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Abstract

In this work, we present an end-to-end framework for
camera-based 3D multi-object tracking, called DQTrack.
To avoid heuristic design in detection-based trackers, recent
query-based approaches deal with identity-agnostic detec-
tion and identity-aware tracking in a single embedding.
However, it brings inferior performance because of the in-
herent representation conflict. To address this issue, we de-
couple the single embedding into separated queries, i.e., ob-
ject query and track query. Unlike previous detection-based
and query-based methods, the decoupled-query paradigm
utilizes task-specific queries and still maintains the com-
pact pipeline without complex post-processing. Moreover,
the learnable association and temporal update are designed
to provide differentiable trajectory association and frame-
by-frame query update, respectively. The proposed DQ-
Track is demonstrated to achieve consistent gains in various
benchmarks, outperforming previous tracking-by-detection
and learning-based methods on the nuScenes dataset.1

1. Introduction
Multi-object tracking (MOT) in 3D scenes is regarded as

a crucial task to provide accurate object locations and iden-
tities for downstream applications, like autonomous driving
and robotics. For its complex nature, previous work has typ-
ically employed pre-defined 3D detectors to localize objects
and tailored post-processing to track them, i.e., the tracking-
by-detection pipeline. Such an approach focuses more on
motion model that heavily relies on geometry cues, like Eu-
clidean distance [38, 43] and 3D IoU [33, 26]. Although it
performs well in LiDAR scenarios [38, 26], it impedes the
usage of appearance features in camera-based settings for
better identity distinguish.

To this end, recent learning-based methods have emerged
for end-to-end tracking. A typical stream is tracking-with-

*Work done during an internship at NVIDIA.
1Code and demo: https://sites.google.com/view/dqtrack
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(a) Tracking-by-detection workflow
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(c) Decoupled-query workflow

Figure 1: Compared with others, the proposed decoupled-
query approach in 1c avoids the representation conflict in
single query of the tracking-with-query method 1b and
heuristic processing in tracking-by-detection manner 1a.

query [41], which employs queries in the transformer for
the differentiable association. As presented in Figure 1b,
current tracking-with-query approaches [24, 39, 41] usually
adopt single query to solve the identity-agnostic detection
and identity-aware tracking. However, it is hard to well
balance the performance of detection and tracking simul-
taneously in 3D scenes, as experimentally validated in Ta-
ble 3. Although some studies [30] attempt to use decoupled
queries in 2D MOT, their methods are limited by the heavy
decoder for each query and the non-differentiable associa-
tion part. Therefore, a well-designed end-to-end manner is
desired for accurate 3D tracking and detection.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18302



In this work, we propose a simple yet effective frame-
work for 3D object tracking, termed DQTrack. Specifi-
cally, it utilizes decoupled queries to address the task con-
flict representation in previous query-based approaches [24,
39, 41], as briefly illustrated in Figure 1c. With the designed
task-specific queries, DQTrack enhances the query capabil-
ity while maintaining a compact tracking pipeline. More-
over, unlike previous query-based work [41] in Figure 1b
for movable objects only, both static and movable objects
are well perceived in our proposed workflow.

Given the decoupled-query guideline, 3D object detec-
tion can be easily solved with object query and DETR-type
decoder [45]. The key question is how to track objects in an
end-to-end framework. We provide the solution by solving
two inherent issues in tracking, that is how to associate ob-
jects to trajectories and how to update track representation
at each frame. For the first problem, the learnable associa-
tion is introduced to establish the differentiable relationship
between objects and tracks. In particular, embedding in-
teraction is utilized to provide sufficiently interacted object
embedding for track query initialization. And query asso-
ciation is employed to better combine the appearance and
geometry feature in track query, which enhances the robust-
ness of the association. For the second one, we keep the
representation of each track up-to-date for the next frame.
Here, the appearance and geometry features of each track
query are updated in a frame-by-frame manner. With the
above designs, we can easily optimize the framework and
perform end-to-end 3D object tracking and detection.

Generally, our decoupled-query method is distinguished
from two aspects. On one hand, compared with traditional
tracking-by-detection methods, it avoids the heuristic de-
sign with NMS and formulates an end-to-end framework
with the learnable association. On the other hand, compared
with recent tracking-with-query approaches, it overcomes
the task conflict in single query embedding, thus further un-
leashing the potential of query-based trackers.

