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Abstract

The existing one-stage multi-object tracking (MOT) al-
gorithms have achieved satisfactory performance benefit-
ing from a large amount of labeled data. However, acquir-
ing plenty of laborious annotated frames is not practical
in real applications. To reduce the cost of human anno-
tations, we propose Heterogeneous Diversity driven Active
Multi-Object Tracking (HD-AMOT), to infer the most infor-
mative frames for any MOT tracker by observing the hetero-
geneous cues of samples. HD-AMOT defines the diversified
informative representation by encoding the geometric and
semantic information, and formulates the frame inference
strategy as a Markov decision process to learn an optimal
sampling policy based on the designed informative repre-
sentation. Specifically, HD-AMOT consists of a diversified
informative representation module as well as an informa-
tive frame selection network. The former produces the sig-
nal characterizing the diversity and distribution of frames,
and the latter receives the signal and conducts multi-frame
cooperation to enable batch frame sampling. Extensive ex-
periments conducted on the MOT15, MOT17, MOT20, and
Dancetrack datasets demonstrate the efficacy and effective-
ness of HD-AMOT. Experiments show that under 50% bud-
get our HD-AMOT can achieve similar or even higher per-
formance as fully-supervised learning.

1. Introduction
As a sophisticated research topic, one-stage multi-object

tracking (MOT) has attracted more research attention in re-

cent years, which simultaneously focuses on pinpointing

multiple objects in each frame and recording their trajecto-

ries in the entire sequence. Despite the great success of deep

learning-based one-stage MOT methods [25, 48, 27, 26, 52,

6, 22], they need a large amount of annotated samples for

training, which requires costly human labor. For example,
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Figure 1. A stimulus example of active learning for one-stage

MOT. There are many similar continuous frames in tracking se-

quences, such as frames 365-368 of MOT17-02 [23], and fully

annotated these frames may have little effect on improving the per-

formance of the tracker. Moreover, objects usually have different

states, such as moving and static states, as shown in the red dotted

box. The moving states usually contain more knowledge than the

static ones, in which case the uniform and random sampling may

fail to capture the diverse visual patterns of tracking sequences.

in the MOT17 dataset [23], a sequence containing only 600

frames requires annotating 18,581 bounding boxes (includ-

ing coordinates and identity labels) for 62 pedestrians. In

addition, there are many similar continuous frames in track-

ing sequences, such as frames 365-368 of the MOT17-02

sequence in Fig. 1, which may have little effect on boost-

ing the performance of the tracker. One way to deal with

the above issue is to randomly or uniformly sample track-

ing sequences for annotation. However, as shown in the red

dotted box of Fig. 1, objects in tracking sequences may

have different motion states, and the moving state contains

more knowledge than the static state, in which case the uni-

form sampling may fail to capture diverse visual patterns.

Moreover, random sampling is easy to yield unstable re-

sults. Therefore, it is essential to develop algorithms to infer

training data more efficiently in one-stage MOT.

Instead of selecting the subset randomly or uniformly,
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active learning (AL) aims to infer the most informative sam-

ples as training data to improve the knowledge of a model,

which is a promising way to select training data more effi-

ciently for one-stage MOT. In the computer vision area, ac-

tive learning has been widely explored for image classifica-

tion [3, 21, 1, 8], object detection [45, 44, 10], semantic seg-

mentation [1, 7, 28, 9], and so on. In these research topics,

the image selection strategies of uncertainty-based [32, 42]

and distribution-based methods [31, 1] become the main-

stream of active learning. However, these AL algorithms do

not directly relate to the performance improvements of the

specific task and usually lead to suboptimal performance.

More notably, they are usually utilized to select independent

image samples, which are prone to achieve poor coverage of

the tracking sequence and produce redundant frames if they

are employed to the one-stage MOT task stiffly and directly.

In particular, since new individuals appear constantly in the

tracking sequence, the distribution bias caused by the poor

coverage and redundant frames may make the tracker un-

able to generalize well for unseen cases.

Furthermore, different from other tasks that distinguish

inter-class objects in each image (such as image classifica-

tion, object detection, etc.), one-stage MOT needs to detect

and associate intra-class objects, e.g., pedestrians belonging

to different individuals. This implies that the active learning

for one-stage MOT is more challenging, because it should

consider not only the discrepancy between frame-level im-

ages, but also the influence of more fine-grained intra-class

diversity in sample selection, which plays a vital role in ob-

ject association in one-stage MOT.

