This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Extensible and Efficient Proxy for Neural Architecture Search

Yuhong Li', Jiajie Li?, Cong Hao?, Pan Li?, Jinjun Xiong?, Deming Chen'!
University of Illinois at Urbana-Champaign®, University at Buffalo?
Georgia Institute of Technology?,
'{leeyh,dchen}@illinois.edu 2{j1i433, jinjun}@buffalo.edu ?*{callie.hao,panli}@gatech.edu

Abstract

Efficient or near-zero-cost proxies were proposed re-
cently to address the demanding computational issues of
Neural Architecture Search (NAS) in designing deep neu-
ral networks (DNNs), where each candidate architecture
network only requires one iteration of backpropagation.
The values obtained from proxies are used as predictions
of architecture performance for downstream tasks. How-
ever, two significant drawbacks hinder the wide adoption
of these efficient proxies: (1) they are not adaptive to var-
ious NAS search spaces; and (2) they are not extensible
to multi-modality downstream tasks. 7o address these two
issues, we first propose an Extensible proxy (Eproxy) that
utilizes self-supervised, few-shot training to achieve near-
zero costs. A key component to our Eproxy’s efficiency is
the introduction of a barrier layer with randomly initialized
frozen convolution parameters, which adds non-linearities
to the optimization spaces so that Eproxy can discriminate
the performance of architectures at an early stage. We
further propose a Discrete Proxy Search (DPS) method to
find the optimized training settings for Eproxy with only a
handful of benchmarked architectures on the target tasks.
Our extensive experiments confirm the effectiveness of both
Eproxy and DPS. On the NDS-ImageNet search spaces,
Eproxy+DPS achieves a higher average ranking correla-
tion (Spearman p = 0.73) than the previous efficient proxy
(Spearman p = 0.56). On the NAS-Bench-Trans-Micro
search spaces with seven tasks, Eproxy+DPS delivers com-
parable performance with the early stopping method (146 %
faster). For the end-to-end task such as DARTS-ImageNet-
1k, our method delivers better results than NAS performed
on CIFAR-10 while only requiring one GPU hour with a
single batch of CIFAR-10 images. Our code is available at
https://github.com/leeyeehoo/GenNAS-Zero.

1. Introduction
As deep neural networks (DNNs) find uses in a wide
range of applications, such as computer vision [23,27, 46,
] and natural language processing [11,24,47,50,58], Neu-
ral Architecture Search (NAS) [4,37,45,49,66] has become

an increasingly important technique to automate the design
of neural architectures for different tasks [21, 38, 53, 54].
Recent progress in NAS has demonstrated superior results,
surpassing those of human designs [49, 56, 66]. However,
one major hurdle for NAS is its high computation cost. For
example, the seminal work of NAS [66] consumed 2000
GPU hours to obtain a high-quality DNN, a prohibitively
high cost for many researchers. The high computation cost
of NAS can be attributed to three major factors: (1) the
large search space for candidate neural architectures, (2)
the training of various candidate neural architectures, and
(3) the comparison of the solution quality of candidate neu-
ral architectures to guide the NAS search process. Subse-
quent NAS work has proposed various techniques to ad-
dress the above issues, such as the constraints on the search
space [30], the weight-sharing networks to reduce the train-
ing cost [43], and search with synthetic or random labels
[35,65].

Out of the advancement, the latest efficient proxies
showed that the quality of a neural architecture could be
determined by a proxy metric computed within seconds
without full training. Hence they are near zero-cost (ZC).
The activations of an untrained network were analyzed as a
proxy in NASWOT [41] with promising results. Abdelfat-
tah et al. [1] suggested various proxies for pruning. Zhang
et al. [64] proposed a zero-cost pruning method for dif-
ferentiable NAS at initialization. ZenNAS [34] quantifies
network expressivity, which has a positive correlation with
model accuracy. ZiCo [31] leverages gradient properties
to improve neural network convergence rate. The efficient
proxies discussed above have, however, two primary draw-
backs:

1. The quality of these efficient proxies is inconsistent
across different search spaces. While many proxies
show high correlations in the confined search spaces
of small NAS Benchmarks, their performance can
be vastly different in real-world applications where
the search spaces are orders of magnitude larger than
those of the tabular benchmarks. For instance, Syn-
flow demonstrates a high ranking correlation on NAS-

6199

\
l
|

Normalized Avg. Time
o
(=]
|
\
|

I .

o
S

\
|
|
|

\
|
l
|

Not extensible!
K
- [Fisher !
T3 Grad Norm :
\=3 Grasp !
I NASWOT |
1

NAS-Bench-101 NDS-ResNet

NDS-DARTS

Figure 1. Eproxy is compared to six efficient proxies in terms of evaluation speed on NAS-Bench-101, NDS-ResNet, and NDS-DARTS
search spaces, demonstrating that Eproxy falls within the zero-cost category. The plot shows the normalized average time.

Bench-201 [16], but its performance is subpar on
NAS-Bench-101 [62], which is 27 times larger than
NAS-Bench-201.

2. Efficient proxies don’t adapt well to multi-modality
downstream tasks. These proxies are typically tai-
lored for CIFAR-10 like classification tasks, result-
ing in promising prediction results for these specific
tasks. However, their performance drops significantly
in other scenarios. As an illustration, NASWOT ex-
hibits a dismal average ranking correlation of 0.03
on NAS-Bench-MR [13], which consists of nine real-
world tasks. Many efficient proxies employ specific
algorithms, like pruning, to convert the weights of ar-
chitectures into prediction values. This rigid algorith-
mic approach hinders the proxy’s adaptability to tasks
beyond classification. Additionally, some zero-cost
proxies have been found to favor certain neural archi-
tectures [6]. For example, both empirical and theoreti-
cal evidence suggest that Synflow has a preference for
large models [42].

