRDF). Each can then be edited with predictable results

on rendering. Image segmentation and inpainting can be

“lifted” to 3D, allowing object removal [35, 6]. An alterna-

tive is to edit source images with text [70]. In contrast, our

method does not directly edit the NeRF while producing

substantial changes to scene appearance. Geometry edit-

ing by transforming a NeRF into a mesh and manipulating

that (so editing shapes and compositing) has been demon-

strated [75, 77, 14]. In contrast, our method renders the

original NeRF together with simulation results.

Figure 3: Rendering Procedure of ClimateNeRF. We first

determine the position of physical entities (smog particle,

snow balls, water surface) with physical simulation. We can

then render the scene with desired effects by modeling the

light transport between the physical entities and the scene.

More specifically, we follow the volume rendering process

and fuse the estimated color and density from 1) the original

radiance field (by querying the trained instant-NGP model)

and 2) the physical entities (by physically based rendering).

Our rendering procedure thus maintain the realism while

achieving complex, yet physically plausible visual effects.

Style transfer: Data-driven 2D stylization [31, 53, 28] is

a powerful tool to change image color and texture, and can

even change the content following masks and labels provided

by users [43, 42, 84, 1]. Diffusion models [57, 55, 58] can

generate extraordinary image quality based on text input.

However, these 2D-based methods cannot currently generate

3D-consistent view synthesis; ours can. Another line of

work [13, 11, 78] performs stylization on neural radiance

fields. Given a style image, one changes the scene color into

the same style. This line of work focuses on artistic effects;

in contrast, our changes are driven by physical simulations.

Physically-based simulation of weather: Physical simula-

tion of weather in computer graphics has too long a history

for a comprehensive review. Fournier and Reeves obtain ex-

cellent capillary wave simulations with simple Fourier trans-

form reasoning [20] (and we adopt their method), with mod-

ifications by [27, 66];[18] simulates smoke; and [52, 19, 62]

simulate snow in the wind using metaballs and fluid dynam-

ics. Our method demonstrates how to benefit from such

simulations while retaining the excellent scene modeling

properties of NeRF-style models.

3. Method

ClimateNeRF fuses physical simulations with NeRF mod-

els of scenes to produce realistic videos of climate change

effects. A simple example illustrates how components in-

teract in our approach. Imagine we wish to build a model

of a flooded scene in the Fall. We acquire images, apply a

Fall style (Section 3.2), and build a NeRF from the results

(Section 3.1). We then use geometric information in that

NeRF to compute a water surface. This is represented using

a density field, a color field together with normal and BRDF

representations (Section 3.3). Finally, to render, we query
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(a) Normal/Depth/RGB (b) Smog (c) Flood (d) Snow

Figure 4: Climate simulations reveal NeRF modeling errors. Top: NGP, bottom: our NeRF model. On the left, there are

normal, depth map, and RGB images. Although the rendered RGB images of the two NeRF versions appear similar, NGP

exhibits depth errors in the sky regions and more normal noises on surfaces. This results in geometric inaccuracies in fog and

flood images, as well as unrealistic snow accumulation.

the model with rays. The details are elaborate (Section 3.4),

but the general idea is straightforward: we edit the NeRF’s

density and color functions to represent effects like flood;

and we intercept rays to represent specular effects. So if a

ray encounters high density in the NeRF first, we use the

NeRF integral for that ray; but if the first collision is with

the water surface, we reflect that ray in the water surface,

then query the NeRF with the reflected ray. Fig. 2 provides

an overview of our approach.

3.1. Repurposing NeRF for Simulation

NeRF builds a parametric scene representation that sup-

ports realistic rendering from multiple images of a scene

obtained at known poses. The scene is represented by a field

(σ, c) = Fθ(x,d), which accepts position x and direction d

and predicts density σ ∈ R and color c ∈ R
3. This function

is encoded in a multi-layer perceptron (MLP) with learn-

able parameters θ. Rendering is done by querying radiance

along appropriate choices of ray, computed as a volume in-

tegral [30]. This integral is estimated by drawing samples

along the ray, evaluating the density and color of those sam-

ples, then accumulating values. The rendering process is

differentiable so that NeRF can be trained by minimizing

the image reconstruction loss over training views through

gradient descent: minθ
∑

r
∥C(r)− Cgt(r)∥

2
2.

