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Abstract

Scene reconstructions are often incomplete due to occlu-
sions and limited viewpoints. There have been efforts to
use semantic information for scene completion. However,
the completed shapes may be rough and imprecise since re-
spective methods rely on 3D convolution and/or lack effec-
tive shape constraints. To overcome these limitations, we
propose a semantic scene completion method based on de-
formable deep implicit templates (DDIT). Specifically, we
complete each segmented instance in a scene by deform-
ing a template with a latent code. Such a template is ex-
pressed by a deep implicit function in the canonical frame.
It abstracts the shape prior of a category, and thus can pro-
vide constraints on the overall shape of an instance. La-
tent code controls the deformation of template to guarantee
fine details of an instance. For code prediction, we design a
neural network that leverages both intra- and inter-instance
information. We also introduce an algorithm to transform
instances between the world and canonical frames based
on geometric constraints and a hierarchical tree. To fur-
ther improve accuracy, we jointly optimize the latent code
and transformation by enforcing the zero-valued isosurface
constraint. In addition, we establish a new dataset to solve
different problems of existing datasets. Experiments showed
that our DDIT outperforms state-of-the-art approaches.

1. Introduction

3D scene reconstruction has been widely studied in the
past decades. However, in practice, reconstructed scenes
are often incomplete due to occlusions and limited view-
points. Missing structures affect various practical applica-
tions [32, 45, 43, 22, 23, 6, 41]. To complete a scene, several
methods have been proposed. Some of them [17, 30, 10]
only consider geometric information and are prone to result
in noisy results. Recent work [15, 27] demonstrated that se-
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Figure 1. We complete a point set of an instance by deforming a
deep implicit template with a latent code.

mantic information can improve the completion quality. In
this paper, we investigate semantic scene completion.

Existing semantic scene completion methods can be
roughly classified into two main categories, i.e., scene-
level [35, 40, 11, 31] and instance-level [26, 15, 27, 4, 16].
The scene-level methods directly complete the whole en-
vironment, while the instance-level approaches separately
complete each detected/segmented instance. The instance-
level approaches are typically more accurate than the scene-
level methods since per-instance completion can better han-
dle different structures of instances. However, existing
instance-level approaches still have some limitations. They
may generate rough and unreasonable meshes since they
rely on 3D convolution and/or lack effective shape con-
straints. To overcome these limitations, we propose an
instance-level method by deforming deep implicit templates
with latent codes. As shown in Fig. 1, such a template ab-
stracts the shape prior of a category, and thus can provide
constraints on the overall shape of an instance. Latent code
controls the deformation of template to guarantee fine de-
tails of an instance.

As shown in Fig. 2, given an incomplete point cloud of a
scene in the world frame, we first conduct instance segmen-
tation. Then we transform each segmented point set from
the world frame to the canonical frame. Our transforma-
tion estimation is based on geometric constraints and a la-
tent code-based hierarchical tree. It is more reliable and/or
efficient than existing algorithms [27, 1, 2]. In the canoni-
cal frame, as mentioned above, we complete each point set
by deforming a deep implicit template [46] with a latent
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Figure 2. Pipeline of our DDIT. (a) Given an incomplete point cloud of a scene, we conduct instance segmentation and transform each
segmented point set from the world frame to the canonical frame. (b) For each point set (let us take the orange one for example), we use its
semantic label to retrieve a pre-trained deep implicit template. We also feed this point set and its neighbors to a neural network to predict a
latent code. By deforming the retrieved template with the predicted code, we obtain a complete mesh. (c) We transform the complete mesh
back into the world frame, followed by jointly optimizing its associated latent code and transformation.

code. This template is expressed by a deep implicit func-
tion and pre-trained using numerous CAD models from the
same category. For latent code prediction, we design a neu-
ral network that considers both intra- and inter-instance in-
formation. Specifically, given a point set of an instance, we
first divide it into several patches and use these patches to
predict the initial code. Then we exploit point sets of neigh-
boring instances from the same category to refine the initial
code. Intuitively, an instance and its neighbors may have
similar overall shapes but different reconstructed parts (see
different sides of sofas in Fig. 2). Different parts can pro-
vide multi-view constraints on the deformation of template,
improving the reliability of latent code.

