
DenseShift : Towards Accurate and Efficient
Low-Bit Power-of-Two Quantization

Xinlin Li1, Bang Liu2, Rui Heng Yang1, Vanessa Courville1, Chao Xing1, and Vahid Partovi Nia1

1Noah’s Ark Lab, Huawei Technologies.
2University of Montreal & Mila - Quebec AI Institute

1 { xinlin.li1, rui.heng.yang1, vanessa.courville, xingchao.ml, vahid.partovinia }@huawei.com
2 bang.liu@umontreal.ca

Abstract

Efficiently deploying deep neural networks on low-
resource edge devices is challenging due to their ever-
increasing resource requirements. To address this issue,
researchers have proposed multiplication-free neural net-
works, such as Power-of-Two quantization, or also known
as Shift networks, which aim to reduce memory usage and
simplify computation. However, existing low-bit Shift net-
works are not as accurate as their full-precision counter-
parts, typically suffering from limited weight range encod-
ing schemes and quantization loss. In this paper, we pro-
pose the DenseShift network, which significantly improves
the accuracy of Shift networks, achieving competitive per-
formance to full-precision networks for vision and speech
applications. In addition, we introduce a method to de-
ploy an efficient DenseShift network using non-quantized
floating-point activations, while obtaining 1.6× speed-up
over existing methods. To achieve this, we demonstrate that
zero-weight values in low-bit Shift networks do not con-
tribute to model capacity and negatively impact inference
computation. To address this issue, we propose a zero-
free shifting mechanism that simplifies inference and in-
creases model capacity. We further propose a sign-scale
decomposition design to enhance training efficiency and
a low-variance random initialization strategy to improve
the model’s transfer learning performance. Our extensive
experiments on various computer vision and speech tasks
demonstrate that DenseShift outperforms existing low-bit
multiplication-free networks and achieves competitive per-
formance compared to full-precision networks. Further-
more, our proposed approach exhibits strong transfer learn-
ing performance without a drop in accuracy. Our code was
released on GitHub.

2 3 4 5
Weight Bit-width

62

64

66

68

70

To
p 

1 
Ac

cu
ra

cy

Ours (Random)
S3-Shift (Random)
DeepShift (Pre-trained)
INQ (Pre-trained)
DeepShift (Random)
TWN (Random)

Figure 1: Benchmark low-bit DenseShift networks over
SOTA low-bit Shift networks on ImageNet using the
ResNet-18 model architecture.

1. Introduction

Deep neural networks have demonstrated superior per-
formance in diverse applications such as image classifica-
tion, object detection, and image segmentation [17, 27, 6],
and speech [29]. However, despite the high accuracy of
multiplication-based deep neural networks, their comput-
ing resource requirement makes their deployment challeng-
ing, especially on low-resource devices. Recent research
has explored multiplication-free neural networks that re-
duce memory footprint and overall energy consumption to
address this issue.

Existing works on multiplication-free neural networks
include binary [8], and ternary quantization [21]. They re-
spectively constrain their weights in the range of {±1} and
{0}∪{±1}, in order to replace multiplication computations
with less expensive operations such as a sign flip operator.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17010



These low-bit quantization techniques make it possible to
deploy deep learning models on resource-constrained edge
devices. Moreover, [44] trades the multiplication operation
with the addition operation, and [12, 22, 36] use the bit-
shift operator to build power-of-two (PoT) quantized net-
works, known as Shift networks. Shift networks built upon
a ternary base have a weight space of {0} ∪ {±2p}. This
means that multiplication operations can be replaced with
bit-wise shift operations, which have highly efficient hard-
ware implementations. In fact, [36] showed that with 4-bit
weights and 8-bit activations, the shift-based MAC unit de-
signed for Shift networks outperformed its counterpart for
traditional uniform quantization by 2.4× energy saving and
20% chip area saving using Samsung 5nm.

A recent study [22] proposes a weight reparameteri-
zation scheme S3 for Shift network training, which sig-
nificantly improves the accuracy of the ImageNet classi-
fication task under sub-4bits weight and does not require
full-precision pre-training. However, S3 has the follow-
ing shortcomings: i) Existing Shift networks, including S3,
only support quantized activations during inference, limit-
ing their performance gains and usefulness in various sce-
narios; ii) S3 is only benchmarked on image classification
and exhibits significant performance degradation under 2-
bit weight; iii) Transfer learning tasks are unexplored.

In this study, we identify and address design limitations
in current low-bit Shift networks through a detailed analy-
sis, resulting in the proposal of DenseShift network. Our
novel designs significantly enhance model capacity, infer-
ence efficiency, and transferability. The contributions of this
study are outlined below.

First, our analysis reveals that zero weights in low-bit
Shift networks reduce model capacity under limited bit
widths. To address this issue, we propose a zero-free shift-
ing mechanism that removes zero values from the weight
space. This design enhances model representation capacity
and improves performance under low-bit conditions, sur-
passing existing low-bit Shift networks.

Second, we introduce a novel inference approach for
DenseShift networks that supports both floating-point and
quantized activations. Our approach accelerates the dot-
product computation by 1.6× on ARMv8 CPU under FP16.
Notably, DenseShift is the first Shift network that enables
inference with non-quantized floating-point activations and
the first to demonstrate performance improvement without
relying on dedicated hardware such as ASIC or FPGA.