The overall framework, called DQTrack, can be eas-
ily instantiated with various encoders and decoders for 3D
tracking and detection, as fully elaborated in Section 3. Ex-
tensive empirical studies are conducted in Section 4 to re-
veal the effectiveness of DQTrack. And we further com-
pare with state-of-the-art approaches on the widely-adopted
nuScenes [4] dataset. DQTrack is demonstrated to surpass
all previous learning-based trackers and achieves leading
performance with 52.3% AMOTA on the nuScenes test set.

2. Related Work
3D Tracking. Multi-object tracking (MOT) in 3D scenes
mainly takes multi-view images from surrounding cam-
eras or point clouds from LiDAR to track multiple ob-
jects across frames. Taking advances in 3D object detec-
tion [38, 31, 8, 19, 16], recent 3D trackers usually follow

the tracking-by-detection paradigm and associate trajecto-
ries with detected boxes by post-processing. In particu-
lar, object location is often utilized to provide motion cues
for box association using Euclidean distance [38, 1, 19] or
3D IoU [33, 26]. Despite its popularity, the tracking-by-
detection pipeline heavily relies on complex human designs.
Towards a compact tracking pipeline, learning-based meth-
ods are proposed to better combine the appearance and mo-
tion model using neural networks. Specifically, the affinity
matrix is computed from the appearance feature with the
learnable module [9], GNN [34, 35], LSTM [14, 23], or
Transformer [40, 41]. In this study, we mainly focus on end-
to-end tracking in a tracking-with-query paradigm, which is
discussed in the following sections.

Tracking by Detection. Most 3D or 2D MOT meth-
ods follow the tracking-by-detection pipeline, where track-
ing is treated as a post-processing step after object detec-
tion. A typical workflow [33, 26, 3, 36, 42] is to firstly
find the existing objects at each frame with accurate de-
tector [38, 44, 28]. Then, the detected objects are associ-
ated with existing trajectories with the designed measure-
ment, like feature-based [14, 36], distance-based [38, 43],
or IoU-based [33, 26] metric. Meanwhile, motion mod-
els are usually adopted to update the status of each trajec-
tory frame by frame, e.g., Kalman filter [33, 36] and ve-
locity update [38, 43]. With the calculated affinity, Hun-
garian [15] or greedy [38] matching algorithm is widely
used to match objects with trajectories. New-born and dead
trajectories are managed with specially designed life cycle
strategies [36, 2]. Different from them, our method aims to
achieve end-to-end 3D tracking with the assistance of trans-
former, with no need for heuristic post-processing.

Tracking with Query. In light of advances in vision trans-
former [10, 22, 5, 45], recent MOT methods [30, 24, 39]
try to model the tracking process with transformer queries.
In particular, TransTrack [30] utilizes separate decoders to
predict object and trajectory boxes, which are associated
with the IoU matching. Although transformer queries are
used to produce boxes, the core association part is still non-
differentiable. To this end, TrackFormer [24] learns the
association within two adjacent frames and employs track
NMS to filter duplicate predictions. MOTR [39] models
the relation with a longer temporal clip and predicts object
trajectories directly with query update. To support camera-
based 3D tracking, MUTR3D [41] extends MOTR-type
tracker to the 3D domain and achieves promising results.
However, as analysed before, it predicts object location and
identity using the same query, which greatly harms the de-
tection results and hinders the tracker from being more ac-
curate. Our proposed method try to solve it with decoupled
queries for better tracking and detection results.
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Figure 2: The framework of DQTrack for 3D object tracking. In particular, input images are first processed with the encoder
and transformed to BEV space. Then, the transformer decoder takes the object query, as well as the value from BEV space,
and outputs encoded object embedding. In learnable association, we facilitate identity awareness with embedding interaction
and fuse appearance with motion embedding, which provides better affinity representation for trajectory association. And the
temporal update is designed to refresh track query from appearance and geometry aspects for the next frame.