After generating a complete mesh, we transform it back
into the world frame. To further improve accuracy, we
jointly optimize the latent code and transformation. We
leverage the fact that surface points of an instance in the
world frame correspond to the zero-valued signed distance
function (SDF) in the canonical frame. In addition, exist-
ing datasets [1, 14, 42] for semantic scene completion have
some limitations, e.g., non-alignment between point sets
and meshes, irrational relationship between meshes, and
lack of partial data. We establish a new dataset to solve
these problems. Overall, our main contributions are

• We propose to complete instances in a scene by de-
forming deep implicit templates with latent codes.

• We design a neural network to predict latent codes
based on intra- and inter-instance information.

• We estimate the instance transformation using geomet-
ric constraints and a code-based hierarchical tree.

• We jointly optimize the latent code and transformation
based on the zero-valued SDF constraint.

• We establish a new dataset for semantic scene comple-
tion to overcome the limitations of existing ones.

Experiments showed that our DDIT outperforms state-of-
the-art approaches [27, 36]. Our generated meshes show
more reasonable overall shapes and finer details, and also
are better aligned to the observed incomplete point sets.

2. Related Work

We classify existing semantic scene completion methods
into two categories, i.e., the scene-level and instance-level.
Scene-level. Early works take a single depth image as input.
Song et al. [35] proposed to jointly estimate the geomet-
ric structures and semantic labels based on 3D convolution.
Each voxel is associated with an (N+1)-dimensional prob-
ability vector where “N” denotes the number of categories
and “1” corresponds to the free space. Wang et al. [40]
improved the accuracy based on a shared latent space of
geometric and semantic information. Dai et al. [11] ex-
tended the above single-view case to full 3D scans using
a kernel invariant to the scene size. A common limitation of
the above methods is that the resolution of their completed
scenes is relatively low. The reason is that 3D convolution
is computationally expensive and thus the number of voxels
cannot be too large. To overcome this limitation, a recent
work [31] leverages deep implicit function. In a continu-
ous space, this method can predict an (N + 1)-dimensional
vector mentioned above for an arbitrary position. However,
since this method neglects different structures of instances,
it may result in unreasonable overall shapes of instances.
Instance-level. Hou et al. [15] designed a method to se-
quentially detect, classify, and complete instances. This
method outperforms the above scene-level approaches, but
suffers from the resolution problem caused by 3D convo-
lution. By contrast, some methods [27, 26] jointly detect
and complete instances. In particular, they exploit deep im-
plicit function instead of 3D convolution for shape gener-
ation, improving the smoothness of surface. However, de-
tails of the completed instances may be unsatisfactory due

21895



unif  p1c

SDF value
2c

3c

1p

2p

3p

Canonical frame

Figure 3. Illustration of deep implicit template. Position warping
sub-network W takes different latent codes {ci}Ni=1 as input and
maps different positions {pi}Ni=1 into a unified position punif. SDF
query sub-network Q predicts SDF value of the position punif.

to the lack of effective shape constraints. Tang et al. [36]
first pre-trained a decoder to express complete meshes in a
latent space. Then they used an encoder to map incomplete
instances into the same latent space. Accordingly, an in-
complete instance is associated with a complete mesh by a
latent code. Some recent work [4, 13] simultaneously con-
duct instance-level and scene-level completions. While they
can predict reasonable overall shapes of instances, their res-
olution is unsatisfactory due to voxel representation. In ad-
dition, several methods [2, 16] first retrieve CAD models in
a database to replace incomplete shapes, and then option-
ally deform CAD models for a better alignment with these
shapes. Their performance is subject to the database size.

Due to limited space, please refer to a recent survey pa-
per [32] for detailed introduction and comparison.

3. Background of Deep Implicit Template

Deep implicit template [46] is a variant of the well-
known DeepSDF [29]. Such a template is expressed by
a deep implicit function consisting of two cascading net-
works, i.e., position warping sub-networkW and SDF sub-
query network Q. Each category corresponds to a unique
template. To model such a template, N instances from
the same category are normalized into a cube-shaped space
called the canonical space/frame [5]. In this space, we de-
note an arbitrary position with respect to the i-th instance
by pi. Here, let us take the corner of sofa for example. As
shown in Fig. 3, while {pi}Ni=1 have different coordinates in
the canonical frame, they have the same semantic meaning,
i.e., they represent the corners of different sofas.