Repurposing NeRF for simulation: Although there are

numerous variants of NeRF, most are primarily focused on

the task of novel-view synthesis [50, 3, 4, 51, 10]. However,

combining graphical simulation with these NeRF representa-

tions directly results in rendering artifacts, as shown in Fig. 4.

These artifacts arise because the NeRF model cannot capture

the scene’s accurate and clean geometry, resulting in floaters,

and cannot complete the 4D light field, resulting in holes.

When physical simulation, such as adding flood and snow

into the scene, is incorporated, the artifacts are particularly

notable since human perception is more sensitive to these

unnatural phenomena.

A good NeRF model for simulation must meet three

requirements: 1) accuracy and completeness of geometry,

which allows the scene to interact with physical objects; 2)

semantic awareness, which enables the interaction to reflect

the scene’s characteristics; and 3) coherence and complete-

ness of the light field, which enables the use of NeRF for

realistic lighting of the inserted physical entities. To this end,

we systematically study multiple variants of techniques to im-

prove NeRF. We use instant-NGP [51] as our base represen-

tation to reconstruct the scene for its efficiency and flexibility.

This NeRF alternative explicitly stores multi-resolution fea-

tures for scene representation, making it suitable as we can

edit local features easily.

A physical simulation needs access to the surface normal

of any point to compute interactions with snow and water,

and it needs access to the point’s semantics (in the sense

of semantic segmentation) to transfer style. We expand the

NGP and allow it to output both semantic logic s and surface

normal n. There is no semantic or surface normal ground

truth during training. We use an off-the-shelf pretrained

monocular semantic segmentation network [73] to produce

semantic maps for each image. We use density gradients n̂ =
− ∇σ

∥∇σ∥ [7, 61] (cf. Ref-NeRF [68]) to guide the predicted

surface normals n with a weighted MSE loss.

To simulate (say) a blizzard, we must add snow to the

scene and turn trees dark, but we should not change the

shape of the house. To keep spatial features intact at the

stylization stage, we disentangle instant-NGP’s latent feature

(as in [10, 63]). For each voxel in the NGP model, we split

the latent feature into geometry features γgeo and appearance

features γapp. The geometry features are trained to render

density. The appearance features are used for rendering

color, semantics, and normals. We will freeze the geometry

feature vector during the stylization stage and change only
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(a) Original NeRF (b) Depth map (c) Water surface (d) Normal map with wave (e) Final ClimateNeRF

Figure 5: Flooding simulation. We first estimate the vanishing point direction based on the original image (a) and depth (b).

With the vertical vanishing direction (yellow arrows painted (c)), we can insert a planar water surface nw(x− ow). We use

FFT based water surface simulation to produce a spatiotemporal surface normal map in (d). Our ClimateNeRF renders the

scene with the simulated flood through ray tracing NeRF (e).

Method
Appearance

Embed. [48]

Distortion

Loss [4]

Predicted

Normal

Predicted

Semantics [82]

Sky

Loss

NGP [51]

Mip-NeRF360 [4] ✓ ✓

NeRFacto [65] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Improving NeRF for simulation.

the appearance feature vector.

Improving NeRF geometry to reduce simulation errors:

The non-ideal geometry in NeRF, as seen in [50, 51], pro-

duces severe artifacts in simulation. To address this issue,

we incorporate per-frame appearance embedding [48] and

distortion loss [4] to eliminate floaters. Additionally, we uti-

lize a surface normal MLP to enhance the smoothness of the

scene normals while introducing a novel sky loss function

Lsky =
∑

r∈sky e
−d(r), where d(r) stands for depth along

ray r and r ∈ sky corresponds to pixels labeled as sky, to

eliminate floaters and fill in holes in the sky. Through these

improvements in geometry, we have significantly improved

the realism of the simulation (more details can be found in

the supplementary material).

Our final NeRF renders density σ, color c, semantic logit

s and normal n, given a query point and ray direction:

(σ, c, s,n) = Fθ(x,d; γgeo, γapp). (1)

Table. 1 compares the techniques used in NeRF variants and

summarize what we find useful to improve the simulation.

3.2. Stylization

Deciduous trees drop their leaves in winter, and physi-

cal simulation is not efficient for capturing effects like this.

We use FastPhotoStyle [38] to transfer style to rendered

images from a pre-trained model Fθ. We only transfer

only to regions ’terrain’, ’vegetation’, or ’sky’ regions to

mimic natural weather change phenomena. The resulting

images look realistic but are not necessarily view-consistent.