3. Tracking with Decoupled Queries

The framework of DQTrack is conceptually simple: en-
coder and transformer decoder are adopted to encode input
images and provide object-aware embedding aided by ob-
ject query; Learnable association utilizes tailored modules
to enhance affinity representation and associate trajectories;
Temporal update is designed to update the appearance and
geometry embedding in each track query. In this section,
we delve into the workflow and give detailed elaboration.

3.1. Encoder and Decoder

Given input captured from surrounding cameras, we first
use an encoder to process the data and transform the en-
coded feature to bird’s-eye view (BEV) space, as illustrated
in Figure 2. In this procedure, several approaches can be ap-
plied to instantiate the encoder, as presented in Table 1. Mo-
tivated by [18], we utilize the stereo-based method for pre-
liminary validation, which takes adjacent frames for depth
prediction. But different from [18], here we only take im-
ages as input for simplicity, without using depth supervision
from LiDAR. For the transformer decoder, we keep identi-
cal with previous work in 3D detection [31, 19] and adopt
Deformable DETR [45] to provide interacted object embed-
ding and positional cues. As presented in Figure 2, with the
assistance from the object query QO and BEV value Xt

B,
we can easily generate the object embedding Et

O ∈ RM×C

from the decoder. Here, M , N , and C indicate the number
of objects, trajectories, and embedding channels, respec-
tively. And detection results P t

D are directly produced from
the object embedding Et

O with several feed-forward net-
works (FFN) without non-maximum suppression (NMS).

3.2. Learnable Association

With the above-generated object embedding Et
O at time

t, the learnable association is proposed to better represent
the affinity between objects and trajectories, as shown in
Figure 2. Meanwhile, we update the object embedding Et

O

with previous output Et−1
U , as elaborated in Section 3.3.

Embedding Interaction. With the updated embedding Et
U,

embedding interaction can be easily conducted. As pre-
sented in Figure 3, the embedding Et

U ∈ RM×C is first
processed with separate FFN. It is designed to generate dis-
tinct embedding Et

UO and Et
UT. Here, Et

UO is utilized to
generate object embedding Et

A for association, while Et
UT

is used to provide candidate track embedding Et
T for query

update in Section 3.3. Then, they are concatenated and in-
teracted in the self-attention module. In this way, the fea-
ture in Et

UO not only interacts with other objects within
Et

UO, but also establishes relation with the candidate tracks
in Et

UT. It is demonstrated to improve the trajectory associ-
ation in Table 4. Finally, the interacted feature is encoded in
the FFN and prepared for the subsequent query association.
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Figure 3: Details in the designed learnable association. ©,
⊙, ⊖, ⊕ denote concatenation, Hadamard product, L2 dis-
tance, and summation, respectively.

Query Association. For the desired differentiable tracking,
we further propose the query association to construct the
affinity matrix. Taken the track query Qt

T ∈ RN×(C+2) as
input, we first split it into appearance query Qt

A ∈ RN×C

and motion query Qt
M ∈ RN×2, as presented in Figure 3.

Here, Qt
A represents the object appearance, while Qt

M in-
dicates the trajectory motion at BEV position (x, y). We
then compute the affinity feature between tracks and objects
from the aspect of appearance and motion. For appearance
affinity, we calculate the feature Ft

A ∈ RN×M×C between
Qt

A and Et
A ∈ RM×C using the Hadamard product. As for

motion affinity Ft
M ∈ RN×M×C , we use FFN to encode the

L2 distance between each track query Qt
M and object em-

bedding Et
M ∈ RM×2. With these two affinity features, we

directly obtain the fused feature Ft
F ∈ RN×M×C by sum-

mation. Finally, we predict the affinity matrix P t
T ∈ RN×M

using multi-layer perception (MLP). Overall, the entire as-
sociation process can be formulated as

P t
T = σ(MLP(Qt

A ⊙Et
A + FFN(L2(Qt

M,Et
M)))), (1)

where σ indicates the softmax function to calculate affinity
scores between tracks and objects.

3.3. Temporal Update

As illustrated in Figure 2, the temporal update is mainly
designed to update the track query Qt

T for next timestamp
t + 1. Moreover, the object embedding Et

O is also updated
here to better represent each object at current timestamp t,
as shown in Figure 4.
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Figure 4: Details in the designed temporal update module.