We question if it is possible for a zero-cost, few-shot
proxy task to accurately mimic the true task and result in
similar performance ranks for architectures, as shown in
Fig. 2. This leads us to introduce a novel and efficient
proxy, called the Extensible proxy (Eproxy), approached
from a different perspective. Recently, in our prior work,
Li et al. [33] introduced a method that employs regression-
based training termed GenNAS for the assessment of ar-
chitectures. Although innovative, their approach is not de-
void of costs, both in terms of time and resources. In con-
trast, our work takes inspiration from the GenNAS frame-
work, achieving nearly zero-cost evaluations. Unlike previ-
ous efficient proxies, Eproxy utilizes few-shot spatial-level
regression on a set of image-label pairs (see Illustration in
Fig. 4). The labels are 2D synthetic features because, as
suggested by Li et al. [33], spatial-level regression is more
challenging than one-hot classification on a tiny dataset, i.e.,
a batch of image-label pairs. The key component of Eproxy
is the barrier layer. It takes the output of the architecture net-

work into an untrained convolutional layer and performs the
regression with the labels. Such a simple mechanism can
significantly improve the performance of Eproxy to iden-
tify good architectures and bad ones when performing 10
iterations of backpropagation, i.e., near zero-cost. We find
that the barrier layer increases the complexity of the op-
timization space. Hence, poor-performance architectures
are more difficult to optimize (see Section 3.1). Since
Eproxy is a configurable few-shot trainer, we design a novel
search space for Eproxy that includes various hyperparame-
ters, such as feature combinations, output channel numbers,
and selection for barrier layers, which makes up Eproxy’s
multi-modalities. We term such a search method as Discrete
Proxy Search (DPS) (the performance of which is shown
in Fig. 3). Notably, besides the evaluation of a handful of
architectures’ performance, DPS does not need to use any
task-specific information (e.g., in our experiment, we only
use a single batch of CIFAR-10 [26] images throughout all
the experiments).

)

Arch 1 Arch 1

Val. Loss (Target)

Arch 2
Arch 2

Training loss (Eproxy)

Update the weights for 100,000+ iterations in Update the weights for 10 iterations in
training Eproxy

Figure 2. A hypothetical illustration of the validation losses of
two architectures on a downstream task is shown on the left. The
losses of a sophisticated few-shot proxy, on the right, can reflect
the actual performance of the architectures on target tasks. The
”W” represents updated weights.

‘We summarize our contributions as follows:

1. We propose an efficient proxy task with the barrier
layer that utilizes a few-shot self-supervised regres-
sion. The task adopts one batch of images in the
CIFAR-10-level dataset (not necessarily from the tar-
get training dataset). It uses synthetic labels to evaluate
architectures. Eproxy significantly speeds up the tradi-
tional early stopping evaluation process while main-

6200

e, 5.0
146x faster o of
0.81 ** o e 014 4.5
2 epe O °° 0 a "¢ o
€ C eesepm’ 2 REIR 34.01 .
5 0.6 ° L) ° fl —0.12+ . e -
g o o™ e synflow - ... >
5 30 NASWOT 5 Wy S 3.5
[pus i Ky jul
S04 ° e Eproxy o 0.10 - a .
3 s Eproxy+DPS N 3.0 Qv
e auto_encoder 0.081 ‘.
021 e class_scene . . 2.5 .
0 5000 10000 15000 20000 55 60 65 70 55 60 65 70
GPU hours Downstream Task Acc. (%) Downstream Task Acc. (%)

(a) Autoencoder: Time vs Corr.

(b) DARTS-ImgNet: Eproxy

(c) DARTS-ImgNet: Eproxy+DPS

Figure 3. a: Comparison with efficient proxies and early stopping methods on NAS-Bench-Trans-Micro Autoencoder task. It shows
the effectiveness of DPS compared with early stopping methods on either the target task or a classification task when evaluating 4096
architectures. b, c: On NDS DARTS-ImageNet task, Eproxy and Eproxy+DPS (Searched on DARTS-CIFAR-10, transferred to ImageNet)
achieve 0.51, 0.85 p respectively. It shows DPS can find a search-space-aware Eproxy.

taining the high-ranking correlation.

2. We propose the downstream-task and search-space
aware proxy search algorithm with a proxy search
space. We formulate the proxy task search as a dis-
crete optimization problem with only a handful of ar-
chitectures, such that the performance rankings of the
networks on the ground-truth task and the proxy task
should be consistent. The searched Eproxy can ac-
curately evaluate the quality of network architectures
and make Eproxy search-space and downstream-task
aware.

3. We provide thorough experiments to evaluate the per-
formance of Eproxy and Eproxy boosted by DPS on
more than 30 search spaces and tasks. We demonstrate
that our methods have overall higher performance than
existing efficient proxies in terms of all three fac-
tors: architecture ranking correlation score, top-10%-
architecture retrieve rate, and end-to-end NAS perfor-
mance. Our solid experimental results can be further
utilized to benefit the NAS community.

2. Our Approaches

In Sec.2.1, we present the Eproxy for efficient network
evaluation. Sec.2.2 explains how to find a task and search-
space aware Eproxy using Discrete Proxy Search.

2.1. Extensible NAS Proxy

The Eproxy is designed for the architectures to learn
the output of an untrained network on a set of image-label
pairs (See Fig. 4). We utilize the MSE-based training [33]
with a large learning rate and limited backpropagation steps
to make it as efficient as the existing near zero-cost prox-
ies. However, directly applying a few-shot regression task
with a large learning rate leads to poor correlation based
on our observations. To make the Eproxy architecture-
performance-aware within a few iterations, we propose an

untrained barrier layer to make the task more involved (See
Section 3.1). The barrier layer is a randomly initialized con-
volution layer to the output of the trainable components.
Our experiments show that adding such a layer can signifi-
cantly improve the correlation between the predictions and
the performance of neural architectures in the downstream
tasks within a few back propagations (Sec 3.1). To be more
specific, the Eproxy training loss can be described as:

wmi& Lyse(G(wy, F(wg, wy, X)),Y) (1)
where the X € RPXcinXhinXwin i the a set of input im-
ages (b is batch size; c;, is number of input channels). F’
is a fully convolutional neural network (FCN) with a trans-
form layer (a convolutional layer) that transforms the X to
F(-) € RbXemiaxhoutXwour The FCN is obtained using
the architecture without a task-specified head in the down-
stream tasks. For example, the classifier network with the
classification (last pooling and linear layer) head was re-
moved. w, and w, are the weights of architecture for eval-
uation and the weights of the transform layer that project
the output channels of the architecture to c,,;q which is the
number of the transform layer’s output channels. G is the
barrier layer, and w, is the weights. Note in the Eproxy
without DPS, Y € RbXCoutXhout XWour jg the output of an
untrained 6-layer CNN (Fig. 4, ‘Net’).