Hence, a student instant-NGP model is fine-tuned to en-

sure the view consistency of the style-transferred scene.

This is trained to minimize the color difference between

our student NeRF-rendered results and style-transferred

images. We keep the geometry intact and alter only ap-

pearance to achieve this goal, so only the appearance

feature code γapp is optimized during the style transfer

stage: minγapp

∑
r∈R ∥C(r)− Cstylized(r)∥

2
2
, where C(r) is

renderd color and Cstylized is the style-transferred in the

same view. This gives us a new NGP model (σ, c′) =

F ′
θ(x,d, ℓ

(a)
i ) which encodes the style. This optional style

transfer step simulates composite effects, such as a flood in

Fall, where the original images were captured in Spring.

3.3. Representing and Rendering Climate Effects

We want to generate scenes with new physical entities –

snow, water, smog – in place. We must determine where they

are (the job of physical simulation) and what the resulting

image looks like (the job of rendering). How the simula-

tion represents results is important because results must be

accessible to the rendering process. Rendering will always

involve computing responses to ray queries, so computing

radiance at u in direction v. We must represent simulation

results in terms of densities, and we must be able to compute

normals and surface reflectance properties. Generally, we

write Oφ(x;Fθ) : R3 → R for a density resulting from a

physical simulation; Nφ(x;Fθ) : R
3 → S

2 for normals; and

Bφ(x,ωo,ωi;Fθ) : R
9 → R for BRDF. Each depends on

the existing scene Fθ. Choice of Bφ can simulate various

effects, including the atmospheric effect of smog, refraction

and reflections on water surfaces, and scattering of accumu-

lated snow. {Oφ, Nφ, Bφ} differs drastically across different

physical simulations (details per effect in Sect. 3.4).

Once the physical entities are defined by functions

Oφ, Nφ, Bφ, we can render them into the image by mod-

eling the light transport between the physical entities and the

scene. Given the query point position x, the simulation esti-

mates the density and color of physical entities at position

x through physically based rendering: σφ = Oφ(x;Fθ),
cφ =

∫
Ω
L(x,ωi)Bφ(x,d,ωi;Fθ)(ωi · Nφ(x;Fθ))dωi,

where entity color cφ is approximated with physically-based

rendering equation [29] with normal Nφ and BRDF Bφ. Im-

portantly, we approximate the incident illumination L(x,ωi)
with radiance by tracing a ray r(t) = x− tωi opposite to the

incident direction in the learned NeRF, i.e. L(x,ωi) = C(r).
Depending on the physical entities, we use analytical or

sampling-based solutions for the integral. Multiple bounces

can be simulated through sampling.
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(a) Original NeRF (b) Surface normal (c) Metaball centers (red) (d) Snow with diffuse model (e) Snow with scattering

Figure 6: Snow simulation. We first locate metaballs on object surfaces facing upward based on surface normal values (b).

With metaballs, we can estimate the density σsnow(x) and color c(x) with a parzen window density estimator. (d) and (e)

show the differences between fully diffuse model and scattering approximations, shadowed parts in (d) are lit in (e).

Original ClimateGAN [60] Ours

Figure 7: Smog simulation comparison. ClimateNeRF sim-

ulate smog in view-consistent manner, and separate fore-

ground objects from background better.

We follow the volumetric rendering process defined in

two passes. For every point along a camera ray, we query

the opacity and color of the physical entities as described in

Sec. 3.3. The system also retrieves the original density σθ

and color cθ through Eq. 1. ClimateNeRF estimates final

density and color of the simulated scene by: σfinal = σθ +
σφ, cfinal =

σθcθ+σφcφ

σθ+σφ
, following [35]. Once σfinal, cfinal

are estimated for each ray points {xi}, the pixel color is

calculated by volume rendering. Fig. 3 depicts the entire

physically inspired simulation and rendering process.

3.4. Climate Effect Details

ClimateNeRF is able to simulate smog, flood, and snow

through various choices of {Oφ, Nφ, Bφ}.

Smog Simulation We assume that smog is formed by tiny

absorbing particles, uniformly distributed in empty space. In

empty space, the NeRF density σθ = 0. The Beer-Lambert

law (originally [5, 36]; in [21]) means we can model smog

density in free space by simply adding a non-negative con-

stant to the density. Inside high-density regions of the NeRF,

adding the constant does not significantly change the integral,

so we have Oφ(x;Fθ) = σsmog. where σφ decides the den-

sity of the smog. Smog particles have a constant color csmog.