Third, we propose an efficient training algorithm
for DenseShift networks adapted from the weight re-
parameterization techniques [22]. Our sign-scale decom-
position method breaks down the discrete weights into a bi-
nary sign term and a power-of-two scale term, and recur-
sively re-parameterizes the exponent of the scale term as a
combination of binary variables. This enables us to train

low-bit DenseShift networks from a random initialization,
achieving performance that is comparable to full-precision
networks.

Fourth, while prior research works suffer from severe
performance degradation when transferred to a new task,
we propose a low-variance random initialization strategy to
improve the model’s performance in transfer learning sce-
narios. We demonstrate that the weight values tend to gather
towards the original point of the re-parameterization space
during the initial stage of training, and as a result, a greater
gradient signal is needed to push them to pass the threshold
when the weights are randomly initialized with a large vari-
ance. By reducing the variance of weight initialization, the
DenseShift network can be easily adapted to different tasks
while maintaining competitive performance.

We conducted extensive experiments to evaluate the per-
formance of our DenseShift network compared to various
baselines on a diverse set of tasks across different fields.
The results show that our proposed DenseShift network out-
performs the state-of-the-art Shift network on the ImageNet
classification task and achieves comparable performance to
full-precision networks while having higher inference com-
putational efficiency. As summarized in Fig. 1, DenseShift
network performs significantly better in low-bit settings, es-
pecially under 2-bit condition. Specifically, our 2-bit and
3-bit quantized ResNet-18 on the classification task achieve
68.90% and 70.57% Top-1 accuracy respectively. More-
over, we demonstrate that our low-bit DenseShift networks
can achieve full-precision performance in transfer learning
scenarios across different domains, including computer vi-
sion and speech tasks. This study is the first to demonstrate
this capability, to the best of our knowledge.

2. Related Works
Different approaches have been suggested to replace the

expensive multiplication operation to mitigate the computa-
tional complexity of neural networks. Low-bit neural net-
works with binary weights [8, 39] or ternary weights [21]
are examples of multiplication-free networks. While com-
putationally inexpensive, their major flaw lies in the accu-
racy gap compared to their full-precision counterparts, as
they suffer from under-fitting on large datasets. There are
also works that utilize computationally cheaper operations,
such as addition operations [5, 44, 46], square operations
[35], or bit-shift operations [49, 14, 12, 31]. Compared
to using binary or ternary weights, these methods achieve
a low accuracy drop on large datasets but require higher
weight representation bit-width as a trade-off. Some other
works try to improve the performance of multiplication-free
neural networks by using both addition and bit-shift opera-
tions [47], a sum of binary bases [25, 48], or sum of shift
kernels [23], however, they remain computational costly as
more operations are used per kernel.

17011



0100001001001000

1100101001001000

100010

3.14

−12.57

−2𝟐×

≈ =

Real value multiplication FP16 mul. using UINT16 add.

0000000000

sign exponent mantissa

+

Figure 2: The multiplication between a float number and
a positive or negative power-of-two integer can be imple-
mented by an integer addition instruction, which allows
DenseShift networks inference on most existing hardware
efficiently. The FP16 dot-product computation achieved
1.6× speed up on ARM A57 CPU using this technique as
discussed in Sec. 3.1.1.

In order to improve the accuracy of Shit networks un-
der low-bit, [49] propose to fine-tune the pre-trained full-
precision weights with a power-of-two quantizer in a group-
by-group manner. [12] proposed a power-of-two quantizer
design which allows training Shift networks from scratch.
However, initialization with a pre-trained full-precision
checkpoint is still critical for achieving high accuracy under
low-bit. [22] proposes a weight reparameterization tech-
nique S3 for training low-bit Shift networks. It points out
the design flaw of the weight quantizer for low-bit Shift net-
works and proposes to decompose a discrete parameter in a
sign-sparse-shift 3-fold manner to improve ImageNet clas-
sification accuracy under sub-4bits conditions significantly
and no longer rely on full-precision pre-training.

3. DenseShift Network

The following section introduces the proposed Dense-
Shift network, highlighting the benefits for inference de-
ployment, and providing a detailed analysis of weight en-
coding space, training mechanisms and weight initialization
strategies employed.

3.1. DenseShift with Zero-Free Shifting

Typical Shift networks use a weight space with n-bits
to encode weight values, allowing up to 2n discrete values.
However, since the values are usually centred around zero,
the utilization rate of the encoding space is reduced when
zero is included. This becomes significant under low-bit
conditions, particularly when n ≤ 4.

Taking n = 2 bits as an example, the weight space allows
for 4 discrete weight values to be encoded. In a typical Shift
network, these would include w = {−1, 0,+1}, ignoring
the potential for adding a fourth weight value. In Dense-
Shift however, as there is no zero-value, we can now encode
weight values of w = {−2,−1,+1,+2} with the same

number of bits. This increases the overall range of weight
values supported, allowing DenseShift to significantly out-
perform existing Shift networks, especially under low-bit
weight conditions as summarized in Fig. 1.