Track Query. We update the track query Qt
T ∈ RN×(C+2)

at each timestamp t by considering both motion and appear-
ance information, resulting in the tailored representations
Qt

M ∈ RN×2 and Qt
A ∈ RN×C . To update the object posi-

tion, we directly utilize the predicted velocity P t
V ∈ RN×2

in the detection output P t
D, where Qt

UM = Qt
M +∆t× P t

V.
It is much simpler than previous work [3, 33] applying
Kalman filter [32] as motion model that could bring poten-
tial improvement. For the appearance aspect, we adopt ex-
ponential moving average (EMA) to update the track feature
Qt

A frame by frame. In particular, given the candidate track
embedding Et

T in Figure 3, we first select matched pairs ac-
cording to affinity matrix P t

T for query update. Assuming
the condition M < N , we can easily obtain the associ-
ated track-object pair Ht

T from the affinity matrix P t
T using

Hungarian matching. And the detailed matching process is
elaborated in Section 3.4. Therefore, the query update pro-
cedure can be formulated as

Qt
UA = α×Qt

A + (1− α)×Et
T[H

t
T]. (2)

Here, α denotes the EMA decay rate that is investigated in
Table 7. And [·] represents the indexing operation.

Object Embedding. For object embedding update, we take
the previously updated object embedding Et−1

U and the gen-
erated embedding Et

O from transformer decoder as input,
as depicted in Figure 4. Similar to that in Equation (2), the
EMA strategy is also utilized to update the object embed-
ding. Thus, the embedding update process is termed as

Et
U = β ×Et−1

U + (1− β)×Et
O, (3)

where β denotes the EMA decay rate that is investigated
in Table 9. In this way, the whole update process is easily
conducted without any heuristic design.

3.4. Optimization and Inference

The proposed DQTrack maintains the end-to-end track-
ing pipeline with the help of above designed learnable as-
sociation and temporal update. In this section, we provide
more details on model optimization and inference.
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Optimization Objectives. In the whole framework, there
are mainly two predictions that require supervision at each
frame, i.e., P t

D for 3D detection and P t
T for tracking associ-

ation. To achieve detection prediction P t
D, we follow a com-

mon pipeline in DETR-based 3D detectors [31, 19] and use
Hungarian matching [15] for one-to-one target assignment
in the training phase. Therefore, a set-to-set approach [5] is
utilized to optimize the loss Lt

Det, including box regression
and classification. For the tracking association P t

T in Equa-
tion (1), we construct the optimization target Y t

T by finding
the identity correspondence across frames and calculate the
tracking loss, denoted as Lt

Track = CE(P t
T, Y

t
T). Here, CE

indicates the cross entropy loss function.
To enhance the robustness in occlusion scenarios, we

augment track queries Qt
T during training by randomly

sampling several false positives from the candidate track
embedding Et

T. Moreover, to balance the probability of un-
matched association pairs, we draw inspiration from [12]
and utilize maximum entropy regularization Lt

Reg to en-
courage similar scores for unmatched pairs. Experiments
in Table 8 validate the effectiveness of these strategies. We
optimize the target with a consecutive sequence clip that
includes D frames at each step, as evaluated in Table 10.
Therefore, the overall optimization target is formulated as

L =

D∑
t

(λDetLt
Det + λTrackLt

Track + λRegLt
Reg), (4)

where λDet, λTrack, and λReg indicate the loss balancing
weights that are all set to 1.0 by default.

Inference Scheme. In the inference stage, we follow
the general end-to-end tracking pipeline with the designed
components, as summarized in Algorithm 1. Unlike the
training stage, object tracking is performed frame-by-frame
during inference, with no need for a video clip at each step.
To be specific, we first adopt encoder and decoder in Sec-
tion 3.1 to generate the object embedding Et

O and predict
the detection result P t

D. The object embedding Et
O is then

updated and selected with corresponding scores in P t
D over

threshold τ . With the active embedding Et
U, the designed

learnable association in Section 3.2 is utilized to facilitate
interaction and embedding fusion for the robust tracking
affinity matrix P t

T. Then, pairs in P t
T with scores lower

than the given threshold µ are filtered out. Here, Hungarian
matching [15] is adopted for the trajectory-object associa-
tion. Given the associated pair Ht

T, we update the relevant
motion Qt

UM and appearance embedding Qt
UA using the

temporal update in Section 3.3. Thus, we can easily find
the matched Tmatch, new-born Tnew, and missed trajecto-
ries Tmiss according to Ht

T and missing threshold δ. The
tracking result T and the track query QT are correspond-
ingly updated at the end of each forward.