We further provide the pseudo code of Eproxy in List-
ing 1. The Eproxy utilizes a batch of images and corre-
sponding synthetic features as labels (configurations such
as the combination of features and output channel numbers
can be searched by DPS). The model is trained for 10 itera-
tions. The model’s performance is gauged by the MSE loss
(lower values denoting better performance).

def Eproxy(arch, barrier, features,
t_iter = 10, xxkwargs):

img shape: B, C = 3,
features shape: B,
H_out

img,

H_in
W_out,

W_in,
C_out,

6201

Input images

Architecture (FCN) . Trainable

o pee—

\
nu | Transform " II |
L —
- === layer —

(Feature pool

Sin (high)

Sin (mid.)

Sin (low)

Barrier layer
- B
Dot

MSE Net

1
=

“ﬁ’ﬁ Feature Combination

Loss wr w” <q
] e B oab

Figure 4. The design of Eproxy and the searchable components. Dotted line: The configurable components for Discrete Proxy Search.
Green block: Trainable components. DPS can further utilize the configuration of Eproxy to target search spaces and downstream tasks.

optimizer = SGD (arch.parameters())
for 1 in range(t_iter):
output_mid = model (img) # B, C_mid,
W_out, H_out
output = barrier (output_mid) # B,
C_out, W_out, H_out
loss = ((output - features) **2).
mean ()
optimizer.zero_grad()
loss_m.backward ()
optimizer.step ()
return loss

Listing 1. Pseudo PyTorch-style code for Eproxy.

2.2. Discrete Proxy Search

Since Eproxy provides abundant configurable hyperpa-
rameters and utilizes data-agnostic spatial labels, differ-
ent settings can be naturally adjusted for tasks and search
spaces. Therefore, we propose a semi-supervised discrete
proxy search to find a setting that can be suitable for the
specific modality. As shown in Fig. 4, the searchable con-
figurations are provided as follows:

1. Transform and barrier layer: Both layers can have ker-
nel size selected from {1, 3,7}, and the channel num-
ber ¢,,,iq can be selected from 16 to 512 geometrically
with 2 as a multiplier.

2. Feature combination: a) Untrained CNN outputs. The
experiment results show that an untrained network’s
output features can be powerful for evaluating archi-
tectures on numerous tasks/search spaces. The syn-
thetic features can be interpreted as a tiny knowledge-
distillation task from an untrained teacher network.
b) Sine wave: we adopt the sine wave features with

6202

low/mid/high frequency along width/height. The in-
sight is that good CNNs can learn different fre-
quency signal [33,61]. The features are generated by
sin(2w fx + ¢) or sin(27 fy + ¢) with equal prob-
ability to be selected. We set three ranges for fre-
quency f: low (L) f € (0,0.125) , medium (M)
f € (0.125,0.375), and high (H) f € (0.375,0.5).
c) Dot: By utilizing the Rademacher distribution, we
generate the synthetic features with only £1. The fea-
tures attempt to simulate the spatial classification that
is widely adopted in tasks such as detection [19], seg-
mentation [3], tracking [3,29]. The combined features
can be multiplied by an augment coefficient selected
from 0.5 to 2 with 0.5 as a step.

. Training hyperparameters: a) Learning rate: we adopt

the SGD optimizer, and the learning rate can be se-
lected from 0.5 to 1.5 with 0.1 as the step. b) Initial-
ization: we adopt two initialization methods, Kaim-
ing [22] and Xavier [20], with either Gaussian or Uni-
form initialization, resulting a total of four choices.

. Intermediate output evaluation: We provide the

choices to force the network to learn the intermediate
outputs from the layer before the first or second down-
sample layer. The motivation is that earlier stages of
the network have different learning behaviors from the
deeper stages [2]. Thus, monitoring the early stages
can give more flexibility for adapting Eproxy to differ-
ent tasks.

. FLOPS: As works [25, 42, 55, 56] suggested that

FLOPS is a good indicator for architecture perfor-
mance. Hence we incorporate the FLOPS normalized
by the largest architecture in the search space with the
Eproxy loss as £ - (1 + « - norm(FLOPS)), where «
can be selected from -0.5 to 0.5 with 0.1 steps.

The total number of configuration combinations in the
proxy search space is 5 x 10'®. We utilize the regular-
ization evolutionary algorithm (REA) [45] to conduct the
exploration. First, we randomly sample a small subset of
the neural architectures in the NAS search space and obtain
their ground truth ranking on the target task or a highly cor-
related down-scaled task (for example, CIFAR-10 is a good
proxy for ImageNet). We then evaluate these networks us-
ing Eproxy with different configurations and calculate the
performance ranking correlation p of the Eproxy and the
target task, and the p is the fitness function for REA.

We provide the pseudo code of the DPS function in
Listing 2. This function utilizes a given set of archi-
tectures and their corresponding ground-truth accuracies
(archs_accs) and iterates over a specified number of cy-
cles (cycle). DPS starts with an initial population of con-
figurations, each of which includes parameters like learn-
ing rate, channel numbers, feature combinations, among
others. The REAEngine class is utilized to manage the
Regularized Evolutionary Algorithm. It aids in generat-
ing random configurations, calculating correlations between
Eproxy losses (under the given configuration) and ground-
truth accuracies for a set of architectures, and performing
evolutionary mutations on the configurations. The function
accumulates and returns the history of configurations and
their corresponding correlations over the evolutionary cy-
clesin config_history.

def DPS(archs_accs, cycle, population = 40,
sample = 10, *xkwargs):
len(archs_accs): 20 pairs of archs &

gt accs.
config: including lr, channel number,
feature combination, etc.
config_history = []
rea = REAEngine (population, sample,
mutation_rate)
generate the initial pool
for _ in range (population):
config = rea.get_random_config()
corr = rea.get_corr (config,
archs_accs) # calculate the correlation
between Eproxy (under the config) losses
and gt accs based on 20 archs.
config_history.append({config: corr
})
evolution
for _ in range(cycle):
new_config = rea.get_mutate_config
0)
corr = rea.get_corr (new_config,
archs_accs)
config_history.append({new_config:
corr})
return config_history

Listing 2. Pseudo PyTorch-sytle code for DPS.