3.1.1 Inference with floating-point activation

The Zero-Free Shifting design also brings additional bene-
fits to inference. To the best of our knowledge, all existing
Shift networks rely on using quantized activations in order
to effectively replace the multiplication between the power-
of-two weights and activations with bit-shift instructions.
However, there are some challenges with quantized activa-
tions when applied in practice. For instance, in LSTM and
Transformer models, many operators, such as softmax or
addition, are unable to compute directly with the quantized
activations. Instead, it must first dequantize in order to com-
pute, then re-quantize the results, which leads to extra infer-
ence latency. This is also seen with large language models
(LLM) as shown in [10] where 8-bit quantization could not
maintain full-precision performance on LLMs with mod-
els that exceeded 6.7 billion parameters because the fixed-
point quantization can not handle activations with a large
dynamic range well, leading to a significant accuracy degra-
dation of the LLMs. These issues above impair the perfor-
mance gains or usability of the existing power-of-two quan-
tization methods.

In this work, we propose a method to calculate the mul-
tiplication between a floating-point number and positive or
negative power-of-two numbers using integer addition in-
structions. Our approach allows DenseShift networks to
perform inference directly on non-quantized floating point
activations, thus avoiding the above issues.

In the following section, we describe how to achieve
equivalent multiplication between floating-point numbers
and power-of-two numbers using lower-bit integer addition.
A floating-point number is obtained by Eq. 1.

fl(x) = (−1)xs × 2xe+ebias × (1 +
xm

2mbits − 1
), (1)

Where fl(·) is the float representation, xs is the sign bit
value, xe is the unsigned integer value represented by the
exponent bits, xm is the unsigned integer value represented
by the mantissa bits, and mbits is the mantissa bit-width and
ebias the constant exponent bias value defined in the floating-
point standard. For the 32-bit float format defined in the
IEEE 754 standard, mbits = 23 and ebias = −127.

From the floating-point representation, it is clear that the
multiplication of a floating-point value with a power-of-two
number is equivalent to adding a corresponding integer to
the exponent bit of the floating-point number. The nega-
tion of a floating-point number is equivalent to performing
a bit-flip on the sign bit, which can be achieved by adding

17012



one to the sign bit. Therefore, the multiplication of a float
number with a positive or a negative power-of-two number
can be performed by one single lower-bit integer addition
operation on its sign and exponent bits as described in Fig.
2. As an example, the multiplication between a 32-bit float
number and a positive or negative power-of-two integer can
be implemented with a 9-bit integer adder on its sign bit
and exponent bits. Related works [19, 40] show that replac-
ing floating-point multiplication with fixed point addition
can save 37× energy cost and 56× chip area cost at 32-bit,
and using an 8-bit integer adder can further reduce 3.3× en-
ergy cost and 3.8× chip area. This highlights the potential
of DenseShift networks to reduce power consumption and
chip area for AI chips.

Furthermore, our proposed DenseShift inference ap-
proach is compatible with the existing hardware. Thanks to
its Zero-Free Shifting design, the multiplication instruction
in the DenseShift inference can be replaced by one single
integer addition instruction which requires fewer execution
cycles in general as described in Eq. 2 and Fig. 2.

fl(2px) = Adduint(fl(x), fl(2
p+ebias)) (2)

Where fl(·) is the float representation, ebias the constant
exponent bias value defined in the floating-point standard.
Adduint(·, ·) is the integer addition.

Unlike the UINT8 and UINT16 formats, widely sup-
ported by existing hardware, the FP8 and FP16 formats
have relatively limited hardware support. This is because
floating-point numbers have the disadvantage of significant
calculation error under lower bits, which can not satisfy the
needs of many computing tasks. As a result, most existing
hardware do not support low-precision floating-point arith-
metic. They are reserved for data storage or only supported
by limited operators. For instance, ARMv8 and X86 AVX2
instruction sets do not support FP16 arithmetic. When an
operation is required, it is necessary to convert the FP16 to
FP32 in registers before the operation and convert it back af-
terward. The same strategy is used by NVIDIA GPUs while
processing FP8 [34]. On this hardware, we can use the
corresponding unsigned int addition to replace the floating-
point multiplication instruction, which has the potential to
achieve inference speed up. It’s important to note that our
proposed approach is not applicable to zero-multiplication,
as it necessitates additional operations for implementation,
making it less efficient on general hardware. This under-
scores the advantages of our zero-free shifting design.

As a proof-of-concept, we implement DenseShift us-
ing this technique and compare it to floating-point dot-
product using a vectorized software implementation. Both
weights and activations are provided to the compute kernel
as FP16. The DenseShift kernel performs bit-wise manip-
ulation and adds the sign and exponents of the weight and
activation values together (see Fig. 2), effectively replacing

xi

Yes

No

Yes

xi = 𝐍𝐄𝐆(xi)

xi = xi ≪ S

No

partial sum += xi

xi = 0

wi

wi ∈ 0 ∪ {±2S}

Sign + Shift

wi = 0

wi < 0

(a) Shift MAC kernel

xi

Yes

xi = 𝐍𝐄𝐆(xi)

xi = xi ≪ S

No

partial sum += xi

wi

wi ∈ {±2S}

Sign + Shift

wi < 0

(b) DenseShift MAC ker-
nel

Figure 3: Compare the Multiply-Accumulate (MAC) oper-
ations in Shift and DenseShift for quantized activation. The
DenseShift MAC is more efficient as its wi excludes zero.

the floating-point multiplication with a simple integer addi-
tion. The result of this integer addition is then cast back to
FP32 for accumulation. This implementation is compared
to the dot-product baseline adapted from the FP16 GEMM
kernel of the open-source inference library NCNN [33] for
the ARMv8 hardware. All experiments were run on ARM
A57 CPU using NEON SIMD architecture and count the
average time consumption. We run experiments for 4096
data points. The results averaged over 1000 runs show that
the latency for the floating-point dot-product and our pro-
posed technique are 5.98µs and 3.76µs, respectively. In
other words, DenseShift kernel using the proposed floating-
point technique obtains 1.6× speed-up.