Algorithm 1: Pseudo code of DQTrack.
Input: Video sequence V ; object score threshold τ ; association

score threshold µ; trajectory missing threshold δ

Output: Trajectory T and detection D of the video
1 Initialization: T ← ∅, D ← ∅, QT ← ∅
2 for V t in V do

/* encoder & decoder */

3 Xt ← Encoder(V t)

4 Xt
B ← BEVTrans(Xt)

5 Et
O ← Decoder(QO,Xt

B)

6 P t
D ← FFN(Et

O)

7 D ← D ∪ {P t
D}

/* embedding update */

8 Et
U ← EmbedUpdate(Et−1

U ,Et
O)

9 Et
U ← Et

U[P t
D.score > τ ]

/* learnable association */

10 Et
A,Et

M,Et
T ← EmbedInter(Et

U)

11 Qt
A,Qt

M ← Split(QT)

12 Ft
A ← Qt

A ⊙Et
A

13 Ft
M ← FFN(L2(Qt

M,Et
M))

14 P t
T ← Softmax(MLP(Ft

A + Ft
M))

/* temporal update */

15 P t
T ← P t

T[P
t
T.score > µ]

16 Ht
T ← Hungarian(P t

T)

17 Qt
UM ← MotionUpdate(Qt

M)

18 Qt
UA ← QueryUpdate(Qt

A,Et
T, H

t
T)

19 Qt+1
T ← Cat(Qt

UA,Qt
UM)

/* trajectory update */

20 Tmatch ← FindMatch(T , Ht
T)

21 Tnew ← FindNew(T , Ht
T, P

t
D)

22 Tmiss ← FindMiss(T , Ht
T, δ)

23 T ← T ∪ Tnew \ Tmiss

24 QT ← Init(Et
T, Tnew) ∪ Pop(Qt+1

T , Tmiss)

25 end
26 Return: T , D

4. Experiments
In this section, the detailed experimental setup is first

introduced. Then, we demonstrate the effectiveness of DQ-
Track and compare it with leading approaches. The analy-
ses of each component are presented in the end.

4.1. Experimental Setup

Dataset. The nuScenes [4] dataset is a popular benchmark
for large-scale autonomous driving. It is widely adopted for
3D object detection and multi-object tracking. It comprises
700, 150, 150 scenes for training, validation, and testing,
respectively. The dataset provides synchronized data from
6 surrounding cameras capturing 10 object categories for
detection and 7 movable classes for tracking in a 360-degree
field of view at a frequency of 12Hz.

Implementation Details. In this study, we assess the gen-
eralization of DQTrack through experiments using different
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Table 1: Comparisons with previous methods on the nuScenes val set. We report results with traditional work [31, 19, 21] and
the simple stereo-based decoder. TBD and Geo represent the tracking-by-detection manner and the geometry-based matching
in [38]. FPS is evaluated in a single NVIDIA A100 GPU from input images to tracking results. * denotes results from [41].

Tracker Encoder Decoder Resolution Tracking Detection
AMOTA AMOTP↓ IDS↓ FPS NDS mAP

TBD-Kalman* R101 DETR3D 900× 1600 26.3% 1.569 4698 – 43.4% 34.9%
SimpleTrack* [26] R101 DETR3D 900× 1600 29.3% 1.307 1695 – 43.4% 34.9%
MUTR3D [41] R101 DETR3D 900× 1600 29.4% 1.498 3822 6.0 43.4% 34.9%
TBD-Geo R101 DETR3D 900× 1600 32.6% 1.424 2564 5.1 43.4% 34.9%
DQTrack R101 DETR3D 900× 1600 36.7% 1.351 1120 4.8 43.4% 34.9%