Position warping sub-network W takes a latent code ci
of the i-th instance as input, and maps the position pi into
a new position punif , i.e., punif = W(ci,pi). This network
features mapping different positions {pi}Ni=1 into a unified
position punif . The position punif is with respect to the tem-
plate, and semantically represents the corner of the sofa
template (see Fig. 3). SDF query sub-network Q looks up
the SDF value of the unified position punif , and treats this

value as the SDF value vi of the position pi, i.e.,

vi = Q(punif)⇒ vi = Q
(
W(ci,pi)

)
. (1)

Intuitively, position warping sub-network W and latent
code ci control the deformation between the i-th instance
and the template. SDF query sub-network Q encapsulates
the shape of template. This warp-and-query strategy is more
accurate than direct regression of SDF value [29] for two
main reasons. First, the sub-network Q abstracts the shape
prior of a category and thus provides constraints on the over-
all shape of an instance. Second, the sub-network W and
code ci guarantee fine details of an instance based on flexi-
ble shape deformation.

In our context, for each category, we pre-train a template
network using numerous CAD models from this category
on ShapeNet dataset [5]. We also obtain the pre-trained la-
tent codes of these CAD models as by-products that will be
used for our transformation estimation. Note that these la-
tent codes are not predicted by an encoder. Instead, they are
pre-trained along with the weights of a template network.

4. Our Method
Fig. 2 shows an overview of our DDIT. Given an incom-

plete point cloud of a scene in the world frame, we first
conduct instance segmentation based on the state-of-the-art
method Mask3D [34]. Each segmented point set is asso-
ciated with a semantic label. Then we introduce a reliable
and efficient algorithm to transform each point set from the
world frame to the canonical frame. For each transformed
point set, we design a neural network to predict its latent
code. By feeding this code to a pre-trained deep implicit
template, we can predict SDF values of the densely sampled
positions in the canonical space based on Eq. (1). After that,
we apply the marching cubes algorithm [25] to these SDF
values, obtaining a complete shape. Finally, we transform
this shape back into the world frame, and also optimize the
latent code and transformation for shape improvement.

Compared with the foreground instances, it is easier to
complete the background layout typically composed of ceil-
ing, wall, and floor. We achieve this based on Manhat-
tan/Atlanta world assumption [8, 21, 33, 20] and plane fit-
ting [37, 18].

4.1. Latent Code Prediction

We design a neural network for latent code prediction in
the canonical frame.1 To predict the code of the i-th point
set, our network takes this point set and its neighbors with
the same semantic label and similar sizes (this information
has been obtained in the pre-processing step) as input. The

1Here, we assume that the segmented point sets have been transformed
into the canonical frame based on the known transformations. Our trans-
formation estimation will be introduced in the next subsection.
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Figure 4. Illustration of our latent code prediction based on intra-
instance information. Given a point set of an instance in the canon-
ical frame, we first extract the feature of each point. Then we seg-
ment a point set into several patches, and extract the feature of
each patch based on the features of points belonging to this patch.
Finally, we aggregate features of patches to obtain a latent code.

main novelty of our network is that it considers both intra-
and inter-instance information.

Intra-instance Information (see Fig. 4). Given a point set
of an instance, we first use a sub-network Npoint based on
EdgeConv [39] to extract point features. Briefly, each root
point and its K neighboring points define a graph with K
edges. The root and its k-th neighbor are used to compute
the feature of the k-th edge (16 k6K). Then the features
of all the edges are aggregated as the feature of root point.

To learn fine details, we segment the point set of an
instance into several patches based on the VCCS algo-
rithm [28]. This algorithm provides reasonable patch
boundaries by considering spatial connectivity. We call the
central point of a patch “control point”. For all the points
from the m-th patch, we aggregate their features (extracted
above) as the feature of the m-th control point. Then we use
the m-th control point and its neighboring control points
to define a graph. This graph covers larger areas than the
above graph defined by the ordinary points, and thus is suit-
able to extract more global features. We apply EdgeConv
again to this control point-based graph to update the feature
of the m-th control point. We treat the updated feature as
the feature fm of the m-th patch.

We integrate the above patch features {fm} of an in-
stance to predict the latent code c by designing a sub-
network Nintra, i.e.,

c = Nintra({fm}). (2)

The sub-network Nintra first exploits the attention mecha-
nism [38, 44] to integrate the patch features {fm} as an im-
proved feature. Then it employs the multi-layer perceptron
(MLP) to map the improved feature into a 256-dimensional
latent code c.