Our DenseShift implementation can be further optimized
to reduce overall memory consumption requirements; since
the weight values are constrained to power-of-two numbers,
their mantissa will always be zero and thus are not needed
in the compute kernel. Instead, only the weight’s sign and
exponent are sent to the compute kernel, requiring only 7
bits, and can be represented with a single unsigned 8-bit
integer. In addition, our proposed approach has the potential
to be extended to other neural network layers beyond matrix
multiplication for efficient computation.

3.1.2 Inference with quantized activation

With a zero-free weight space design, DenseShift simplifies
the inference computation on fixed-point quantized activa-
tions as well. Figure 3 compares the Multiply-Accumulate
(MAC) operation between DenseShift and Shift networks.
The Shift network MAC kernel requires special handling
when wi = 0, as shown in Fig. 3a, which bypasses sign-
flip and bit-shift operations and pass a value of xi = 0 to
the accumulator instead. Since DenseShift guarantees that

17013



wi will never be zero, this branch is no longer required, as
shown in Fig. 3b. Therefore, the inference computation in
DenseShift networks is simpler and more efficient than in
existing Shift networks. A NEON SIMD dot-product ker-
nel was developed on an ARM A57 CPU to demonstrate
DenseShift ’s computational efficiency over existing Shift
networks. The experiments were performed with INT8 for
4096 data points, and the results showed that DenseShift
kernel had a 1.48× speed-up compared to a Shift kernel im-
plementation, with the latency of 1.79µs and 2.65µs, re-
spectively.

Aside from experimental demonstration, we also theo-
retically show that removing zeros from the weight space
doesn’t affect the representation power of DenseShift mod-
els, see the Supplementary Material. Thoerem 1 confirms
that there is a DenseShift network that can reach to the same
accuracy as any Shift network if properly trained. Theo-
rem 2 shows there is a DenseShift network that can attain
the same capacity compared with a full-precision network.

3.2. Sign-Scale Decomposition for Efficient Train-
ing

This section discuss the training algorithm for Dense-
Shift and how to achieve a performance comparable to its
full-precision counterpart. We propose to use sign-scale de-
composition inspired by [22] which design for Shift net-
works with zero weights. Our training method decomposes
the discrete weights of DenseShift networks into two parts:
a binary base term wsign and a PoT scale term which shifts
the input activation for S bits:

wshift = {21(wsign)− 1}︸ ︷︷ ︸
Sign

Scale︷︸︸︷
2ST , (3)

where 1(·) is the Heaviside function mapping all positive
values to one and the remaining to zero.

Next, we recursively re-parameterize the shifting param-
eter S as a combination of t binary variables to address the
weight freezing problem:

S0 = 0, St = 1(wt)(St−1 + 1), 1 ≤ t ≤ T. (4)

In the following, we demonstrate the re-parameterization on
positive S values using 3-bit case as an example, and the
negative S values can be obtained by adding a constant bias
term. We define a 3-bit DenseShift network with discrete
weights wshift ∈ {±1,±2,±4,±8}. This network can be
re-parameterized as:

S3 = 1(w3){1(w2){1(w1) + 1}+ 1}, (5)
wshift = {21(wsign)− 1}2S3 . (6)

𝑤

𝑺𝟑 = 𝟎 𝑺𝟑 = 𝟏 𝑺𝟑 = 𝟐 𝑺𝟑 = 𝟑

𝑆3 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑟(𝑤)

𝑆2 = (𝟙 𝑤1 + 1)𝟙 𝑤2

𝒕𝟎 𝒕𝟏 𝒕𝟐

𝑤2

𝑤1

𝑺𝟐 = 𝟎 𝑺𝟐 = 𝟏

𝑺𝟐 = 𝟐

𝑺𝟑: 𝟎 ↔ 𝟏 ↔ 𝟐 ↔ 𝟑

𝒘

Epochs

0.0004 0.0002 0.0000 0.0002 0.0004

w2

0.0004

0.0002

0.0000

0.0002

0.0004

w
1

Figure 4: Top Left: The optimization space of the shift-
ing parameter S3 defined by the sign-shift quantizer adapted
from [12]. The arrow direction represents the moving direc-
tion of the continuous weight w in the optimization space
when the gradient update of the shifting parameter ST is
positive. Bottom Left: The actual continuous weight his-
togram variation of S3 defined by the 3-bit sign-shift quan-
tizer during training. Top Right: The phase plane of the re-
parameterization space of S2 defined by a recursive product
of binary variables (∂w2

∂t = 1(w1)+1, ∂w1

∂t = 1(w2)). Bot-
tom Right: Some sampled actual weight traces of S2 on the
optimization space defined by a recursive product of binary
variables during training. The weight trajectories show that
the S2 values can quickly move among multiple discrete
values during training and are no longer limited to the two
adjacent values of the quantizer’s thresholds.