TBD-Geo R101 UVTR-C 900× 1600 36.6% 1.386 2708 4.5 44.1% 34.2%
DQTrack R101 UVTR-C 900× 1600 39.6% 1.310 1267 3.9 44.1% 34.2%

TBD-Geo R101 Stereo 512× 1408 36.2% 1.368 2169 3.1 47.1% 36.1%
DQTrack R101 Stereo 512× 1408 40.7% 1.318 1003 2.8 47.1% 36.1%

TBD-Geo V2-99 PETRV2 320× 800 40.8% 1.309 2487 7.7 50.3% 41.0%
DQTrack V2-99 PETRV2 320× 800 44.6% 1.251 1193 6.0 50.3% 41.0%

encoders and decoders. In all the ablation studies, we adopt
the stereo-based approach, where the number M of object
query QO is set to 300. Meanwhile, we employ the AdamW
optimizer to train the framework in an end-to-end manner
for 24 epochs, with an initial learning rate 2e−4. For other
decoders [31, 19, 21], we fix pre-trained models following
original settings and optimize the proposed module for 5
epochs with an initial learning rate 1e−5. By default, the
object threshold τ , association threshold µ, and trajectory
missing threshold δ in Algorithm 1 are set to 0.2, 0.1, and
7, respectively. And τ is set to 0.3 for PETRV2 [21].

4.2. Main Results

Results with Different Trackers. To demonstrate the ef-
fectiveness of the decoupled-query approach, we carry out
experiments with different trackers in Table 1. For fair
comparisons, we adopt the same encoder and input resolu-
tion for all methods. We first set up a strong benchmark
using the tracking-by-detection pipeline and the tailored
geometry-based matching in [38], marked as TBD-Geo. As
shown in Table 1, the strong benchmark outperforms previ-
ous work that uses the same decoder DETR3D [31]. Com-
pared with the strong benchmark, the proposed DQTrack
achieves a significant improvement of 4.1% AMOTA. And
the identity switch (IDS) is reduced to 43.7% from 2564
to 1120. When compared with the previous query-based
tracker MUTR3D [41], the performance gap is further en-
larged to 7.3% AMOTA, with IDS reduced to 29.3%.

Results with Different Decoders. In Table 1, we validate
the generality of DQTrack by applying different decoders.
For simplicity, we optimize the proposed modules on the
pre-trained models [31, 19, 21]. Compared with the strong

benchmark TBD-Geo, DQTrack achieves consistent gains
with more than 3.0% AMOTA using different encoders, de-
coders, and input resolutions. In particular, DQTrack at-
tains greater improvement with a stronger encoder ResNet-
101 than ResNet-50, using the same stereo-based decoder.
This proves that the capability of the proposed approach
can be scaled up with stronger backbones. Equipped with
PETRV2 and V2-99 from DD3D [27], the proposed frame-
work achieves 44.6% AMOTA on the nuScenes val set.

Comparisons with State-of-the-arts. We present com-
parisons with state-of-the-art approaches on the nuScenes
test set in Table 2. Following previous work [19, 20, 25],
we adopt the V2-99 as encoder and build the DQTrack
upon the PETRV2 [21] decoder. Unlike classic tracking-by-
detection methods, DQTrack maintains an end-to-end track-
ing pipeline without heuristic post-processing and achieves
leading performance with 52.3% AMOTA. We report re-
sults without bells-and-whistles like NMS or test-time aug-
mentation. When compared with similar learning-based ap-
proaches, DQTrack surpasses previous and even concurrent
study PF-Track [25] by a large margin of 8.9% AMOTA.

4.3. Component-wise Analysis

In this subsection, we jointly optimize tracking and de-
tection with the input image resized to 256×704, where the
stereo-based framework with ResNet-50 [13] is adopted.

Decoupled Queries. The decoupled-query paradigm for
end-to-end 3D MOT is the core design. In Table 3, we vali-
date it by comparing against the tracking-by-detection [38]
and the single-query manner [41], where the same encoder
and thresholds are adopted. As analysed before, the single-
query approach suffers from task conflict and thus performs
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Table 2: Comparisons with leading camera-based methods on the nuScenes test set. We evaluate our model in an end-to-end
manner without bells-and-whistles like NMS or test-time augmentation, which could bring potential improvement.