3. Experiments

In this section, we perform the following evaluations for
Eproxy and DPS. First, in Sec. 3.1, we conduct the ablation
study on NASBench-101 [62], the first and yet the largest
tabular NAS benchmark with over 423k CNN models and
training statistics on CIFAR-10. We explain the mechanism
behind the barrier layer with empirical results. Furthermore,
we compared Eproxy and Eproxy boosted by DPS with ex-
isting efficient proxies. Second, from Sec. 3.2 to Sec. 3.4,
we use metrics including ranking correlation, top-10 archi-
tecture retrieve rate [1 2] to evaluate the proposed method on
NDS [44] (11 search spaces on CIFAR-10, 8 search spaces
on ImageNet), NAS-Bench-Trans-Micro [17] (7 tasks),
and NAS-Bench-MR [13] (9 tasks). Third, in Sec. 3.5,
we evaluate the end-to-end NAS on NAS-Bench-101/201.
Moreover, we report the end-to-end search on the DARTS-
ImageNet search space in Sec. 3.5.

Loss MSE w/o Barrier MSE w/ Barrier
LR 1 le-1 le-2 1 le-1 le2

10 iters™*¢ 0.08 -022 -0.19 0.65 046 0.09
100 iters 007 067 076 065 079 0.79
200 iters 022 064 066 061 083 081

Table 1. Ranking correlation (Spearman’s p) analysis for different
losses on NASBench-101. “LR” stands for learning rate; “NZC”
stands for near-zero-cost. The results suggest that regression with
barrier and large learning rate can achieve a high ranking correla-
tion in 10 iterations near zero cost.

3.1. Ablation Study on NAS-Bench-101

We study the effectiveness of our barrier layer in this sec-
tion. We use the tool from the work [32] to visualize the loss
surface of an architecture selected randomly from NAS-
Bench-101 on our few-shot regression task. Figure 5a,5b
shows the loss surface without the barrier has a good con-
vexity, which indicates the task is simple, as we use a proxy
task that contains very few samples (16 image-label pairs)
for a shorter evaluation period. The simplicity of the proxy
task gives us two potential problems that can affect the final
results. (1) If a task is too simple, every model can perform
similarly well. (2) When the optimization is easy, models
can have similar performance at the early stage of training.
As we observed, loss surfaces from different models have
similar shapes without barriers, requiring us to use more
training steps to see the difference between good and bad ar-
chitectures. To mitigate these two problems, Eproxy added
a barrier layer which is a random initialized linear/convolu-
tion layer with frozen weights. As shown in Figure 4 (b), the
loss surface with the barrier has a noticeable non-convexity,
which shows the increased complexity of the proxy task,
and now it can better reflect the actual performance of ar-

6203

Gradnorm Snip Grasp Fisher

Synflow

NASWOT ZenNAS ZiCo Eproxy Eproxy+DPS

p 0.20 0.16 045 0.26 0.37
Top-10% 2% 3% 26% 3% 23%

0.40 0.61 0.61 0.65 0.69
29% 39% 45% 31% 38%

Table 2. Comparison with efficient proxies on NAS-Bench-101 using the Spearman p and top-10% retrieve rate. Eproxy outperforms the
state-of-the-art zero-shot methods, ZiCo and ZenNAS, in terms of rho when DPS is not utilized.

chitecture (Figure 6a,6b). As the irregular shape of the loss
surface varies widely from model to model, it helps us bet-
ter distinguish the model performance at the early stage of
training, allowing us to use fewer training steps to speed
up the evaluation further. The results in Table | show that
with the barrier layer, Eproxy can reach p 0.65 in only 10
iterations with a learning rate of 1, and it also significantly
improves the ranking correlation score with more training
iterations.

ooooo

(a) Best model without barrier. (b) Worst model without barrier.

Figure 5. The loss surfaces of best and worst model from NAS-
Bench-101 regression task without barrier.

o132 0137

0130 0136

0135

0126 013

0124
0133

0122
0132

0120

0131

(a) Best model with the barrier. (b) Worst model with the barrier.

Figure 6. The loss surfaces of best and worst model from NAS-
Bench-101 regression task with barrier.

Next, we sample 20 architectures from NAS-Bench-101
and evaluate DPS. We conduct DPS for 200 epochs, and
the total run time is ~20 mins on a single A6000 GPU. In
Table 2, we report the network evaluation results in terms
of Spearman’s p and top-10% network coverage using the
proxy task searched by DPS. We evaluated Eproxy against
state-of-the-art zero-cost proxies including NASWOT [41],
Synflow [1], ZenNAS [34], and ZiCo [31]. Additionally,
we considered architecture parameters and FLOPS as im-
portant baselines [55]. Eproxy significantly outperforms
existing zero-cost proxies by a large margin. For instance,
Synflow, scores 0.45, ZiCo scores 0.61, Eproxy scores 0.65

(without DPS), and Eproxy with DPS scores 0.69. In terms
of top-10% retrieval rate, Eproxy with DPS retrieves a
higher number of architectures than DPS (38% vs 31%).
The results support the efficiency and effectiveness of DPS.
Meanwhile, Fig. 1 confirms that using Eproxy achieves a
comparable evaluation speed with other efficient proxies.