To address the above issues, we formulate the active

learning of one-stage MOT as a Markov Decision Process

(MDP) [36] and design a novel Heterogeneous Diversity

driven Active Multi-Object Tracking (HD-AMOT) frame-

work, which leverages a Diversified Informative Represen-

tation Module (DIRM) and an Informative Frame Selection

Network (IFSN) to learn a frame sampling policy. Specifi-

cally, IFSN is designed to infer a batch of informative and

diverse frames for annotation by receiving the signal char-

acterizing the diversity and distribution of frames and con-

ducting multi-frame cooperation, which can effectively in-

hibit poor coverage and reduce redundant frames. In ad-

dition, to facilitate the inference of benignant frames, we

develop a novel DIRM to characterize the frame-level diver-

sified representation of samples by encoding the geometric

and semantic cues of frames and objects. Besides the frame-

level diversity representation, we also evaluate the set-level

(labeled set and unlabeled set) discrepancy in DIRM, which

dedicates to the acquirement of the training set with the un-

biased distribution.

Our main contributions are summarized as follows: (1)

We propose a novel HD-AMOT for one-stage MOT, which

is formulated as a Markov Decision Process (MDP) and

learns a sampling policy driven by the reward that directly

relates to the tracker performance. To the best of our knowl-

edge, this is the first work that investigates the annotation

budget for one-stage MOT based on active learning. (2) To

infer the benignant frames, we design a diversified informa-

tive representation to characterize the diversity and distribu-

tion of frames, which learns both the set-level discrepancy

and frame-level diversity by encoding the heterogeneous

cues of geometry and semantics. (3) Extensive experiments

are conducted on four datasets to demonstrate the efficacy

and effectiveness of HD-AMOT. Experiments show that our

HD-AMOT can achieve similar or even higher performance

as fully-supervised learning under 50% annotation budget.

2. Related Work
Multi-Object Tracking. MOT is a challenging task due

to the complexity of tracking scenes. The existing works

mainly follow the tracking-by-detection paradigm and two-

stage methods are the mainstream, which regards the detec-

tion and tracking as two independent models [4, 14, 46, 40,

11, 17]. Despite noticeable progress, the two-stage methods

cause a waste of resources and maybe lead to an efficiency

issue because the independent detection and tracking mod-

els are executed separately in these methods. Recently, with

the quick maturity of deep learning[50, 49, 51], one-stage

frameworks for MOT [25, 48, 27, 26, 53, 52, 6, 22, 47] have

begun to attract more research attention, which greatly im-

prove the accuracy and efficiency of tracking. The funda-

mental concept revolves around the simultaneous integra-

tion of object detection and association within a singular

network architecture. For example, CTracker [27] employs

a chaining mechanism that connects paired bounding-box

regression outcomes derived from overlapping nodes. Each

of these nodes spans two consecutive frames. FairMOT

[48] presents a simple yet effective approach based on the

detection architecture CenterNet [13]. Despite the notable

advancements introduced by these methods, their practical

applicability remains constrained by the demanding nature

of high-cost annotations.

To reduce the demand for labeled data, several methods

with less supervision signal such as weakly-supervised and

self-supervised learning [30, 2] can effectively utilize the

unlabeled data to improve the MOT performance. However,

these methods pay more attention to the tracker learning,

and ignore the importance of labeled data selection to im-

prove the tracker performance. In this paper, we design an

active learning approach for one-stage MOT, which could

significantly reduce the annotation cost. To the best of our

knowledge, this is the first work that investigates the anno-

tation budget for one-stage MOT based on active learning.

Active Learning. Active learning is an important ma-

chine learning problem, which has received lots of at-

tention in computer vision, such as image classification
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Figure 2. The pipeline of our proposed HD-AMOT framework. In our method, we perform several iterations until a budget B of labeled

frames is achieved. In the tth iteration, the steps are as follows : (I) A one-stage MOT tracker f t is used to obtain the heterogeneous cues

including semantic feature F f and geometric information Gh, Gb on each frame; (II) The set-level discrepancy and frame-level diversity

are estimated and construct the MDP state-action pair (st, at); (III) The multi-frame cooperation based on (st, at) is performed; (IV) With

the assistance of multi-frame cooperation, IFSN infers N unlabeled frames with high scores to be annotated. Meanwhile, XU
t , XL

t are

updated to XU
t+1, XL

t+1 by displacing newly annotated frames from XU
t to XL

t ; (V) The tracker f t is retrained on XL
t+1 to obtain the

updated f t+1. (VI) The reward rt+1 based on f t and f t+1 is computed on XR to update parameters of IFSN.