Both csmog and σsmog are controllable parameters. Fig. 12

depicts the effects of various smog densities.

Flood Simulation The water surface of the flooded scene

is approximately a horizontal plane: nw(x−ow) = 0, where

the gravity direction normal nw is estimated with camera

poses and vanishing points detection [46], and plane origin

(a) Clear water (b) Muddy water

Figure 9: Refraction in flood simulation

ow = (0, 0, h) determines the water height. But there are

water ripples, which we implement following [27] with Fast

Fourier Transform (FFT) based ripples and waves. The FFT

wave takes random spectral coefficients as input and outputs

a spatiotemporal surface normal based on wind speed, di-

rection, and spatial and temporal frequencies. As shown in

Fig. 8, compared against still water, FFT-based water surface

simulation significantly improves the realism of the water

surfaces. We simulate opacity and micro-facet ripples that

make the water look glossy (details in supplementary). To

approximate the integral of the rendering equation, we adopt

the sigma-point method [49, 69] and sample 5 rays from x,

including reflection direction dr and nearby four rays.

Snow Simulation Snow is more likely to be accumulated

on surfaces facing upward, and the deeper part of the snow

is denser due to gravity. We simulate density over object sur-

faces using metaballs [52, 32] centered on surfaces and with

density σo at the center. Realism is ensured by considering

both the scene geometry and snowfall direction (e.g., areas

such as under the table receiving less accumulated snow).

The density distribution within a metaball can be formulated

by kernel function K(r,R, σo), which leads to a smooth

decrease of density as the distance r from the metaball’s

center grows. We follow [67] and tuned it for better quality:

K(r,R, σ) = 315
64π1.57 (1.5

2 − ( r
R
)2)3σ.

For any point x in the space, we calculate the snow’s

density of x using a parzen window density estimator over

N local nearest neighbors. The final density of the snow

surface is decided accordingly to local geometry (details in

supplementary). We use a spatially-varying diffuse color

cφ(x
(p)
i ) (which is close to pure white multiplied by the

average illumination of the scene) to approximate BRDF, and

apply a subsurface scattering effect [52] to light the snow’s

shadowed part (further detail in supplementary). We re-cast

shadows on snow by leveraging 2D shadow prediction [12]
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Original ClimateGAN++ [60] Stable Diffusion [55] Ours

Figure 8: Flood simulation comparison. Both ClimateGAN++ [60] and Stable Diffusion [55] inpaint flood using water masks

from our reconstructions, but suffer from inaccurate reflections or randomly generated contents. ClimateNeRF simulates

photorealistic reflections and ripples.

and bake shadow map using NeRF geometry. Fig. 6 depicts

the snow simulation process.

4. Experiments

We evaluate ClimateNeRF and show simulated results

over various scenes across different climate effects. We com-

pare our results with state-of-the-art 2D synthesis and 3D

stylization to show the quality and consistency of rendered

frames. Experimental results demonstrate that our method

is more realistic and faithful than existing 2D synthesis and

NeRF model finetuned on stylized images while we also

maintain temporal consistency and physical plausibility. We

encourage readers to watch supplementary videos for a better

demonstration of our method’s quality.

4.1. Experimental Details

Datasets. We conduct experiments on various outdoor

scenes: Playground, Family, Horse, Truck, and Train

from Tanks and Temples dataset [34], Garden from Mip-

NeRF360 [4] and Seq 00 from KITTI-360 [40]. The scenes

vary significantly in contents, layouts, and viewpoints.

Baselines. We compare ClimateNeRF with the state-of-

the-art 2D image editing methods, such as stable diffusion

inpainting [55], ClimateGAN [60], as well as state-of-the-art

3D NeRF stylization [78]. For all 2D synthesis approaches,

we first build a NeRF using NGP, render at the target view,

and conduct synthesis. For all the 3D methods, we re-use the

improved version of NGP-based NeRF. ClimateGAN [60]

uses monocular depth to predict masks and uses GAN to

inpaint the climate-related effects, including smog and flood;

ClimateGAN++ is an improved version for flood simulation

using our method’s water mask, yielding better geometry

consistency; Swapping Autoencoder [53] is a photorealistic

2D style transfer method. We use the model pre-trained on

Flickr Mountains dataset and Flickr Waterfall dataset [53] for

snow. Stable Diffusion [55] is the state-of-the-art guided im-

age inpainting method based on latent diffusion model. We

feed accurate water masks produced by ClimateNeRF and

use text prompts of ”flooding” for inpainting. 3D Stylization

leverages FastPhotoStyle [38]. To simulate white snow cov-

erings, we stylize regions labeled road, terrain, vegetation,

and sky while keeping the geometry. Please refer to supple-

mentary materials for additional implementation details for

all competing methods including ours.