3.2. NDS

The original Network Design Spaces (NDS) work [44]
investigates different search spaces. The NDS is perfect
for evaluating efficient proxies in more complex search
spaces. For example, researchers benchmarked 5,000 ar-
chitectures on DARTS search space and over 20,000 on
ResNet search space. We compared our method with ex-
isting zero-cost proxies on 11 search spaces on CIFAR-
10 and 8 search spaces on ImageNet [10]. We show the
results in Table 3. Compared to Synflow, ZenNAS, and
ZiCo, Eproxy (without DPS) delivers better results on both
CIFAR-10 and ImageNet search spaces. Eproxy (without
DPS) performs similarly to NASWOT on both CIFAR-10
and ImageNet search spaces. Boosted by DPS, Eproxy de-
livers significantly better results on target CIFAR-10 search
spaces with 36% and 52% improvement on ranking cor-
relation and top-10% retrieve rate, respectively. Notably,
Eproxy+DPS searched on CIFAR-10 with 20 architectures
performs significantly better on ImageNet search spaces
without any prior knowledge of the dataset. Compared to
NWT, Eproxy+DPS gains 30% and 57% on ranking correla-
tion and top-10% retrieve rate, respectively. The ImageNet
experiment demonstrates the efficiency by utilizing the ar-
chitectures trained on down-scaled dataset (CIFAR-10) for
DPS. It’s noteworthy that using FLOPS and Params as eval-
uation metrics for models may not be suitable in search
spaces with limited model size variations, such as DARTS-
f, PNAS-f, and ENAS-f.

3.3. NAS-Bench-Trans-Micro

Previous experiments suggest that DPS can optimize
Eproxy across different search spaces. We further evalu-
ate Eproxy and DPS on NAS-Bench-Trans-Micro, a bench-
mark that contains 4096 architectures across 7 large tasks
from the Taskonomy [63] dataset. The tasks include object
classification, scene classification, unscrambling the image,
and image upscaling. The search space is similar to NAS-
Bench-201 but has 4 operator choices per edge instead of

6204

CIFAR-10 DARTS DARTS-f AMB ENAS ENAS-f NASNet PNAS PNAS-f Res ResX-A ResX-B Avg.
Svafl 0.42 0.14 -0.10 0.18 -030 002 025 -026 021 047 0.61 0.12
yntiow 9% 5% 3% 6% 2% 7% 9% 4% 4% 25% 29% 9%
NASWOT 0.65 031 029 054 044 042 050 013 029 0.64 0.57 043
29% 8% 20% 31% 28% 27% 24% 6% 1% 28% 21% 21%
ZenNAS 0.50 001 005 022 0.07 007 024 020 023 0.9 0.66 0.26
en 14% 4% 7% 10% 5% 1% 12% 3% 2% 35% 32% 12%
zic 0.49 0.11 009 029 0.02 016 026 0.09 023 054 0.63 0.26
10 13% 5% 4% 12% 11% 2% 9% 3% 3% 32% @ 34% 13%
E 0.38 034 054 059 048 056 022 024 051 047 0.19 041
Proxy 12% 17% 13% 35% 31% 28% 4% 4% 36% 24% 10% 19%
E pps 072 039 056 0.63 047 054 0.60 048 0.56 0.65 0.60 0.56
Proxy+ 33% 19% 29% 36% 30% 2% 35% 28% 36% 32% 19% 29%

ImageNet DARTS DARTS-f Amoeba ENAS NASNet PNAS ResX-A ResX-B Avg.

Svnfl 0.21 -0.36 025 017 001 014 042 031 0.08

yntiow 0% 4% 0% 9% 0% 9% 7% 13% 6%

0.66 0.20 042 069 051 0.61 073 0.63 0.56

NASWOT 16% 8% 3% 36% 33% 10% 30% 38% 26%

ZenNAS 0.21 0.13 021 022 006 023 060 045 0.27

en 8% 4% 0% 8% 17% 9% 23% 25% 13%

7iC 0.24 0.01 0.18 026 012 027 052 040 025

180 8% 4% 0% 36% 17% 9% 8% 19% 13%

E 0.51 0.31 066 058 056 036 073 0.70 0.55

proxy 20% 17% 60% 33% 30% 33% 55% 43% 36%

B .pps, 085 0.53 066 079 085 060 083 0.72 0.73

Proxy T 50% 28% 60% 33% 32% 35% 55% 36% 41%

Table 3. Comparison with efficient proxies on NDS search spaces. t denotes the DPS on CIFAR-10 and transferred to ImageNet. Therefore,
it does not necessitate knowledge of the ImageNet dataset. When DPS is not employed, Eproxy performs better than ZiCo on 7 out of 11
CIFAR-10 search spaces and all 8§ ImageNet search spaces. However, with DPS, Eproxy shows significant superiority over other methods.

Cls. Scene Cls Obj Room Layout Jigsaw Seg Normal AE Avg.
Synflow 0.46/16% 0.50/16% 0.45/28% 0.49/19% 0.32/3% 0.52/19% 0.52/34% 0.47/19%
NASWOT 0.5721% 0.53/21% 0.30/2% 0.41/11% 0.52/30% 0.59/30% -0.0212% 0.41/17%
ZenNAS 0.57/48% 0.34/32% 0.24/27% 0.35/35% 0.37/32% 0.56/47% 0.15/23% 0.37/35%
ZiCo 0.30/31% 0.03/16% 0.04/23% 0.15/26% 0.07/16% 0.29/27% 0.19/9% 0.15/21%
Eproxy 0.15/14% 0.45/34% 0.06/8% 0.17/33% 0.36/46% 0.25/38% 0.61/80% 0.29/36%
Eproxy + DPS 0.70/30% 0.56/44% 0.56/13% 0.64/45% 0.81/53% 0.81/63% 0.80/74% 0.69/46 %
ES~ s60GPUnrsiask ~ 0.73/25% 0.01/7% 0.15/7% 0.74/21% 0.39/7% 0.65/27% 0.35/11% 0.43/15%

Table 4. Comparison with efficient proxies and the early stopping method on TransNAS-Bench-Micro. In 5 out of 7 tasks, Eproxy surpasses
ZiCo, arecent zero-shot method. Eproxy+DPS outperforms efficient proxies, and the early stopping method which requires 600 GPU hours

per task.