[1, 8, 39, 20], object detection [45, 44, 10], semantic seg-

mentation [7, 28, 33], and so on. These methods can be di-

vided into uncertainty-based [32, 42] and distribution-based

methods [31, 1]. For example, [15] exploits the uncertainty

in both the input and output spaces to select the most valu-

able information. [31] defines the problem of active learn-

ing as core-set selection. [32] develops a foundation Learn-

ingLoss++ for the active learning of pose estimation to es-

tablish equivalency between Learning Loss [42] empirically

driven objective and the KL divergence objective. These AL

algorithms are used to select independent image samples for

a specific task yet are not suitable for the video-wise one-

stage MOT task. It is prone to cause the problems such as

poor coverage and redundant frames if we directly apply the

existing AL approaches to one-stage MOT stiffly. Accord-

ingly, we design an active learning framework HD-AMOT

for one-stage MOT, which is formulated as a Markov De-

cision Process and learns a batch frame sampling policy

driven by the reward that directly relates to the performance

of the MOT tracker, which gives consideration to both sam-

pling coverage and efficiency.

MDP of Multi-Object Tracking. As a sequential de-

cision model, Markov decision process is usually applied

in dynamic environments where an agent needs to perform

certain tasks by making decisions and executing actions se-

quentially. In multi-object tracking, several MDP-based

works have been explored [41, 29, 16]. [41] formulates

the online two-stage MOT problem as decision making in

MDPs, where the lifetime of an object is represented us-

ing an MDP model. [29] treats individual objects as agents,

utilizing a prediction network for tracking, while optimiz-

ing tracking outcomes through collaborative interactions

among various agents and their environments, facilitated by

the decision network. In this paper, different from these

methods that employ the MDP to directly solve the detec-

tion and tracking subtask of MOT, we address the annota-

tion budget for one-stage MOT based on active learning by

the designed Markov decision process, and design a diver-

sified informative representation with an informative frame

selection network to enable effective batch sampling under

a specific annotation budget.

3. Our Proposed HD-AMOT

3.1. Overview

In this paper, given an unlabeled video sequence X with

a limited annotation budget B, our HD-AMOT model aims

to learn an optimal sampling strategy that infers and anno-

tates the most informative frames iteratively to maximize

the performance of the tracker f . Specifically, we cast this

AL problem of one-stage MOT by an MDP and adopt the

Q-learning algorithm [24] to solve this problem, where we

introduce an IFSN to infer frames according to the designed

state-action representation (st, at). As shown in Fig. 2, in

our method, the video sequence X is divided into three dif-

ferent subsets XU , XL, and XR. And at each iteration t,
the following steps are executed:

(I) The heterogeneous cues including semantic features

F f and geometric information Gh, Gb of each frame in

the labeled set XL
t and unlabeled set XU

t are obtained by

f t; (II) We estimate the set-level discrepancy and frame-

level diversity in DIRM based on the obtained heteroge-

neous cues, which are regarded as the MDP state-action pair

(st, at); (III) The multi-frame cooperation based on (st, at)
is performed on XL

t and XU
t ; (IV) With the assistance of

multi-frame cooperation, IFSN selects N unlabeled frames
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Figure 3. Illustration of geometric matrices construction process.

(a): binary heatmap; (b): global topology matrix Gh; (c): local

topology matrices Gh1 ∼ GhK ; (d): object scale matrix Gb.

with high scores to be annotated guided by frame clusters.

Meanwhile, the subsets XU
t , XL

t are updated to XU
t+1,

XL
t+1 by moving newly annotated frames from XU

t to XL
t ;

(V) The tracker f t is retrained on XL
t+1 to obtain the up-

dated f t+1; (VI) The reward rt+1 based on f t and f t+1 is

computed on the reward subset XR, which is used to update

parameters of IFSN.

3.2. Diversified Informative Representation

To infer the most informative and representative frames,

we propose a DIRM to compute the state and action of the

designed MDP, which characterizes the diversity and distri-

bution of frames. Specifically, to compensate for the distri-

bution drift between the unlabeled set XU
t and the labeled

set XL
t , we use heterogeneous cues to evaluate the set-level

discrepancy as state st. Moreover, from the perspective of

selecting the unlabeled frame with the potential contribu-

tion to the MOT tracker training, we propose to capture the

frame-level diversity of each unlabeled frame as action at.

Set-level Discrepancy. There are a large number of ob-

jects belonging to different individuals in the tracking se-

quence, and new individuals may appear constantly over

time. To make the trained tracker well generalized to unseen

individuals, it is necessary to generate an unbiased training

set that captures the whole sequence distribution. Based on

this intuition, we propose to narrow the distribution gap be-

tween the unlabeled and labeled sets by evaluating set-level

discrepancy, to ensure the diversity and representativeness

of the selected frames.