4.2. Experimental Results

Qualitative Results Fig. 7 depicts qualitative results from

smog simulation. Our method delivers better realism and

physical plausibility (see the different transmission levels

across foreground and background). ClimateGAN [60] gen-

erates visually reasonable results but fails to provide sharp

boundaries. Additionally, video results further show our

method is better at view consistency.

We also report flood simulation results in Fig. 8. Cli-

mateGAN++ [60] produces waters with wrong reflection

and blurry artifacts. Stable Diffusion [55] provides realistic

and diverse colors and reflectance but hallucinates additional

contents (e.g., cars, trees) and lacks consistency. ClimateN-

eRF renders realistic reflections with Fresnel effects and

water ripples. Videos show that ClimateNeRF is view-

consistent and provides fluid dynamics. Fig. 9 shows that

our method simulates both clear and muddy water.

We report snow simulation results in Fig. 10. As the

figure shows, 3D Stylization changes the floor texture but

cannot add physical entities to the scene, limiting its realism.

Swapping Autoencoder [53] changes the overall appearance

but hallucinates unrealistic textures (e.g., car texture). On

the other hand, ClimateNeRF simulates photorealistic win-

ter effects, including accumulated snow and change of sky

and tree colors, etc. ClimateNeRF even piles snow on tiny

structures like pedals, as shown in the figure.

Using our proposed NeRF significantly enhances the qual-

ity of climate simulation. As demonstrated in Fig. 4, com-

paring to Instant-NGP, our improved geometry results in a

more uniform smog density that is aligned with depth, and

a more natural intersection between the border of the water

surface and the scene. In addition, the appearance of white

floaters is reduced and the ground is more evenly covered by

snow in the snow scene.

User Study We perform a user study to validate our ap-

proach quantitatively. Users are asked to watch pairs of
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Original Swapping Autoencoder [53] 3D Stylization Ours

Figure 10: Snow simulation comparison. Swapping-Autoencoder [53] captures appearance changes but ignores the geometry

of both truck and train. 3D Stylization preserves the geometry of original scene well but doesn’t accumulate snow on horizontal

surfaces. In contrast, ClimateNeRF has convincing snow accumulation both on ground and on objects. Note small snow

accumulations on the bogies and running board on the train and the boards and bonnet of the truck.

Images Videos

Smog

Flood

Snow

Figure 11: User Study. The bar length indicates the %

of users voting for higher realism. The video quality of

ClimateNeRF significantly outperforms all baselines.

Figure 12: Controllable Simulation. ClimateNeRF is

highly controllable by users. smog density (1st row); flood

levels (2nd row); snow accumulations (3rd row).

synthesized images or videos of the same scene and pick the

one with higher realism. 37 users participated in the study,

and in total, we collected 2664 pairs of comparisons. Results

are reported in Fig. 11. ClimateNeRF has consistently been

favored among all video simulation comparisons thanks to

its high realism and view consistency. Single image com-

parison does not consider view consistency. In this case,

ClimateNeRF still outperforms most baselines except diffu-

sion models on flooding, which also produces realistic water

reflectances. Users find diffusion models tend to produce

more reflective water surfaces and diverse ripples.

Figure 13: Simulation on Driving Scenes [40].

Rising Sea-level Simulation ClimateNeRF demonstrates

its capability in synthesizing sea-level rise through the flood

simulation pipeline outlined in Section 3.4. We selected

world-famous scenes from OMMO dataset [45] and Adobe

Stock, and simulate the sea-level according to specified

height. The water color is set manually to match the orig-

inal scene. By portraying the potential impacts of global

warming on these iconic locations, our intention is to signifi-

cantly enhance public awareness regarding climate change

and advocate for prompt and effective measures.