6. We conduct the DPS on each task using only 20 archi-
tectures. We do not have any prior knowledge of the tasks
besides the 20 architecture’s ground truth performance since
DPS only utilizes a batch of CIFAR-10 images as input. The
results are shown in Table 4. Note that though Eproxy un-
derperforms regarding the ranking correlation, it achieves
better top-10% retrieve rate compared to other methods. It
also tells that the global ranking correlation is not the golden
metric for evaluating the performance of proxies since it

merely reflects the difference of top architectures. With
the help of DPS, the average ranking correlation and top
10% retrieve rate are significantly improved and substan-
tially better than other methods. Compared to the early
stopping method, DPS requires 7.6X less regarding GPU
hours (>99% time for obtaining the performance of 20 ar-
chitectures while the DPS only takes 0.5 GPU hour).

6205

Cls-A CIs-B CIs-C Cls-10c Seg Seg-4x 3dDet Video Video-p Avg.
Synfl 025 005 037 0.21 043 0.22 022 045 0.52 0.30
ynilow 11% 14% 20% 15% 17% 9% 8% 18% 17% 14.3%
037 -020 -015 -039 050 038 048 -036 -0.36 0.03
NASWOT 18% 4% 2% 0% 10% 8% 0% 1% 0% 6%
ZenNAS 041 050 030 0.25 049 022 026 041 0.39 0.36
cn 4% 0% 1% 0% 6% 2% 10% 0% 0% 3%
ZiC 040 052 031 0.27 048 0.21 025 042 0.40 0.36
10 4% 0% 1% 0% 5% 1% 9% 0% 0% 2%
E 052 006 0.02 0.29 038 031 034 031 0.23 0.27
proxy 18% 10% 10% 15% 17% 13% 23% 11% 11% 14%
5 DPS 0.57 053 030 0.48 0.60 0.51 039 0.65 0.59 0.51
Proxy + 16% 35% 18% 2% 24% 13% 29% 33% 27% 25%
Cls-C Full training 029 0.51 1.0 0.53 021 035 0.17 035 0.37 n/a
(~4000GPU hrs) 24% 26% 100% 34% 16% 26% 14% 22% 25% N/A

Table 5. Comparison with efficient proxies, and Cls-C full training which requires 4000 GPU hours on NAS-Bench-MR. In 9 tasks, Eproxy
achieves superior top-10% retrieval rates compared to recent zero-cost methods like ZenNAS and ZiCo. Eproxy + DPS demonstrates
outstanding performance, even when compared to full training on Cls-C.

| RS | NAO | RE | Semi | WeakNAS | Eproxy+DPS
Queries | 2000 | 2000 | 2000 | 1000 | 200 150 100 | 150 | 60 | O
Test Acc. | 93.64 | 93.90 | 93.96 | 94.01 | 94.18 94.10 93.69 | 94.23 | 93.92 | 93.07

Table 6. Comparison with predictor-based methods and efficient proxies on NAS-Bench-101. Eproxy+DPS as the fitness function for

Regularization Evolutionary Algorithm can find near-optimal architectures with lower queries.

Random Search Regularized Evolution MCTS LaNAS WeakNAS Eproxy+DPS
C10 7782.1 563.2 528.3 247.1 182.1 58.0 + 20
C100 7621.2 438.2 405.4 187.5 78.4 13.7¢
Tinylmg 7726.1 715.1 578.2 292.4 268.4 74.0¢

Table 7. Comparison with predictor-based methods on NAS-Bench-201 regarding the average queries required for retrieving the global
optimal architectures. Eproxy+DPS uses substantially lower queries to find the global optimal architectures.

3.4. NAS-Bench-MR

We applied Eproxy and DPS to a complex search space,
NAS-Bench-MR [13], with 9 high-resolution tasks such as
3D detection, ImageNet-level classification, segmentation,
and video recognition [9, 10, 18,28]. Approximately 2,500
architectures were benchmarked. Each architecture under-
went full training (over 100 epochs) and followed a multi-
resolution paradigm, with each network consisting of four
stages. Each stage comprised modularized blocks (parallel
and fusion modules). Our work is the first to investigate
this benchmark with efficient proxies. The results are dis-
played in Table 5. The full training consumption on the Cls-
C task was calculated based on the source code [14], which
took approximately 4000 GPU hours. Note that NASWOT,
which performs well on NAS-Bench-Trans-Micro, delivers
poor performance on most tasks, implying the inconsistent
performance of current efficient proxies. Also, we observed

that classification rankings are inconsistent with other tasks,
such as segmentation and 3D detection. Our Eproxy+DPS
experiments suggest that with a 20-architecture set, the
ranking correlation and top-10% retrieve rate are consid-
erably improved (+89%/+78%).

3.5. End-to-end NAS with Eproxy

We evaluate Eproxy and DPS on the end-to-end NAS
tasks to find efficient architectures in the search space.

On NAS-Bench-101, we utilize the Eproxy as the fit-
ness function for Regularized Evolutionary (RE) algorithm.
Our results are shown in Table 6 compared with NAO
[40], Semi-NAS [39], WeakNAS [57]. Note that Eproxy,
without any query (near-zero-cost) from the benchmark,
can find architectures that are significantly better than cur-
rent SOTA efficient proxies, Synflow (+ 0.87%) and NAS-
WOT (+3.01%). With 20 architectures for DPS and 40

6206

Method Test Err. (%) Params FLOPS Search Cost Searched Searched
top-1 top-5 M) (M) (GPU days) Method dataset

NASNet-A [66] 26.0 8.4 53 564 2000 RL CIFAR-10
AmoebaNet-C [45] 24.3 7.6 6.4 570 3150 evolution CIFAR-10
PNAS [36] 25.8 8.1 5.1 588 225 SMBO CIFAR-10
DARTS(2nd order) [37] 26.7 8.7 4.7 574 4.0 gradient-based CIFAR-10
SNAS [59] 273 9.2 43 522 1.5 gradient-based CIFAR-10
GDAS [15] 26.0 8.5 53 581 0.21 gradient-based CIFAR-10
P-DARTS [§&] 244 7.4 4.9 557 0.3 gradient-based CIFAR-10
P-DARTS 24.7 7.5 5.1 577 0.3 gradient-based =~ CIFAR-100
PC-DARTS [60] 25.1 7.8 53 586 0.1 gradient-based CIFAR-10
TE-NAS [7] 26.2 8.3 6.3 - 0.05 training-free CIFAR-10
PC-DARTS 242 7.3 53 597 3.8 gradient-based ImageNet