Specifically, we consider two key attributes to character-

ize the distribution drifts between the labeled and unlabeled

sets: semantic variation and spatial topological variation.

We collect the global feature from the last feature extrac-

tion layer of f t to obtain the semantic feature F f , which

depicts the general semantic information of the frame. For

the spatial topology Gh, we encode the center of each ob-

ject obtained by the tracker f t into a binary heatmap to rep-

resent the spatial distribution of objects. Considering that

identities of objects in the frames with similar spatial topol-

ogy may be quite different due to the object motion, we

encode the identities into the binary heatmap to obtain the

final Gh, as shown in Fig.3 (a) and (b). In addition, the

performance of the MOT tracker is affected by objects or

background, leading to different tracking quality over vari-

ous local spatial areas. To suppress adverse effects of the

low-quality local areas, we decompose the global spatial

topology Gh into K local parts, which form our final spatial

topology{Gh,Gh1−hK} together with the global topology.

Similarly, the global and local semantic features constitute

the final semantics{F f ,F f1−fK}. In this way, the fea-

ture space Sset = {Gh,Gh1−hK ,F f ,F f1−fK} is formed.

To model the set-level discrepancy between XL
t and XU

t ,

Maximum Mean Discrepancy [37] is adopted to calculate

the set gap for each feature Sm
set in the feature space Sset

as described in Eq. (1). Finally, the state representation

st is defined as the concatenation of all Dm to encode the

distribution drifts between XL
t and XU

t .

Dm =
1

n2
l

∑

i,j

ϕ(pmi , pmj ) +
1

n2
u

∑

i,j

ϕ(qmi , qmj )

− 2

nlnu

∑

i,j

ϕ(pmi , qmj ),

(1)

where Dm is a scalar representing the distribution discrep-

ancy between XL
t and XU

t on Sm
set. p

m and qm denote the

corresponding features of frames in XL
t and XU

t , nl and

nu are numbers of frames in XL
t and XU

t . ϕ(.) is the radial

kernel [37] to measure the distance between two features.

Frame-level Diversity. In this paper, we aim to select

the frames that are beneficial to the tracker training for an-

notation. For this purpose, besides considering the set-level

discrepancy, we also need to explore frame diversity from

different perspectives to infer the most representative and

informative frames. Different from the semantic feature and

spatial topology used to learn set-level discrepancy, finer-

grained cues are desiderated to evaluate the potential con-

tribution of each unlabeled frame. Specifically, besides the

frame-wise spatial topology Gh and semantic feature F f ,

we also consider finer-grained attribute characterizing the

individuation of objects: the scale of bounding boxes Gb.

Its construction process is similar to Gh, except that the

identities representing different individuals are replaced by

the width and height of the corresponding object as shown

in Fig.3 (d), i.e., Gh ∈ R
H×W×1 and Gb ∈ R

H×W×2.

Intuitively, we argue that any one of the geometric fea-

tures Gh, Gb and semantic features F f is the key fac-

tor to determine whether a frame contributes to the perfor-

mance improvement of the tracker. Accordingly, we con-

sider the novelty and prominence of each unlabeled frame

xu based on Sframe = {Gh,Gb,F f}, to form the frame-

level diversity as action at. The novelty of an unlabeled

frame xu
i in XU

t is reflected in the similarities between

xu
i and the labeled frames in XL

t , because the unlabeled

frame with a novel characteristic (such as new individu-

als, different object scales, and postures) usually has low

similarities to labeled frames of XL
t . And the promi-
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nence of xu
i lies in the difference between xu

i and other

unlabeled frames in XU
t , so we expect to select the most

representative frame by recording the similarity distribu-

tion between each unlabeled frame and other frames in

XU
t . Specifically, we introduce histogram-based represen-

tation to learn the novelty and prominence of each unla-

beled frame. Taking xu
i as an example, to represent the nov-

elty of xu
i , we calculate cosine similarities between xu

i and

XL
t on each heterogeneous feature Sm

frame and then ob-

tain the histogram Hnov based on cosine similarities. Sim-

ilar to novelty learning, we learn prominence by recoding

the histogram Hpro based on cosine similarities between

xu
i and XU

t . Finally, the action representation at of xu
i is

defined as {HGh

nov,HGb

nov,HF f

nov,HGh

pro,HGb

pro,HF f

pro}, which

conduces to IFSN to effectively identify and select the in-

formative and representative frames.