Note that all the weights {wsign, w1, w2, w3} are trained
in full-precision. By representing the original shift parame-
ter S3 with three full-precision parameters w1, w2, and w3,
we are projecting the optimization process from 1D space
to higher-dimensional 3D space, making the shift parame-
ter easier to vary between different scales and thus easier to
learn. Compared to [22], our approach eliminates the dense
weight regularizer. This not only removes the need to tune
an additional hyper-parameter but also simplifies the usage
of our algorithm. While such training requires (N + 1)
floating-point references, it is not as memory expensive as
it appears, especially under 2/3-bit weight conditions. The
memory is dominated by the activation with a large batch
size during training.

To better understand the advantages of our weight repa-

17014



rameterization approach over the quantizer-based training
method, in Fig. 4, we visualize the optimization spaces
of the shifting parameter S defined i) by a quantizer (figure
left part) and ii) by a recursive product of binary variables
(figure right part). In the quantizer’s optimization space,
the continuous weights accumulate at the three discontinu-
ities of the quantizer as discussed in several earlier works
[32, 26, 22]. This observation implies that the weights at-
tracted by the discontinuities could not move freely on the
optimization space during training. In contrast, the weights
in the optimization space defined by the recursive product
of binary variables are gathered at the origin of the op-
timization space, and the value of the shifting parameter
S can vary easily according to the gradient update signal.
The visualization shows our re-parameterization promotes
the shifting parameters S to oscillate in an extensive range
value during training instead of oscillating around the quan-
tizer’s threshold values. This design reduces the optimiza-
tion space’s rigidness and allowing the model to converge
to a better solution [22].

The local learning rate of individual parameter wsign in
the proposed training scheme is significantly larger than the
global learning rate on the discrete weight wshift. Further-
more, we analyze the backward gradient computation of our
proposed decomposition. We estimate the backward gradi-
ent across the Heaviside function using a Straight-Through-
Estimator (STE) [3]. The gradient update towards wsign is
calculated as:

∂Loss
∂wsign

=
∂Loss
∂wshift

2ST , (7)

where 2ST ∈ {1, 2, ..., 2T }. From Eq. 7 we observe that
2ST plays a role of learning rate scale factor, and it has an
extensive value range. Hence, it may significantly impact
the gradient update scale. Based on our observation, we
propose a local learning rate re-scaling strategy to address
this issue. We replace Eq. 7 with Eq. 8 during backward
propagation to re-scale local gradient updates:

∂Loss
∂wsign

=
∂Loss
∂wshift

√
ST + 1. (8)

ImageNet experiments indicates that the local learn-
ing rate re-scaling enhances the accuracy of 2bit and 3bit
ResNet-18 models by 0.3% and 0.7%, respectively.

3.3. Low-Variance Random Initialization for Trans-
fer Learning

We encountered difficulties when applying the above
method in the transfer learning scenario. Most transfer
learning tasks follow the following training paradigm: i)
Pre-train a backbone model on a large dataset; ii) Remove
and add new layers to the backbone model and randomly
initialize the new layer; iii) Finetune the new model on

0.06 0.04 0.02 0.00 0.02 0.04 0.06

w1

0.06

0.04

0.02

0.00

0.02

0.04

0.06

w
sig

n

0.06 0.04 0.02 0.00 0.02 0.04 0.06

w1

0.06

0.04

0.02

0.00

0.02

0.04

0.06

w
sig

n

Figure 5: Re-parameterized weight trace visualization of a
2-bit DenseShift ResNet-18 trained on ImageNet dataset,
the “triangle” indicates the initial point. These visual-
izations motivate us to develop low-variance initialization.
Left panel: Kaiming initialization. Right panel: Low-
variance initialization.

a downstream task. During our experiments, we noticed
that when we finetune a pre-trained DenseShift backbone
with randomly-initialized DenseShift layers in an end-to-
end manner, the model suffers from severe performance
degradation or loss divergence. Such performance degra-
dation also exists for existing Shift networks.

We analyzed the difference between the pre-trained
weights and the randomly-initialized weights in the Dense-
Shift model and noticed that the variance of the former is
much lower than that of the latter. To better understand this
phenomenon, we trained a 2-bit DenseShift network and
noticed that when using the default Kaiming initialization
[15], the weight values tend to gather towards the origin
point of the re-parameterization space during the first few
training epochs, as shown in figure 5. This indicates that
the initialized weight values are too far from the centre, an
unwanted behaviour. More precisely, the weight values are
far from the thresholds, meaning a greater initial gradient
signal is needed to push them to pass the thresholds. In the
transfer learning scenario, the backbone weight values are
easier to change than the new Kaiming initialized layers. In
fact, we argue that it is precisely this behavior that damages
the pre-trained backbone during transfer learning.