Method Encoder NMS AMOTA AMOTP↓ MOTA MOTP↓ RECALL IDS↓
Tracking-by-detection

PolarDETR [7] V2-99 ✓ 27.3% 1.185 23.8% 0.719 40.4% 2170
QTrack [37] V2-99 ✓ 48.0% 1.100 43.1% 0.597 58.3% 1484
Sparse4D [20] V2-99 ✗ 51.9% 1.078 45.9% 0.622 63.3% 1090
UVTR-Greedy [19] V2-99 ✓ 51.9% 1.125 44.7% 0.650 59.9% 2204

Learning-based tracking

CenterTrack [43] DLA-34 ✗ 4.6% 1.543 4.3% 0.753 23.3% 3807
DEFT [6] DLA-34 ✗ 17.7% 1.564 15.6% 0.770 33.8% 6901
Time3D [17] DLA-34 ✗ 21.4% 1.360 17.3% 0.750 – –
QD3DT [14] R101 ✓ 21.7% 1.550 19.8% 0.773 37.5% 6856
MUTR3D [41] R101 ✗ 27.0% 1.494 24.5% 0.709 41.1% 6018
SRCN3D [29] V2-99 ✗ 39.8% 1.317 35.9% 0.709 53.8% 4090
CC-3DT [11] R101 ✓ 41.0% 1.274 35.7% 0.676 53.8% 3334
PF-Track [25] V2-99 ✗ 43.4% 1.252 37.8% 0.674 53.8% 249
DQTrack V2-99 ✗ 52.3% 1.096 44.4% 0.649 62.2% 1204

Table 3: Results with different trackers on the nuScenes val
set. TBD denotes the tracking-by-detection method in [38].
SinQuery indicates the single-query approach in [41].

tracker e2e
Tracking Detection (7 cls)

AMOTA AMOTP↓ NDS mAP

TBD ✗ 25.7% 1.563 40.8% 27.5%
SinQuery ✓ 24.5% 1.603 40.7% 20.1%
DeQuery ✓ 28.5% 1.465 40.8% 27.5%

Table 4: Effect of embedding interaction on the nuScenes
val set. ei denotes the embedding interaction in Section 3.2.

ei
Tracking Detection

AMOTA AMOTP↓ NDS mAP

✗ 27.8% 1.467 41.2% 28.8%
✓ 28.5% 1.465 41.3% 28.9%

worse than the tracking-by-detection method. DQTrack
is proven to achieve significant gain, which surpasses the
single-query method with 4.0% AMOTA and 7.4% mAP.

Embedding Interaction. In Table 4, we investigate the ef-
fect of embedding interaction proposed in Section 3.2. It
is clear that the designed embedding interaction facilitates
the object-level information exchange for better trajectory
association and leads to a 0.7% AMOTA gain in tracking.

Embedding for Association. In Section 3.2, the affinity
score P t

T is calculated from object appearance and motion

Table 5: Results with different embedding for query associ-
ation on the nuScenes val set. appear and motion indicate
appearance FA and motion feature FM in Section 3.2.

appear motion
Tracking Detection

AMOTA AMOTP↓ NDS mAP

✓ ✗ 25.3% 1.509 40.8% 28.5%
✗ ✓ 26.9% 1.480 40.5% 27.8%
✓ ✓ 28.5% 1.465 41.3% 28.9%

Table 6: Results with different features for embedding EO

on the nuScenes val set. de denotes the transformer decoder.

de
Tracking Detection

AMOTA AMOTP↓ NDS mAP

✗ 26.4% 1.543 39.9% 28.1%
✓ 28.5% 1.465 41.3% 28.9%

with FA and FM, as depicted in Figure 3 and Equation (1).
Here, we evaluate the effect of embedding type in Table 5.
Compared with appearance FA or motion feature FM only,
the fused embedding FF performs much better, which at-
tains 28.5% AMOTA and 41.3% NDS. Although motion
features are essential, the appearance feature plays an im-
portant role and contributes 1.6% AMOTA and 1.1% mAP.