3.3. Informative Frame Selection Learning

Inspired by DQN [38], our lightweight IFSN follows an

optimal policy that maximizes the potential performance

gains. Considering the sampling efficiency, we propose a

batch sampling method guided by frame clusters according

to temporal clues. Meanwhile, to restrain the inferior per-

formance caused by redundant frames, we further introduce

the multi-frame cooperation strategy before batch sampling.

Multi-frame Cooperation. There are many similar ad-

jacent frames in tracking sequences, which easily leads

to redundancy in the process of frame selection. To re-

duce redundant frames, we introduce a simple multi-frame

cooperation strategy to model the neighborhood coopera-

tion between the unlabeled frame xu
i and its nearest la-

beled frames. Specifically, we seek the nearest neighbors

xl
v and xl

w of xu
i in XL

t and calculate their actions avt ,

awt . Then we use the fixed-length compact representation

ot =
1
2 (a

v
t + awt ) as an extra action for xu

i . To this end, the

selection made by IFSN becomes:

φt = arg max
at∈At

g(st, at, ot; θ), (2)

where at ∈ At denotes the candidate action in XU
t , and g(.)

is the lightweight IFSN network parameterized by θ.

Batch Frame Selection. The structure of our designed

lightweight IFSN consists of four linear layers, where a lin-

ear layer parameterized by θ1 is used to model the rela-

tion between each unlabeled frame and its nearest neigh-

bors, and three linear layers parameterized by θ2∼4 are em-

ployed to score each unlabeled frame, as described in Eq.

(3), where cat[.] denotes the concatenation operation.

g(st, at, ot; θ) = θ2∼4 (cat [θ1(at, ot), at, st]) , (3)

Intuitively, each unlabeled frame in XU
t can obtain the

corresponding score by IFSN. However, sampling a single

frame in each iteration by Eq. (2) to query annotation is in-

efficient. In this paper, we propose a batch sampling method

guided by frame clusters to sample N frames in each iter-

ation. Based on the intuition that a larger difference ex-

ists between frames with longer time intervals, we divide

the unlabeled frames into N clusters in chronological order

and select the frame for annotation in each cluster indepen-

dently, which is equivalent to labeling a frame in parallel

with N annotators. In this case, φt in Eq. (2) is extended

to consist of N independent sub-selections {θnt }Nn=1, each

with a restricted space An
t , as described in Eq. (4).

φn
t = arg max

at∈An
t

g(st, at, ot; θ), (4)

where at ∈ An
t denotes the candidate action in nth cluster.

IFSN Optimization. In our method, we compute the re-

ward on a subset XR, which is used to evaluate the benefit

of selected frames to the tracker and optimize the frame se-

lection network IFSN. To evaluate the performance of the

tracker more comprehensively, we utilize MOTA [5] and

IDF1 [19] as performance metrics to calculate the reward,

where MOTA is a comprehensive metric to evaluate the de-

tection performance and IDF1 tends to estimate the tracking

ability of a tracker. As described in Eq. (5), the reward rt+1

is defined as the difference of the performance metrics be-

tween ft+1 and ft.

rt = (emota
t+1 + eidf1t+1 )− (emota

t + eidf1t ), (5)

where emota
t+1 and eidf1t+1 are MOTA and IDF1 metrics com-

puted by ft+1, emota
t and eidf1t are evaluated by ft.

With the reward rt+1, we can optimize IFSN to infer the

most informative frames to maximize the reward, leading

to improved tracker performance during each active learn-

ing iteration. More specifically, we train IFSN in a double

DQN formulation [38] by optimizing the loss based on the

temporal difference error [35] as:

LIFSN = (ŷt − g(st, at, ot; θ))
2 , (6)

ŷt = rt+1 + γ g(st+1, at+1, ot+1; θ̂), (7)

where θ and θ̂ are parameters of the IFSN policy network

and off-policy network following the setting of double DQN

[38]. γ denotes a discount factor.

With the described diversified informative representation

in Section 3.2 and informative frame selection learning in

this section, we introduce our entire HD-AMOT as illus-

trated in Alg. 1.

4. Experiment
4.1. Experimental Settings

Datasets. We evaluate our HD-AMOT on MOT15 [18],

MOT17 [23], MOT20 [12], and Dancetrack [34]. MOT15

and MOT17 are widely-used MOT datasets, and they are
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Algorithm 1: HD-AMOT Algorithm.

Input: The sequence X , initial tracker finit and IFSN

ginit, AL procedure rounds Z.