To easily transfer a DenseShift network to other tasks,
we suggest randomly initializing all re-parameterized vari-
ables with a small standard deviation. We name it low-
variance random initialization. Specifically, we chose a
standard deviation of 10−3 for all the experiments in this
paper. The experiments in Sec. 4.2 demonstrate that
our low-variance random initialization strategy is required
for achieving competitive performance on transfer learning
tasks such as object detection and semantic segmentation.
As evident from Table 3, the SSD 300 model shows a de-
crease in mAP without low-variance random initialization.
Moreover, the FCOS object detection experiments, detailed

17015



ResNet-18
Kernel Methods W Bits Init. Top-1 (%)

Multi. FP32 32 R 69.6
TTQ [51] 2 PT 66.6

Sum of
Sign Flips

Lq-Nets [48] 2 R 68.0
Lq-Nets [48] 3 R 69.3
Lq-Nets [48] 4 R 70.0

Sign Flip

BWN [39] 1 R 60.8
HWGQ [4] 1 R 61.3
BWHN [20] 1 R 64.3
IR-net [38] 1 R 66.5
TWN [21] 2 R 61.8
LR-net [41] 2 R 63.5
SQ-TWN [11] 2 R 63.8
INQ [49] 2 PT 66.02
S3 -Shift [22] 2 R 66.37

Shift +
Sign Flip

Ours 2 LVR 68.90
INQ [49] 3 PT 68.08
INQ [49] 4 PT 68.89
INQ [49] 5 PT 68.98
DeepShift [12] 5 R 65.63
DeepShift [12] 4 PT 69.56
DeepShift [12] 5 PT 69.56
S3 -Shift [22] 3 R 69.82
Ours 3 LVR 70.62
STE [37] 4 PT 69.98
S3 -Shift [22] 4 R 70.47
Ours 4 LVR 70.94

Table 1: Comparison of SOTA methods using DenseShift
ResNet-18 trained on ImageNet. Initialization defined as:
R is Kaiming Normal Random initialization, PT is initial-
ization with a Pre-Trained full-precision network, and LVR
is our Low-Variance Random initialization.

in Table 4, which employ quantized feature-pyramid net-
works, demonstrate instability and fail to converge during
training without our proposed initialization. In this paper,
all DenseShift experiments use this initialization uniformly
since we do not observed any negative impact on the model
performance when training from scratch with our proposed
initialization.

4. Experiments

4.1. ImageNet Classification

Model and Dataset: We benchmark our proposed
method with different bit-widths. To verify the effectiveness
and robustness, we apply DenseShift to ResNet-18/50/101
architectures and evaluate on ILSVRC2012 dataset [9] with
data augmentation and pre-processing strategy proposed in
[16] and training strategy from [22]. Following [39, 28, 48],
all but the first convolution layers are quantized.

ResNet-50
Kernel Methods W Bits Init. Top-1 (%)
Multi. FP32 32 R 76.00
Sum of
Sign Flips

Lq-Nets [48] 2 R 75.10
Lq-Nets [48] 4 R 76.40

Shift +
Sign Flip

INQ [49] 5 PT 74.81
DeepShift [12] 6 PT 75.29
S3 -Shift [22] 3 R 75.75
STE [37] 4 PT 76.40
Ours 2 LVR 75.62
Ours 3 LVR 76.55
Ours 4 LVR 76.53

ResNet-101
Kernel Methods W Bits Init. Top-1 (%)
Multi. FP32 32 R 77.37

Shift +
Sign Flip

Ours 2 LVR 77.45
Ours 3 LVR 77.93
Ours 4 LVR 77.96

Table 2: Comparison of SOTA methods using DenseShift
ResNet-50/101 trained on ImageNet.

Methods Quantized LVR W Bits mAPBack Head Init
FP32 − − − 32 26.00

Ours
− − 3 26.23

3 25.75
− 3 24.21

Table 3: DenseShift performs well on object detection.
It confirms our low-variance initialization is necessary to
keep high accuracy. We use DenseShift SSD300 v1.1 with
ResNet-50 backbone finetuned on COCO object detection
task. Back is the backbone neural architecture, Head is the
detection head. Check-mark represents performing Dense-
Shift quantization.

Experiment Results: Results are shown in Table 1 and
2. We compare our proposed method with SOTA low-
bit multiplication-free networks using binary weights [39,
4, 20, 38], ternary weights [21, 41, 11], PoT weights
[49, 12, 22] and more complex kernel [48]. We observe that
DenseShift achieves SOTA performance on multiple net-
work architectures and significantly outperforms the base-
line with higher computational complexity.

4.2. Transfer Learning

Model and Dataset: We use TorchVision implementa-
tion to verify the effectiveness and robustness of our pro-
posed algorithm on transfer learning tasks. For object detec-
tion, we benchmark our proposed method on the bounding
box detection track of MS COCO [24]. As proof of concept,
we use SSD300 v1.1 [27] with the obsolete VGG backbone

17016



Methods Quantized W Bits mAPBack FPN Head
FP32 − − − 32 39.0

Ours

− −
2

39.3
− 38.7

37.1
− −

3
39.6

− 39.3
37.7

− −
4

39.8
− 39.6

38.1

Table 4: DenseShift FCOS with ResNet-50 backbone fine-
tuned on COCO object detection task.

Methods Quantized W Bits mIoU Global
Back Head Correct

FP32 − − 32 66.4 92.4

Ours

− 2 65.8 92.2
66.1 92.4

− 3 68.0 92.6
67.4 92.8

− 4 66.0 92.3
66.3 92.0

Table 5: DenseShift DeepLab V3 with ResNet-50 backbone
finetuned on COCO semantic segmentation task.

replaced with ResNet-50 backbone. To demonstrate com-
petitive performance, we use FCOS [43] with ResNet-50
backbone. For semantic segmentation, we benchmark our
proposed method on a subset of MS COCO containing the
20 categories of Pascal VOC [13]. We use DeepLab V3
[6] with ResNet-50 backbone architecture. The DenseShift
ResNet-50 backbone is trained from the previous section
and we compare against full-precision baselines using the
same training strategy.
Experiment Results: Tables 3 and 4 illustrate that our 3-
bit SSD300 and FCOS achieve similar performance to their
full-precision counterparts. Table 5 illustrate that our 3-bit
DeepLab surpasses its full-precision counterpart.