Feature for Object Embedding. In Section 3.1, we take
the object embedding EO from transformer decoder. Here,
we delve into the feature type for EO generation in Table 6.
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Table 7: Results with different rates for query update on the
nuScenes val set. α denotes the rate in Equation (2).

α
Tracking Detection

AMOTA AMOTP↓ NDS mAP

– 27.4% 1.473 40.9% 28.6%

0.4 28.5% 1.466 41.2% 28.9%
0.5 28.5% 1.465 41.3% 28.9%
0.6 27.5% 1.477 40.7% 28.1%

Table 8: Results with different optimization strategies. aug
and reg indicate query augmentation and entropy regulation.

aug reg
Tracking Detection

AMOTA AMOTP↓ NDS mAP

✓ ✗ 27.9% 1.481 40.5% 28.4%
✗ ✓ 28.1% 1.478 40.8% 28.5%
✓ ✓ 28.5% 1.465 41.3% 28.9%

Compared with the raw feature directly from BEV space
XB, the interacted embedding from transformer decoder for
EO contributes 2.1% AMOTA and 1.4% NDS gain.

Query Update Rate. In Section 3.3, we present the EMA
strategy for updating the track query QT in a frame-by-
frame manner, as shown in Equation (2). The EMA decay
rate α is used to balance the representation of preserved and
newly associated objects. We compare the performance of
different decay rates in Table 7. The model achieves the
best result when α is set to 0.5. Compared to the result that
does not use temporal update in the first row, the proposed
module achieves the desired target with 1.1% AMOTA gain.

Optimization Strategy. For robustness in complex scenar-
ios, we simulate occluded tracks during training by adding
false positives from randomly sampled queries with a prob-
ability of 0.2. We mark it as track query augmentation in
Table 8. It is clear that the designed augmentation brings
0.4% AMOTA and 0.5% NDS gain. Additionally, we adopt
an entropy regulation loss LReg in Equation (4) to encour-
age unpaired samples with a similar score. It restrains the
association with low confidence and highlights high-quality
pairs, which contributes 0.6% AMOTA and 0.8% NDS.

Embedding Update Rate. To better represent objects for
association, we update the object embedding EO at each
timestamp, as depicted in Figures 3 and 4. In Table 9, we
present the results with different EMA decay rates β. DQ-
Track performs best with a decay rate of 0.3, indicating that
it relies more on the newly generated embedding. Similar to
query update, the EMA strategy achieves significant gain of
1.6% AMOTA and 1.2% mAP over the baseline in the first

Table 9: Results with different rates for embedding update
on the nuScenes val set. β denotes the rate in Equation (3).

β
Tracking Detection

AMOTA AMOTP↓ NDS mAP

– 26.9% 1.491 40.4% 27.7%

0.2 27.8% 1.463 40.4% 28.4%
0.3 28.5% 1.465 41.3% 28.9%
0.4 27.6% 1.467 41.3% 28.7%

Table 10: Results with different frames for training on the
nuScenes val set. D denotes frame number in Equation (4).

D
Tracking Detection

AMOTA AMOTP↓ NDS mAP

2 26.8% 1.465 40.5% 28.7%
3 28.5% 1.465 41.3% 28.9%
4 27.0% 1.474 40.6% 28.3%

row. Notably, the embedding update module is only used in
the stereo-based method, but it could be further applied to
improve the pre-trained models [31, 19, 21] in Table 1.

Frame Number for Training. Recall from Equations (1)
and (4), multiple frames are necessary to establish identity
correspondence and optimize the affinity score P t

T during
training. In Table 10, we compare the performance trained
with different numbers of frames D. Experiments show that
the model achieves the best performance when trained with
3 frames, while others significantly reduce the result.

5. Conclusion

We introduced DQTrack, a simple yet effective frame-
work for camera-based 3D MOT. The core idea behinds
DQTrack is to separate object and trajectory representation
using decoupled queries, allowing for more accurate end-
to-end 3D tracking. In particular, we propose the learnable
association to establish the relationship between objects and
tracks. Meanwhile, temporal update is designed to provide
updated track query in each frame from appearance and ge-
ometry aspects. Experiments on the nuScenes dataset prove
the superiority of DQTrack with consistent gains and out-
perform all previous trackers with leading performance.
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