1 Xinit, X
R ← RandomPartition (X);

2 XU
init, X

L
init ← UniformPartition (Xinit);

3 XL
0 ← XL

init, f0 ← update(ginit,X
L
init);

4 while not done do // Episodes
5 for t = 0 to t = Z − 1 do // AL procedure
6 Learn the diversified representation to form the

state and action space;

7 Use IFSN to select frames by Eq. (4);

8 Annotate the selected N frames XS
t ;

9 Update XU
t ,XL

t :

10 XU
t+1 ← XU

t \XS
t , XL

t+1 ← XL
t ∪XS

t ;

11 ft+1 ← update(ft,X
L
t+1);

12 Calculate the reward on XR by Eq. (5);

13 end
14 Update IFSN following Eq. (6);

15 Reset: XL
0 ← XL

init, f0 ← ft+1;

16 end

challenging because of the large variety in object pose,

lighting, viewpoint, etc. In contrast to MOT15 and MOT17,

MOT20 addresses the challenge of highly congested sce-

narios, where the pedestrian density can surge to as high as

246 individuals per frame. Dancetrack is a large-scale MOT

dataset covering scenarios with low distinguishability of ob-

ject appearance and diverse non-linear motion patterns.

Evaluation Metrics. To evaluate the performance of

one-stage MOT, the standard metrics MOTA [5] and IDF1

[19] are adopted for evaluation, which indicate the detection

and association performance of one-stage MOT. Specifi-

cally, MOTA combines three error sources including false

positives, missed targets, and identity switches, and IDF1 is

the ratio of correctly identified detections over the average

number of ground-truth and computed detections.

Implementation Details. In this paper, we adopt the

popular one-stage MOT method FairMOT [48] as the MOT

tracker. Note that the propose algorithm is suitable for any

one-stage MOT tracker. The input frames are resized to

1088 × 608. We set the learning rate of our IFSN to 1e-4

and the discount factor γ in Eq. (7) to 0.9, and the num-

ber of local features K is set to 9 according to experiments.

For each dataset, we randomly select a small sequence in

each video at a ratio of 0.1 to form a reward subset XR.

In the remaining frames, a small amount of frames is uni-

formly sampled as the initially labeled subset XL
init to ini-

tialize the MOT tracker f , and the size is set to 100. For

the semantic information, we extract the feature map from

the last convolutional layer of ResNet34 as the global se-

mantic feature F f ∈ R
512×19×34. For the geometric clues,

we utilize the center coordinates and identities of bounding

Table 1. Ablation study on the design of the diversified informa-

tive representation.

Representation Setting MOTA (%) IDF1 (%)

State w/o Gh,h1−h9 61.73 64.95

Set-level State w/o F f,f1−f9 61.49 64.12

Discrepancy State w/o Gh,F f 62.74 65.21

State w/o Gh1−h9,F f1−f9 62.92 64.55

Frame-level
Diversity

Action w/o HGh
62.83 66.61

Action w/o HGb
62.49 66.23

Action w/o HF f
61.78 64.95

Action w/o H∗
nov 61.25 63.41

Action w/o H∗
pro 62.28 64.16

All HD-AMOT 63.23 66.47

boxes obtained by the MOT tracker to construct the global

spatial topology Gh ∈ R
152×272, and generate the object

scale matrix Gb ∈ R
152×272×2 by the box size. In addi-

tion, the number of clusters N in the batch sampling is set

to 12 for MOT15, MOT17, and MOT20, and is set to 24 for

Dancetrack as it is much larger than other datasets.

4.2. Ablation Study

In this section, to analyze the impacts of different com-

ponents, we conduct ablation studies on the popular dataset

MOT17 following the division strategy in [43]. We run our

experiments 5 times and report the mean performance for

all ablation studies.

Effect of Diversified Informative Representation. We

perform an ablation study with a 20% annotation budget to

evaluate the contribution of our diversified informative rep-

resentation. As IFSN relies on the state (set-level discrep-

ancy) to decide the frame sampling policy, we investigate

the influence of the set-level discrepancy by removing dif-

ferent components individually. Moreover, we also analyze

the effect of the action design (frame-level diversity). As

shown in Tab. 1, our complete diversified informative rep-

resentation gives the best performance in terms of MOTA

and is only slightly inferior to Action w/o HGh

by 0.14% on

IDF1. We speculate that the scale information in HGb

im-

plicitly indicates the identity and topology clues of HGh

, so

the introduction of HGb

weakens the role of HGh

, making

the MOTA of Action w/o HGh

close to HD-AMOT and the

IDF1 slightly higher. Furthermore, removing the compo-

nents of set-level discrepancy or frame-level diversity in the

diversified informative representation degrades the tracking

performance. The largest decrease of MOTA and IDF1 oc-

curs when the score of maximum similarity with labeled

frames Action w/o H∗
nov is removed, which further verifies

the effectiveness of heterogeneous cues evaluating the novel

characteristic of unlabeled frames.