Inter-instance Information (see Fig. 5). Let us consider
the i-th instance and its neighbors, i.e., the (i+1)-th and
(i+2)-th instances for illustration. These instances belong
to the same category and have similar overall shapes. How-
ever, their reconstructed parts are different due to different
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The (i+1)-th
point set
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Figure 5. Illustration of our latent code prediction based on inter-
instance information. Three input point sets in the world frame
correspond to similar one-seat sofas. We transform them into the
canonical frame and predict their initial latent codes separately.
Then we refine the latent code of the i-th instance by integrating
the initial codes of this instance and its neighbors.

viewpoints and occlusions. For example, the point set of
the i-th instance lacks two front legs. The point sets of the
(i+1)-th and (i+2)-th instances lack the left and right front
legs, respectively. Given that an incomplete point set is re-
constructed from limited view directions, it can hardly pro-
vide sufficient constraints on the deformation of template.
Accordingly, the latent code predicted based on such a point
set may not be reliable enough. To solve this problem, we
propose to integrate the related latent codes that encapsulate
the constraints from different view directions.

For the i-th, (i + 1)-th, and (i + 2)-th instances in the
canonical frame, we first use the above sub-network Nintra
to predict their latent codes ci, ci+1, and ci+2, respectively.
Then based on the attention mechanism [38], we design a
sub-network Ninter to refine ci using ci+1, and ci+2 as

c̃i = Ninter(ci, ci+1, ci+2). (3)

Note that we do not directly treat the output of the attention
module as the refined code c̃i. Instead, we first concatenate
such output and ci, followed by mapping the result back
into the 256-dimensional code c̃i based on MLP. This oper-
ation maintains the key role of the i-th point set to predict
the code c̃i. The refined latent code c̃i encapsulates multi-
view constraints on the deformation of template, providing
higher reliability than the original code ci. In practice, for
each instance, we find up to three neighbors with the same
semantic label and similar sizes. The size similarly is mea-
sured by the volume of bounding boxes in the world frame.
Overall, the above sub-networks Npoint, Nintra, and Ninter
constitute our code prediction network. Details of network
architecture are available in the supplementary material.

Loss Function. We follow [29] to train our network us-
ing SDF values as supervision. Briefly, for the i-th training
instance, we sample Z positions {pz

i }Zz=1 in the canonical
space. We use the ground truth mesh of this instance to ob-
tain the ground truth SDF values {v̂zi }Zz=1 at the sampled
positions. We adopt L1 loss function to minimize the dif-
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ference between each pair of the estimated SDF value vzi in
Eq. (1) and ground truth SDF value v̂zi , i.e.,

L1 =
∑
z

∣∣∣Q(W(c̃i,p
z
i )
)
− v̂zi

∣∣∣. (4)

Eq. (4) is with respect to our latent code prediction network
and deep implicit template {W,Q}. In addition to training
our code prediction network, we fine-tune the pre-trained
warping sub-networkW , but fix the pre-trained query sub-
network Q. The reason is that the latent code and warping
sub-networkW jointly determine the coordinate warping.

4.2. Transformation Estimation

Given a point set of an instance in the world frame, we
aim to estimate its transformation between the world and
canonical frames. Existing methods can be classified into
two main categories. The first type of methods [27, 15] re-
lies on the regressed bounding boxes, and is prone to be
unreliable due to the lack of geometric constraints. The
second type of methods [1, 2] is based on the point cor-
respondences between the input point set and a CAD model
in the canonical frame. To establish such a pair, [1] ex-
haustively searches for the best-matched CAD model in the
database and thus results in unsatisfactory efficiency. [2] in-
troduces a neural network to directly retrieve a CAD model,
but can hardly guarantee the reliability of retrieval. To over-
come these limitations, we propose a correspondence-based
method using a coarse-to-fine geometric search strategy.