ProxylessNAS [5] 24.9 7.5 7.1 465 8.3 gradient-based ImageNet

TE-NAS [7] 24.5 7.5 54 599 0.17 training-free ImageNet

Eproxy 25.7 8.1 4.9 542 0.02 evolution+proxy CIFAR-10
Eproxy+DPSt 24.4 7.3 53 578 0.06 evolution+proxy CIFAR-10

Table 8. Comparison with state-of-the-art NAS methods on ImageNet. t stands for DPS is conducted in NDS search space and directly
transferred to the target. Note Eproxy+DPS achieves the best results among NAS methods on CIFAR-10.

queries (total of 60) to retrieve the top architectures dur-
ing RE, Eproxy+DPS achieves better results than existing
SoTA predictor-based NAS WeakNAS with 100 queries
(+0.23%). Furthermore, we explore the 70 neighbors of the
top architectures (a total of 150 queries) and find architec-
tures with an average of 94.23% accuracy. Note that Semi-
NAS with 1000 queries can only reach 94.01%. On NAS-
Bench-201, we perform the DPS on the CIFAR-10 dataset,
and the found proxy is directly transferred to CIFAR-
100 and Tiny-ImageNet. We compare with MCTS [52],
LaNAS [51], WeakNAS [57]. In Table 7, we show that
Eproxy+DPS can find optimal global architectures within
the RE search history. Compared to RE, which directly
queries the benchmark, our approach reduced 7x/32x/9x
query times on three datasets. Compared to predictor-based
NAS, Eproxy+DPS also requires fewer queries to discover
the optimal architectures. Our results offer an exciting yet
promising direction besides pure predictor-based NAS.

DARTS-ImageNet search space We conduct end-
to-end search on ImageNet-1k dataset within the DARTS
search space as defined in [37]. The network depth is 14
blocks. The input channels are 48, and the FLOPS range
from 500M to 600M for the searched architectures. We uti-
lize the 20 samples from the NDS-DARTS search space (not
the same search space as the target) and conduct DPS on
CIFAR-10 for 200 epochs in one GPU hour. Then we per-
form the NAS by adopting regularized evolutionary algo-
rithm with the loss of the zero-cost proxy as the fitness func-
tion in 0.4 GPU hour. We compare our method with (a) ex-
isting works on the DARTS search space [7,8,15,37,59,60]
and (b) works on the similar search spaces [5, 36, 45, 66].
The results are shown in Table 8. Eproxy achieves a top-1/5

test error of 25.2%/8.1% using Eproxy with only 0.5 GPU
hours for NAS. With DPS, Eproxy explores the architecture
with 24.4%/7.3% as a top-1/top5 test error. Eproxy+DPS
significantly outperforms existing NAS on CIFAR-10, such
as PC-DARTS [60], and achieves a comparable result with
NAS on ImageNet, demonstrating Eproxy and DPS’s ef-
ficiency. By utilizing the existing proxy on another search
space, DPS shows the transferability between search spaces.

4. Conclusion

We proposed Eproxy that utilizes a self-supervised few-
shot regression task within near-zero cost. The Eproxy
is benefited from the barrier layer that significantly im-
proves the complexity of the proxy task. To overcome the
drawbacks of current efficient proxies that are not adap-
tive to various tasks/search spaces, we proposed DPS incor-
porating various settings and hyperparameters in a proxy
search space and leveraging REA to conduct efficient ex-
ploration. Our experiments on numerous NAS benchmarks
demonstrate that Eproxy is a robust, efficient proxy. More-
over, with the help of DPS, Eproxy achieves state-of-the-
art results and outperforms existing state-of-the-art efficient
proxies, early stopping methods and predictor-based NAS.
Our work significantly ameliorates the inconsistency of ef-
ficient proxies and sets up a series of solid baselines while
pointing out a novel direction for the NAS community.

5. Acknowledgement

This work is supported in part by the National Science
Foundation awards #2229873 and #2235364. We thank all
reviewers for valuable discussions and feedback.

6207

References

(1]

(2]

(3]

[4]

(3]

(6]

(7]

8]

(9]

(10]

[11]

[12]

(13]

[14]

Mohamed S Abdelfattah, Abhinav Mehrotra, Lukasz
Dudziak, and Nicholas D Lane. Zero-cost proxies for
lightweight nas. arXiv preprint arXiv:2101.08134, 2021. 1,
6

Guillaume Alain and Yoshua Bengio. Understanding inter-
mediate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016. 4

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea
Vedaldi, and Philip HS Torr. Fully-convolutional siamese
networks for object tracking. In European conference on
computer vision, pages 850-865. Springer, 2016. 4

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 9

Hanlin Chen, Ming Lin, Xiuyu Sun, and Hao Li. Nas-bench-
zero: A large scale dataset for understanding zero-shot neu-
ral architecture search. 2021. 2

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neu-
ral architecture search on imagenet in four gpu hours:
A theoretically inspired perspective. arXiv preprint
arXiv:2102.11535,2021. 9

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progres-
sive differentiable architecture search: Bridging the depth
gap between search and evaluation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1294-1303, 2019. 9

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213-3223, 2016. 8

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 6, 8

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

Debadeepta Dey, Shital Shah, and Sebastien Bubeck. Rank-
ing architectures by feature extraction capabilities. In
8th ICML Workshop on Automated Machine Learning (Au-
toML), 2021. 5

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang,
Zhiwu Lu, Jingdong Wang, and Ping Luo. Learning versatile
neural architectures by propagating network codes. arXiv
preprint arXiv:2103.13253,2021. 2,5, 8