Controllability. One unique advantage of ClimateNeRF is

its controllability. Fig. 12 depicts the changes in smog den-

sity, water height, and snow thickness. We show additional

controllability results, such as ripple size, flood color, water

reflectance, and smog color in supp materials.

Adverse weather simulation for self-driving. ClimateN-

eRF can be applied to any NeRF scene. In Fig. 13, Cli-

mateNeRF simulates climate effects in driving scenes of

KITTI-360 [40], demonstrating the potential of ClimateN-

eRF to train and test self-driving under adverse weather.

Limitations The simulation performance is closely tied

to the quality of NeRF. Despite our proposed improvement,

challenging cases might lead to simulation artifacts. Addi-

tionally, ClimateNeRF is not real-time currently, and thus

acceleration is an area for future work.
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Figure 14: Rising Sea-level Simulation. We simulate rising sea level at the Sydney Opera House from various view points.
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Figure 15: Rising Sea-level Simulation. Visualizing the consequences of rising sea levels in world-famous scenes [45] can

raise general public awareness about climate change.

5. Conclusion

We propose a novel NeRF editing framework that applies

physical simulation to NeRF models of scenes. Leverag-

ing this framework, we build ClimateNeRF, allowing us

to render realistic climate change effects, including smog,

flood, and snow. Our synthesized videos are realistic, view-

consistent, physically plausible, and highly controllable. We

demonstrate the potential of ClimateNeRF to help raise cli-

mate change awareness in the community and enhance self-

driving robustness to adverse weather conditions.
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Miloš Hašan, Zexiang Xu, Ravi Ramamoorthi, and Manmo-

han Chandraker. Physically-based editing of indoor scene

lighting from a single image. ECCV, 2022. 3

[40] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel

dataset and benchmarks for urban scene understanding in 2d

and 3d. IEEE TPAMI, 2022. 2, 7, 8

[41] Zhi-Hao Lin, Wei-Chiu Ma, Hao-Yu Hsu, Yu-Chiang Frank

Wang, and Shenlong Wang. Neurmips: Neural mixture of

planar experts for view synthesis. In CVPR, 2022. 2, 3

[42] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,

Antonio Torralba, and Sanja Fidler. Editgan: High-precision

semantic image editing. In NeurIPS, 2021. 3

[43] Difan Liu, Sandesh Shetty, Tobias Hinz, Matthew Fisher,

Richard Zhang, Taesung Park, and Evangelos Kalogerakis.

Asset: autoregressive semantic scene editing with transform-

ers at high resolutions. ACM TOG, 2022. 3

[44] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. NeurIPS,

2020. 3

[45] Chongshan Lu, Fukun Yin, Xin Chen, Tao Chen, Gang Yu,

and Jiayuan Fan. A large-scale outdoor multi-modal dataset

and benchmark for novel view synthesis and implicit scene

reconstruction. in arXiv, 2023. 8, 9

[46] Xiaohu Lu, Jian Yaoy, Haoang Li, Yahui Liu, and Xiaofeng

Zhang. 2-line exhaustive searching for real-time vanishing

3236



point estimation in manhattan world. In WACV. IEEE, 2017.

6

[47] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R

Chan, Marco Monteiro, and Gordon Wetzstein. Acorn: Adap-

tive coordinate networks for neural scene representation. ACM

TOG, 2021. 3

[48] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In CVPR, 2021. 5

[49] Henrique MT Menegaz, João Y Ishihara, Geovany A Borges,

and Alessandro N Vargas. A systematization of the unscented

kalman filter theory. IEEE Transactions on automatic control,

2015. 6

[50] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthe-

sis. In ECCV, 2020. 1, 2, 3, 4, 5

[51] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a mul-

tiresolution hash encoding. ACM TOG, 2022. 1, 2, 3, 4,

5

[52] Tomoyuki Nishita, Hiroshi Iwasaki, Yoshinori Dobashi, and

Eihachiro Nakamae. A modeling and rendering method for

snow by using metaballs. In Computer Graphics Forum, 1997.