Recall that we pre-train a template network using nu-
merous CAD models from the same category. As a by-
product, each model is associated with a pre-trained la-
tent code. We employ K-Means algorithm [24] to clus-
ter these models based on their latent codes. We repeat
clustering on each newly generated group using a loose-
to-tight threshold. Accordingly, we generate a hierarchi-
cal tree of CAD models (see the supplementary material for
details). Along this tree, we search for the best-matched
CAD model against the input point set based on geomet-
ric evaluation. Specifically, given the input point set and
a candidate CAD model, we first use FCGF [7] to estab-
lish putative point correspondences. Then we find inliers of
these correspondences by combing PointDSC [3] for spatial
consistency and RANSAC [12] for parametric consistency.
Accordingly, each candidate CAD model is associated with
an inlier ratio. The CAD model achieving the highest inlier
ratio corresponds to the best-matched model. We treat the
transformation between this model and the input point set
as the transformation of the input point set.

Overall, our algorithm is efficient by considering the pre-
trained latent codes to avoid an exhaustive search. More-
over, it is reliable thanks to geometric constraints.
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Figure 6. Illustration of our algorithm to jointly optimize the trans-
formation and latent code. (a) In the world frame, the generated
shape is better aligned to the observed surface points thanks to our
optimization. (b) Surface points in the world frame correspond to
the zero-valued isosurface of SDF in the canonical frame.

4.3. Optimization

In this section, we aim to optimize the latent codes
and transformations estimated above. Let us first consider
the i-th instance to illustrate the motivation of optimiza-
tion. Given an incomplete point set in the world frame (see
Fig. 6(a)-left), we estimate its transformation Ti and latent
code ci to generate a complete shape in the world frame
(see Fig. 6(a)-middle). Due to the effect of noise, the gen-
erated shape is not strictly aligned with the observed point
set. As shown in Fig. 6(a)-right, we propose to jointly op-
timize the latent code ci and transformation Ti to better fit
the generated shape to the observed point set.

As shown in Fig. 6(b), we leverage the fact that surface
points {sji}Jj=1 in the world frame should correspond to
the zero-valued isosurface of SDF in the canonical frame
(this isosurface is exactly the surface of template). Specifi-
cally, we first use the estimated transformation Ti to trans-
form each point sji into the canonical frame. Then for each
transformed point Ti(sji ), we estimate its SDF value based
on latent code ci and deep implicit template {W,Q} (see
Eq. (1)). We define an objective function to enforce the

Table 1. Comparisons between various datasets for semantic scene
completion. Detailed illustrations are available in the supplemen-
tary material.

Alignment Rationality Completeness Watertightness

Scan2CAD [1] 7 37 7 7

SOSPC [14] 3 7 7 7

SCFusion [42] 3 37 7 7

ScanARCW (our) 3 3 3 3
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zero-valued SDF constraint, i.e.,

min
Ti,ci

∑
j

∣∣∣∣Q(W(ci, Ti(sji )))∣∣∣∣. (5)

This objective function is with respect to both latent code ci
and transformation Ti. To minimize it, we leverage Adam
algorithm [19]. We initialize the latent code ci and trans-
formation Ti by the results obtained in Sections 4.1 and 4.2,
and fix the weights of networks {W,Q}. During minimiza-
tion, we limit the variation ranges of transformation and
each element of latent code to achieve a moderate update.

5. Our New Dataset

Existing datasets for semantic scene completion include
Scan2CAD [1], SOSPC [14], and SCFusion [42] datasets.
They are all built on ScanNet dataset [9]. As shown in Ta-
ble 1, they have at least one of the following limitations.
1) An observed incomplete point set may not be strictly
aligned with its ground truth complete mesh. 2) Relation-
ship between ground truth meshes may be irrational, e.g.,
intersection or floating. 3) Ground truth meshes of the back-
ground point cloud, e.g., ceiling, wall, and floor are lack-
ing. 4) Ground truth meshes may not be watertight, which
affects the SDF-based research. To overcome these limi-
tations, we establish a new dataset achieving Alignment,
Rationality, Completeness, and Watertightness. We call it
“ScanARCW” dataset.

We briefly introduce the procedure of our dataset estab-
lishment. First, we place CAD models of both foreground
instances and background layout in the world frame. These
models are newly generated (e.g., background layout), or
re-used from Scan2CAD dataset. We process these models
in batches for watertightness, and partly edit their poses for
rationality. The results are treated as ground truth complete
meshes. Then we project these meshes with semantic labels
by the cameras of ScanNet dataset, obtaining a set of depth
maps and semantic label maps. After that, we back-project
these maps to obtain an incomplete point cloud of the scene.
This step guarantees that the ground truth meshes and ob-
served point cloud are strictly aligned.