4.3. Speech Task

Model and Datasets: To further demonstrate the gener-
alization of DenseShift networks, we experiment on an end-
to-end spoken language (E2E SLU) task with ResNet-18 ar-
chitecture. We benchmark our method on the Fluent Speech
Commands (FSC) dataset. The FSC dataset [29] comprised
single-channel audio clips collected using crowd sourcing.
Participants were requested to speak random phrases for
each intent twice. The dataset contained 30,043 utterances
spoken by 97 different speakers, each utterance contains
three slots: action, object, and location. We considered a

Method W Bits Val Test

[30] 32 89.50 98.80

[2] 2 90.66 98.41
3 90.31 98.41

Ours 2 90.73 98.60
3 90.70 98.58

Table 6: DenseShift ResNet-18 architecture on End-to-End
Spoken Language Understanding

Network A Bits Top-1 Acc (%)
Architecture 2 Bit 3 Bit 4 Bit

ResNet-18
32 68.90 70.62 70.94
8 68.86 70.46 70.95
4 68.56 70.00 70.35

ResNet-50 32 75.62 76.55 76.53
4 75.27 76.18 76.63

Table 7: Quantized activation experiments using DenseShift
ResNet architectures on ImageNet classification task. A-
Bits defined as activation bitwidth.

Quantized A Bits mAP
Back FPN Head 3 Bit 4 Bit

− 32 39.3 39.6
− 4 39.6 39.6

32 37.7 38.1
4 37.8 37.8

Table 8: Quantized activation experiments using DenseShift
FCOS with ResNet-50 backbone finetuned on COCO object
detection task.

single intent as the combination of all the slots (action, ob-
ject and location), resulting 31 intents in total.
Experiment Results: Results in Table 6 are benchmarked
against full-precision and SOTA Shift networks perfor-
mance. Our results demonstrates that our method can be
applied to a field unrelated to the original CV field and can
surpass full-precision performance as well.

4.4. Quantized Activation

Considering that Shift networks require fixed-point ac-
tivation to achieve computational efficiency, we provide
quantized activation experiments to verify the feasibility
and find that 4-bit activation can maintain competitive per-
formance on most CV tasks with PACT quantization [7].
Results shown in Tables 7, 8 and 9 demonstrate that Dense-
Shift can attain similar performance to their full-precision
counterparts. Hence, we believe DenseShift networks gen-
eralize well and are independent of other layers.

17017



Quantized A Bits mIoU
Back Head 2 Bit 3 Bit

− 32 65.8 68.0
− 4 64.9 66.3

32 65.5 66.4
4 65.2 65.9

Table 9: Quantized activation experiments using DenseShift
DeepLab V3 with ResNet-50 backbone finetuned on COCO
semantic segmentation task.

Network W Bits Training Epochs
Architecture 90 150 200

ResNet-18 2 67.36 68.41 68.90
3 69.30 69.91 70.62

Table 10: Ablation study on training epochs using Dense-
Shift ResNet-18 architectures on ImageNet classification
task.

4.5. Ablation Study

Training epochs. As highlighted in prior studies [1, 8,
42, 22, 45], the training of binary variables necessitates ad-
ditional epochs due to the instability arising from frequent
sign variations. Our experiments in Table 10 verified the im-
pact of training epochs on the network performance for the
re-parameterized training of DenseShift networks. Apart
from the number of epochs, all other model settings and
training strategies adhere to Sec. 4.1.

5. Conclusion

We present DenseShift with zero-free shifting and sign-
scale decomposition for constructing high-performance
low-bit Shift networks with high training and inference ef-
ficiency. For the first time, Shift networks support inference
with non-quantized floating-point activations and achieve
performance gain on general hardware such as ARM CPU.
Furthermore, we propose a low-variance random initial-
ization strategy that enhances the performance of Dense-
Shift networks in transfer learning, allowing the networks
to adapt to various tasks without significant performance
degradation. Our extensive experiments on various tasks
demonstrate that DenseShift networks outperform current
state-of-the-art Shift networks in classification tasks and
achieve comparable performance to full-precision models
in object detection and semantic segmentation tasks. This
breakthrough represents a significant advancement for low-
bit Shift networks.

Acknowledgement

We thank the continuous support of Boxing Chen and
Wulong Liu throughout this project. We also appreciate
Masoud Asgharian’s help in revising the proof of the the-
orems.

References
[1] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D

Lane, and Yarin Gal. An empirical study of binary neu-
ral networks’ optimisation. In International Conference on
Learning Representations, 2018.

[2] Anderson R. Avila, Khalil Bibi, Rui Heng Yang, Xinlin Li,
Chao Xing, and Xiao Chen. Low-bit shift network for end-
to-end spoken language understanding, 2022.

[3] Yoshua Bengio. Estimating or propagating gradients through
stochastic neurons. CoRR, abs/1305.2982, 2013.