3, 6

[53] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli

Shechtman, Alexei Efros, and Richard Zhang. Swapping

autoencoder for deep image manipulation. NeurIPS, 2020. 3,

7, 8

[54] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. In ICCV, 2021. 3

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In CVPR, 2022. 2, 3,

7

[56] Viktor Rudnev, Mohamed Elgharib, William Smith, Lingjie

Liu, Vladislav Golyanik, and Christian Theobalt. Neural

radiance fields for outdoor scene relighting. ECCV, 2022. 3

[57] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,

Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine

tuning text-to-image diffusion models for subject-driven gen-

eration. in arXiv, 2022. 3

[58] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay

Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,

Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes,

et al. Photorealistic text-to-image diffusion models with deep

language understanding. in arXiv, 2022. 3

[59] Victor Schmidt, Alexandra Luccioni, S Karthik Mukkavilli,

Narmada Balasooriya, Kris Sankaran, Jennifer Chayes, and

Yoshua Bengio. Visualizing the consequences of climate

change using cycle-consistent adversarial networks. ICLR,

2019. 3

[60] Victor Schmidt, Alexandra Sasha Luccioni, Mélisande Teng,

Tianyu Zhang, Alexia Reynaud, Sunand Raghupathi, Gautier

Cosne, Adrien Juraver, Vahe Vardanyan, Alex Hernandez-

Garcia, et al. Climategan: Raising climate change awareness

by generating images of floods. ICLR, 2022. 2, 3, 6, 7

[61] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew

Tancik, Ben Mildenhall, and Jonathan T Barron. Nerv: Neu-

ral reflectance and visibility fields for relighting and view

synthesis. In CVPR, 2021. 3, 4

[62] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph

Teran, and Andrew Selle. A material point method for snow

simulation. ACM TOG, 2013. 2, 3

[63] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. In CVPR, 2022. 3, 4

[64] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-

han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,

and Henrik Kretzschmar. Block-nerf: Scalable large scene

neural view synthesis. In CVPR, 2022. 2

[65] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent

Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake

Austin, Kamyar Salahi, et al. Nerfstudio: A modular frame-

work for neural radiance field development. in arXiv, 2023.

5

[66] Jerry Tessendorf. Simulating ocean water. In SIGGRAPH,

2001. 3

[67] Kees van Kooten, Gino van den Bergen, and Alex Telea. Point-

based visualization of metaballs on a gpu. Addison-Wesley

Longman, 2007. 6

[68] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,

Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:

Structured view-dependent appearance for neural radiance

fields. CVPR, 2022. 3, 4

[69] Eric A Wan and Rudolph Van Der Merwe. The unscented

kalman filter for nonlinear estimation. In Proceedings of the

IEEE Adaptive Systems for Signal Processing, Communica-

tions, and Control Symposium, 2000. 6

[70] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,

and Jing Liao. Clip-nerf: Text-and-image driven manipulation

of neural radiance fields. In CVPR, 2022. 3

[71] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon

Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time

view synthesis with neural basis expansion. In CVPR, 2021.

3

[72] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,

and David Forsyth. Diver: Real-time and accurate neural

radiance fields with deterministic integration for volume ren-

dering. In CVPR, 2022. 2, 3

[73] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M Alvarez, and Ping Luo. Segformer: Simple and

efficient design for semantic segmentation with transformers.

In NeurIPS, 2021. 4

[74] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,

Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-

based neural radiance fields. In CVPR, 2022. 3

[75] Tianhan Xu and Tatsuya Harada. Deforming radiance fields

with cages. In ECCV, 2022. 3

[76] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and

Angjoo Kanazawa. Plenoctrees for real-time rendering of

neural radiance fields. In ICCV, 2021. 3

3237



[77] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,

Rongfei Jia, and Lin Gao. Nerf-editing: Geometry editing of

neural radiance fields. In CVPR, 2022. 3

[78] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli

Shechtman, and Noah Snavely. Arf: Artistic radiance fields.

ECCV, 2022. 2, 3, 7

[79] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and

Noah Snavely. Physg: Inverse rendering with spherical gaus-

sians for physics-based material editing and relighting. In

CVPR, 2021. 3

[80] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and

Felix Heide. Differentiable point-based radiance fields for

efficient view synthesis. in arXiv, 2022. 3

[81] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul

Debevec, William T Freeman, and Jonathan T Barron. Ner-

factor: Neural factorization of shape and reflectance under an

unknown illumination. ACM TOG, 2021. 3

[82] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-

drew Davison. In-place scene labelling and understanding

with implicit scene representation. In ICCV, 2021. 5

[83] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.

Unpaired image-to-image translation using cycle-consistent

adversarial networks. In ICCV, 2017. 3

[84] Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G

Schwing. Enjoy your editing: Controllable gans for image

editing via latent space navigation. In ICLR, 2021. 3
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