Additional information about our dataset is available in
the supplementary material. We release our dataset on the

project website2.

6. Experiments

We first introduce our experimental setup in Section 6.1.
Then we compare our approach with state-of-the-art meth-
ods in Section 6.2, followed by presenting ablation study in
Section 6.3.

6.1. Experimental Setup

Dataset and Categories. As mentioned above, on our Sca-
nARCW dataset, the observed point cloud and ground truth
meshes are strictly aligned. Therefore, we conduct experi-
ments on this dataset for an unbiased evaluation. We con-
sider dominant categories in indoor environments, includ-
ing sofa, chair, table, cabinet, bookshelf, bathtub, and bed.
We additionally complete the background composed of ceil-
ing, wall, and floor. For a fair comparison with [27, 36],
we only report the results of foreground completion in the
main manuscript. The results of background completion are
available in the supplementary material.
Evaluation Criteria. We adopt 3D intersection-over-union
(IoU) [27] and point coverage ratio (PCR) [36] as our evalu-
ation metrics. Specifically, in the world frame, we voxelize
the generated and ground truth meshes respectively, and
compute IoU (%) by Volume of overlap

Volume of Union ; For each point from an
observed point set, we compute its smallest distance to the
generated mesh. We treat a point whose distance is smaller
than the threshold as an inlier and compute PCR (%) by
Number of Inliers
Number of Points . Considering the quality of instance segmen-
tation or object detection, we follow [27, 36] to report the
average precision with respect to IoU and PCR. Briefly, IoU
or PCR determines true/false based on a threshold such as
0.25, 0.5, or 0.75. Confidence score of segmentation or de-
tection determines positive/negative.
Implementation Details. We use Adam [19] to minimize
our loss in Eq. (4). The learning rate is 10−5, batch size is
8, and number of epochs is 1000. The number of edges K
used in EdgeConv is 8. We follow the setup of [46] to pre-
train deep implicit templates.

2https://sites.google.com/view/haoangli/
projects/ddit

Table 2. Quantitative comparisons with state-of-the-art methods. For each category, we report the average precision with respect to PCR
and IoU at the threshold of 0.5.

Sofa Chair Table Cabinet Bookshelf Bathtub Bed Mean

PCR IoU PCR IoU PCR IoU PCR IoU PCR IoU PCR IoU PCR IoU PCR IoU

RfD-Net [27] 23.37 36.21 76.78 21.01 32.06 9.75 23.15 23.59 29.59 11.60 53.48 31.97 45.37 49.29 40.54 26.20

DIMR [36] 62.11 39.54 77.50 14.27 49.14 10.83 18.31 19.49 27.88 10.58 75.60 34.36 49.02 51.73 51.36 25.82

DDIT (our) 61.59 44.43 75.04 39.83 67.62 41.96 53.92 50.39 49.38 30.51 43.23 20.49 52.48 57.76 57.60 40.76
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6.2. Comparisons with State-of-the-art Methods

Methods for Comparison. We compare our DDIT with the
state-of-the-art methods introduced in Section 2:

• RfD-Net [27] first conducts object detection and then
extracts foreground point sets. Occupancies of 3D po-
sitions are implicitly predicted for mesh generation.

• DIMR [36] relies on instance segmentation. The latent
code of a point set is mesh-aware. Such a code is fed
to a pre-trained decoder to directly predict a mesh.

For a fair comparison, we re-train RfD-Net and DIMR on
our ScanARCW dataset using their recommended parame-
ters. We conduct all the tests on a computer equipped with
NVIDIA RTX A6000 GPU.
Results. Table 2 and Fig. 7 show that RfD-Net may gen-
erate unreasonable shapes due to the lack of constraints
on shape prior. Moreover, its object detection module is
prone to result in some false positives (e.g., redundant ta-
bles). DIMR is more accurate than RfD-Net thanks to its
mesh-aware latent codes. However, its generated shapes

RfD-Net [27]

First scene Second scene Third scene

DIMR [36]

DDIT (our)

Ground Truth

Sofa Chair Table Cabinet Bookshelf

Figure 7. Qualitative comparisons with state-of-the-art methods in three representative scenes. Red bounding boxes correspond to the
zoom-in view of some instances. Additional results are available in the supplementary material.
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Table 3. Quantitative comparisons with state-of-the-art methods.
We report the mean average precision over all categories with re-
spect to PCR at the thresholds of 0.25, 0.5, and 0.75.