[4] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaus-
sian quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918–5926,
2017.

[5] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao
Xu, Qi Tian, and Chang Xu. Addernet: Do we really
need multiplications in deep learning? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1468–1477, 2020.

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation, 2017.

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[10] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022.

[11] Yinpeng Dong, Renkun Ni, Jianguo Li, Yurong Chen, Jun
Zhu, and Hang Su. Learning accurate low-bit deep neu-
ral networks with stochastic quantization. arXiv preprint
arXiv:1708.01001, 2017.

[12] Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry
Tian, and Joey Yiwei Li. Deepshift: Towards multiplication-
less neural networks. arXiv preprint arXiv:1905.13298,
2019.

17018



[13] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, Jan. 2015.

[14] Denis A Gudovskiy and Luca Rigazio. Shiftcnn: Gener-
alized low-precision architecture for inference of convolu-
tional neural networks. arXiv preprint arXiv:1706.02393,
2017.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016.

[18] Kurt Hornik. Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251–257, 1991.

[19] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pages 10–14. IEEE, 2014.

[20] Qinghao Hu, Peisong Wang, and Jian Cheng. From hash-
ing to cnns: Training binary weight networks via hashing.
In Thirty-Second AAAI conference on artificial intelligence,
2018.

[21] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

[22] Xinlin Li, Bang Liu, Yaoliang Yu, Wulong Liu, Chun-
jing Xu, and Vahid Partovi Nia. S3: Sign-sparse-shift
reparametrization for effective training of low-bit shift net-
works. Advances in Neural Information Processing Systems,
34, 2021.

[23] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-
two quantization: An efficient non-uniform discretization for
neural networks. arXiv preprint arXiv:1909.13144, 2019.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[25] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate
binary convolutional neural network. Advances in Neural
Information Processing Systems, 30, 2017.

[26] Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng.
Oscillation-free quantization for low-bit vision transformers.
arXiv preprint arXiv:2302.02210, 2023.

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016.

[28] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-real net: Enhancing the per-
formance of 1-bit cnns with improved representational ca-
pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages
722–737, 2018.

[29] Loren Lugosch, Mirco Ravanelli, Patrick Ignoto,
Vikrant Singh Tomar, and Yoshua Bengio. Speech model
pre-training for end-to-end spoken language understanding.
arXiv preprint arXiv:1904.03670, 2019.

[30] Loren Lugosch, Mirco Ravanelli, Patrick Ignoto,
Vikrant Singh Tomar, and Yoshua Bengio. Speech model
pre-training for end-to-end spoken language understanding,
2019.

[31] Daisuke Miyashita, Edward H. Lee, and Boris Murmann.
Convolutional neural networks using logarithmic data rep-
resentation, 2016.

[32] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko,
and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In International Conference on
Machine Learning, pages 16318–16330. PMLR, 2022.

[33] Hui Ni and The ncnn contirbutors. ncnn, 6 2017.
[34] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda,

release: 12.1.0, 2023.
[35] Mariana Oliveira Prazeres, Xinlin Li, Vahid Partovi Nia, and

Adam M Oberman. Euclidnets: Combining hardware and
architecture design for efficient inference and training. 2021.

[36] Dominika Przewlocka-Rus, Syed Shakib Sarwar, H. Ekin
Sumbul, Yuecheng Li, and Barbara De Salvo. Power-of-two
quantization for low bitwidth and hardware compliant neural
networks, 2022.

[37] Dominika Przewlocka-Rus, Syed Shakib Sarwar, H Ekin
Sumbul, Yuecheng Li, and Barbara De Salvo. Power-of-two
quantization for low bitwidth and hardware compliant neural
networks. 2022.

[38] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,
Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and
backward information retention for accurate binary neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2250–
2259, 2020.

[39] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

[40] Olivier Sentieys. Approximate deep learning accelerators. In
HiPEAC Computing Systems Week (CSW), 2021.

[41] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning dis-
crete weights using the local reparameterization trick. arXiv
preprint arXiv:1710.07739, 2017.

[42] Wei Tang, Gang Hua, and Liang Wang. How to train a com-
pact binary neural network with high accuracy? In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[43] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection, 2019.

17019



[44] Yunhe Wang, Mingqiang Huang, Kai Han, Hanting Chen,
Wei Zhang, Chunjing Xu, and Dacheng Tao. Addernet and
its minimalist hardware design for energy-efficient artificial
intelligence. arXiv preprint arXiv:2101.10015, 2021.

[45] Sheng Xu, Yanjing Li, Teli Ma, Mingbao Lin, Hao Dong,
Baochang Zhang, Peng Gao, and Jinhu Lu. Resilient bi-
nary neural network. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 10620–10628,
2023.

[46] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing
Xu, and Yunhe Wang. Kernel based progressive distillation
for adder neural networks. In NeurIPS, 2020.

[47] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li,
Sicheng Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin.
Shiftaddnet: A hardware-inspired deep network. In NeurIPS,
2020.

[48] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365–
382, 2018.

[49] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017.

[50] Ding-Xuan Zhou. Universality of deep convolutional neu-
ral networks. Applied and computational harmonic analysis,
48(2):787–794, 2020.

[51] Chenzhuo Zhu, Song Han, Huizi Mao, and William J
Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

17020