Effect of Informative Frame Selection Network. We

further validate the performance of our designed IFSN in

Tab. 2. We first consider performing the cluster-based batch
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Table 2. Ablation study on the different settings of the Informative

Frame Selection Network.

Model
Multi-frame Batch Sampling MOTA IDF1

Cooperation Bat. Clu. (%)↑ (%)↑
A × � � 62.76 65.52

B � × × 63.07 65.62

C � � × 62.18 64.55

D � � � 63.23 66.47
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Figure 4. Performance comparison evaluated by MOTA and IDF1

metrics with increasing budgets.

sampling without multi-frame cooperation (Model A). Then

we analyze the usage of selecting a single frame in each

AL iteration (Model B). In addition, we also construct the

Model C as IFSN to select a batch of frames in one shot,

where the frames with N highest scores are sampled. Fi-

nally, we present the performance of our cluster-based batch

sampling strategy (Model D). By comparing the results of

Model A, Model D brings performance gains of 0.47% and

0.95% in terms of MOTA and IDF1 metrics, which proves

that multi-frame cooperation plays a positive role in the ac-

tive learning of one-stage MOT. In contrast, Model C gives

the worst performance, which selects multiple frames ac-

cording to the N highest scores. We argue that frames

with higher scores may be similar samples and close to each

other, which easily leads to inefficiency in batch sampling.

To this end, cluster-based batch sampling is introduced, as

it can avoid selecting adjacent frames with higher scores

and learn to sample with better coverage of the underlying

distribution. Notably, selecting a single frame at each iter-

ation in Model B also provides a competitive performance

but still tends to be inferior to our method Model D, and the

time cost of selecting a single frame per iteration is much

higher than our cluster-based batch sampling strategy.

Analysis of Different Budgets. We report the perfor-

mance of our method, random sampling, uniform sampling,

and other existing AL methods such as Coreset [31], CDAL

[1] under different budgets, as shown in Fig. 4. For the

IDF1 metric, ours is slightly inferior to the uniform sam-

pling when the budget is 20% and 40%. We argue that uni-

form sampling can select informative frames for annotation

if a small number of labeled frames is required. However,

when the budget increases, there may be redundancy in the

newly acquired frames by uniform sampling, and training

with these labels does not provide more additional infor-

mation, resulting in the stagnation or even decline of the

performance of IDF1. Notably, our HD-AMOT with the

50% budget achieves similar performance as other methods

with the 80% budget. It reveals that ours can save around

30% labeling efforts on average compared to other sampling

methods. We attribute this to our learned diversified infor-

mative clues and fine-grained object representation, which

can effectively improve the tracking performance.

4.3. Comparison with other AL Methods

To further verify the generalization and effectiveness, we

evaluate the proposed framework HD-AMOT on four diver-

sified MOT datasets in this section.

Results on MOT15. Tab. 3 lists the mean values of

MOTA and IDF1 on MOT15, and Fig. 5 reveals the corre-

sponding standard deviation of MOTA and IDF1. We can

observe that HD-AMOT outperforms all methods by a clear

margin, i.e., AL methods used in other tasks (CDAL [1] and

Coreset [31]) stiffly applied to one-stage MOT can lead to

obvious performance degradation. Notably, although Core-

set achieves the second-best performance on MOTA and

IDF1, it is clear from the standard deviations in Fig. 5 that

Coreset has limited stability. Moreover, the performance

of Coreset on other datasets (MOT17, MOT20, and Dance-

track) is not ideal, which indicates that the direct application

of Coreset in one-stage MOT is unstable.

Results on MOT17. MOT17 is a challenging dataset

with more crowded scenarios, different viewpoints, cam-

era motions, and weather conditions. As shown in Tab.

3, although uniform sampling achieves the best IDF1 on

MOT17 and our HD-AMOT performs slightly lower than it

by a margin of 0.18%, uniform sampling may fail to cap-

ture diverse visual patterns in other datasets due to the lack

of flexibility and adaptability. For example, in MOT15, ours

outperforms uniform sampling by all performance metrics,

which reflects the generalization ability of ours for one-

stage MOT. Moreover, besides object association, the object

detection ability should be considered in one-stage MOT.