PCR@0.25 PCR@0.5 PCR@0.75

RfD-Net [27] 63.33 40.54 20.61

DIMR [36] 66.41 51.36 29.55

DDIT (our) 67.63 57.60 42.74

Table 4. Ablation study of our
inter-instance information. We
report mean average precision
with respect to IoU and PCR at
the threshold of 0.5.

PCR IoU

Intra 55.74 37.90

Intra+Inter 57.60 40.76

Table 5. Ablation study of our
optimization strategy. We re-
port mean average precision
with respect to IoU and PCR at
the threshold of 0.5.

PCR IoU

No-optim 56.89 38.82

Optim 57.60 40.76

may show unsatisfactory details. For example, an instance
appears to be assembled by a set of simple primitives with-
out smooth transition (see bases of office chairs in Fig. 7).
Moreover, the generated shapes may be not well-aligned
to the observed point sets. The reason is that the instance
transformation is directly regressed by a network without
strict geometric constraints and thus may be unreliable. Our
DDIT achieves the highest accuracy since the template leads
to reasonable overall shape and latent code guarantees fine
details. Note that for the categories of chair and table, av-
erage precisions with respect to IoU are significantly lower
than average precisions with respect to PCR. The reason is
that IoU computation is sensitive to the noise of thin parts
of an instance, e.g., chair leg and table surface [27]. Such
difference in average precision is relatively small for our
DDIT thanks to a better alignment between the generated
and ground truth meshes.

As shown in Table 3, the performance gap between the
above methods becomes larger at a higher threshold. The
reason is that the meshed generated by our DDIT is better
aligned to the observed point sets. For example, assume
that Mesh 1 generated by DIMR and Mesh 2 generated by
our DDIT lead to PCR of 0.6 and 0.8, respectively. Mesh
1 is a true positive at the threshold of 0.5, but a false posi-
tive at the threshold of 0.75. By contrast, Mesh 2 remains a
true positive at different thresholds. A larger number of true
positives lead to a higher mean precision. In addition, the
instance segmentation-based DIMR and DDIT is more ac-
curate than the object detection-based RfD-Net. This partly
demonstrates the superiority of instance segmentation in se-
mantic scene completion task, as discussed in [36].

6.3. Ablation Study

Inter-instance Information (see Section 4.1). We denote
our method using only intra-instance information by Intra,

Intra

Intra+Inter
Figure 8. Ablation study of our inter-instance information. We
present a qualitative comparison in a representative scene. Addi-
tional results are available in the supplementary material.

No-optim

Optim
Figure 9. Ablation study of our optimization strategy. We present
a qualitative comparison in a representative scene. Additional re-
sults are available in the supplementary material.

and our method using both inter- and intra-instance infor-
mation by Intra+Inter. As shown in Table 4 and Fig. 8,
the meshes generated by Intra may still lack some parts.
Intra+Inter generates more complete meshes than Intra,
demonstrating the effectiveness of our inter-instance infor-
mation. The reason is that neighboring instances commonly
have similar shapes but different reconstructed parts. Com-
bining their information can enforce multi-view constraints
on a generated mesh.
Optimization (see Section 4.3). We denote our method
without optimization by No-optim, and our method using
optimization by Optim. Table 5 and Fig. 9 show that for
No-optim, there is still room for accuracy improvement.
The reasons are that the predicted latent code may be partly
affected by the uneven density of the input point set, and the
computed transformation is inevitably affected by the noise
of point correspondences. Optim improves the accuracy of
both latent code and transformation. Accordingly, the gen-
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erated shapes and observed point sets are better aligned.
Please note that our method still outperforms the state-

of-the-art approaches RfD-Net and DIMR even without us-
ing inter-instance information (see Tables 3 and 4), or opti-
mization (see Tables 3 and 5).

7. Conclusions

We presented DDIT, a semantic scene completion
method by deforming deep implicit templates with latent
codes. Our completed instances show reasonable overall
shapes and fine details, and also are well-aligned to the ob-
served point cloud. This is owed to our reliable estimation
and optimization of both latent code and transformation.
In addition, we established a new dataset to overcome the
limitations of existing ones. Experiments showed that our
method outperforms state-of-the-art approaches.
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