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang,
Zhiwu Lu, Jingdong Wang, and Ping Luo. Learning Ver-
satile Neural Architectures by Propagating Network Codes.
https://github.com/dingmyu/NCP, 2023. 8

[15]

(16]

(7]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

6208

Xuanyi Dong and Yi Yang. Searching for a robust neu-
ral architecture in four gpu hours. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1761-1770, 2019. 9

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In Inter-
national Conference on Learning Representations (ICLR),
2020. 2

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan
Liang, Tong Zhang, and Zhenguo Li. Transnas-bench-101:
Improving transferability and generalizability of cross-task
neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5251-5260, 2021. 5

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 8

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440-1448,
2015. 4

Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249-256. JMLR Work-
shop and Conference Proceedings, 2010. 4

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang
Wang. Autogan: Neural architecture search for generative
adversarial networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3224-3234,
2019. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026-1034, 2015. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 1

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997. 1
Mojan Javaheripi, Shital Shah, Subhabrata Mukherjee,
Tomasz L Religa, Caio CT Mendes, Gustavo H de Rosa, Se-
bastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey.
Litetransformersearch: Training-free on-device search for
efficient autoregressive language models. arXiv preprint
arXiv:2203.02094,2022. 4

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25,2012. 1

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In 2011 Inter-

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

national conference on computer vision, pages 2556-2563.
IEEE, 2011. 8

Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8971-8980,
2018. 4

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:
Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 12281-12291, 2021. 1

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu
Marculescu. Zico: Zero-shot nas via inverse coefficient of
variation on gradients. arXiv preprint arXiv:2301.11300,
2023. 1,6

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the loss landscape of neural nets. Ad-
vances in neural information processing systems, 31, 2018.
5

Yuhong Li, Cong Hao, Pan Li, Jinjun Xiong, and Deming
Chen. Generic neural architecture search via regression. Ad-
vances in Neural Information Processing Systems, 34, 2021.
2,3,4

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xi-
uyu Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-
shot nas for high-performance deep image recognition. arXiv
preprint arXiv:2102.01063,2021. 1, 6

Chenxi Liu, Piotr Dollar, Kaiming He, Ross Girshick, Alan
Yuille, and Saining Xie. Are labels necessary for neural ar-
chitecture search? In European Conference on Computer
Vision, pages 798-813. Springer, 2020. 1

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European conference on com-
puter vision (ECCV), pages 19-34, 2018. 9

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055,2018. 1,9

Zhijian Liu, Haotian Tang, Shengyu Zhao, Kevin Shao, and
Song Han. Pvnas: 3d neural architecture search with point-
voxel convolution. arXiv preprint arXiv:2204.11797, 2022.
1

Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen,
and Tie-Yan Liu. Semi-supervised neural architecture
search. Advances in Neural Information Processing Systems,
33:10547-10557, 2020. 8

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie- Yan
Liu. Neural architecture optimization. Advances in neural
information processing systems, 31, 2018. 8

Joe Mellor, Jack Turner, Amos Storkey, and Elliot] Crowley.
Neural architecture search without training. In International
Conference on Machine Learning, pages 7588-7598. PMLR,
2021. 1,6

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou,
Shuang Liang, Huazhong Yang, and Yu Wang. Evaluating

[43]

[44]

[45]

[40]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

6209

efficient performance estimators of neural architectures. Ad-
vances in Neural Information Processing Systems, 34, 2021.
2,4

Jiefeng Peng, Jigi Zhang, Changlin Li, Guangrun Wang, Xi-
aodan Liang, and Liang Lin. Pi-nas: Improving neural ar-
chitecture search by reducing supernet training consistency
shift. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 12354-12364, 2021. 1
Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dolldr. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428—
10436, 2020. 5, 6

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780-4789, 2019. 1, 5,9
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779788, 2016. 1
Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent
neural networks. IEEE transactions on Signal Processing,
45(11):2673-2681, 1997. 1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820-2828, 2019. 1
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, F.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

Linnan Wang, Saining Xie, Teng Li, Rodrigo Fonseca, and
Yuandong Tian. Sample-efficient neural architecture search
by learning actions for monte carlo tree search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.
9

Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and
Rodrigo Fonseca. Alphax: exploring neural architectures
with deep neural networks and monte carlo tree search. arXiv
preprint arXiv:1903.11059, 2019. 9

Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian,
Chunhua Shen, and Yanning Zhang. Nas-fcos: Fast neural
architecture search for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11943-11951, 2020. 1

Yu Weng, Tianbao Zhou, Yujie Li, and Xiaoyu Qiu. Nas-
unet: Neural architecture search for medical image segmen-
tation. IEEE Access, 7:44247-44257, 2019. 1

Colin White, Mikhail Khodak, Renbo Tu, Shital Shah,
Sébastien Bubeck, and Debadeepta Dey. A deeper look at
zero-cost proxies for lightweight nas. In ICLR Blog Track,
2022. https:/ficlr-blog-track.github.i0/2022/03/25/zero-cost-
proxies/. 4, 6

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734-10742, 2019. 1,
4

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,
Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei
Chen, and Lu Yuan. Stronger nas with weaker predic-
tors. Advances in Neural Information Processing Systems,
34:28904-28918, 2021. 8,9

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. Lite transformer with long-short range attention. arXiv
preprint arXiv:2004.11886, 2020. 1

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926, 2018. 9

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. arXiv
preprint arXiv:1907.05737,2019. 9

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao,
and Zheng Ma. Frequency principle: Fourier analy-
sis sheds light on deep neural networks. arXiv preprint
arXiv:1901.06523,2019. 4

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International
Conference on Machine Learning, pages 7105-7114. PMLR,
2019. 2,5

Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3712-3722, 2018. 6

Miao Zhang, Steven Su, Shirui Pan, Xiaojun Chang, Wei
Huang, Bin Yang, and Gholamreza Haffari. Differentiable
architecture search meets network pruning at initialization:
A more reliable, efficient, and flexible framework. arXiv
preprint arXiv:2106.11542,2021. 1

Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10907-10916, 2021. 1
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697-8710,
2018. 1,9

6210