Our method, which benefits from learning the sampling pol-

icy driven by tracking performance metrics directly from

data, significantly outperforms uniform sampling by 0.84%

in terms of the detection accuracy metric MOTA.

Results on MOT20. We also use the large-scale dataset

MOT20 to demonstrate the scalability of our HD-AMOT as

shown in Tab. 3. In contrast to the aforementioned datasets,

MOT20 is a recently released dataset that features more

densely populated scenes. We can observe that ours still

achieves the best performance, which demonstrates that our

HD-AMOT can infer informative frames even on a crowded

and complicated dataset.
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Table 3. Mean values of MOTA and IDF1 metrics for different

active learning methods on the test sets of four datasets including

MOT15, MOT17, MOT20, and Dancetrack. Best and second-best

results are shown in red and black, respectively.

Dataset Method
MOTA(%) IDF1(%)

(↑) (↑)

MOT15

Tracker w/ Random 53.28 59.61

Tracker w/ Uniform 54.09 59.50

Tracker w/ CDAL [1] 53.13 58.85

Tracker w/ Coreset [31] 54.70 60.29
Tracker w/ HD-AMOT 55.29 60.64

MOT17

Tracker w/ Random 70.11 69.24

Tracker w/ Uniform 70.40 70.05

Tracker w/ CDAL [1] 69.10 68.71

Tracker w/ Coreset [31] 69.44 68.61

Tracker w/ HD-AMOT 71.24 69.87

MOT20

Tracker w/ Random 58.21 65.37

Tracker w/ Uniform 58.65 65.87
Tracker w/ CDAL [1] 57.59 65.33

Tracker w/ Coreset [31] 56.66 64.86

Tracker w/ HD-AMOT 59.24 66.41

Dancetrack

Tracker w/ Random 80.49 40.67

Tracker w/ Uniform 81.11 41.03

Tracker w/ CDAL [1] 81.36 41.16
Tracker w/ Coreset [31] 81.13 40.47

Tracker w/ HD-AMOT 81.94 41.93
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Figure 5. Standard deviations of MOTA and IDF1 metrics for dif-

ferent active learning methods on the test sets of four datasets in-

cluding MOT15, MOT17, MOT20, and Dancetrack.

Results on Dancetrack. Dancetrack is a larger and more

challenging dataset for group dancing scenes, where hu-

mans have similar appearance, diverse motion, and extreme

articulation. We provide the performance evaluation results

on the large-scale Dancetrack in Tab. 3. It can be observed

that our HD-AMOT still achieves the best MOTA and IDF1

performance. Notably, from the perspective of sampling

stability in Fig. 5, although uniform sampling can obtain

a low standard deviation of MOTA, it leads to a very high

standard deviation of IDF1 due to failure to capture infor-

mative frames that are helpful to object association. By con-

trast, our proposed HD-AMOT can maintain stable MOTA

and IDF1 performance in multiple samplings.

Furthermore, we give the performance comparison be-

tween our HD-AMOT with a 50% budget and full supervi-

sion in Fig. 6. Our active learning framework achieves sim-
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Figure 6. Performance comparison between our HD-AMOT with

a 50% budget and full supervision on MOT15, MOT17, MOT20,

and Dancetrack datasets.

ilar or even higher performance compared with the tracker

with fully-supervised training. For instance, we exceed

the full supervision by a gain of 2% on MOTA and 0.8%

on IDF1 for MOT15. These results implicitly prove that

there are many similar frames in MOT sequences, and these

similar frames bring limited progress in tracking perfor-

mance. Our proposed HD-AMOT learns an optimal sam-

pling policy by the heterogeneous diversity representation

and a Markov decision process, which can infer informa-

tive frames that can most benefit the tracker, thus effectively

improving the performance of the tracker. In summary, the

proposed method can provide a consistent gain for the MOT

tracker across datasets.

5. Conclusion

In this paper, we propose a novel framework HD-AMOT

to investigate the annotation budget for one-stage MOT. It is

formulated as an MDP and learns a frame sampling policy

driven by the reward that directly relates to the performance

of the tracker. HD-AMOT learns the diversified informa-

tive representation of frames and achieves effective cluster-

based batch frame selection guided by multi-frame coop-

eration. We conduct extensive ablation studies to verify

the design of our framework and compare our performance

with random, uniform sampling, and several existing active

learning works on four datasets including MOT15, MOT17,

MOT20, and Dancetrack. The experimental results demon-

strate the efficacy and effectiveness of our HD-AMOT.
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