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Abstract

Detecting out-of-distribution inputs for visual recogni-
tion models has become critical in safe deep learning. This
paper proposes a novel hierarchical visual category mod-
eling scheme to separate out-of-distribution data from in-
distribution data through joint representation learning and
statistical modeling. We learn a mixture of Gaussian models
for each in-distribution category. There are many Gaussian
mixture models to model different visual categories. With
these Gaussian models, we design an in-distribution score
function by aggregating multiple Mahalanobis-based met-
rics. We don’t use any auxiliary outlier data as training
samples, which may hurt the generalization ability of out-
of-distribution detection algorithms. We split the ImageNet-
1k dataset into ten folds randomly. We use one fold as the
in-distribution dataset and the others as out-of-distribution
datasets to evaluate the proposed method. We also con-
duct experiments on seven popular benchmarks, including
CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O,
and OpenImage-O. Extensive experiments indicate that the
proposed method outperforms state-of-the-art algorithms
clearly. Meanwhile, we find that our visual representation
has a competitive performance when compared with fea-
tures learned by classical methods. These results demon-
strate that the proposed method hasn’t weakened the dis-
criminative ability of visual recognition models and keeps
high efficiency in detecting out-of-distribution samples.

1. Introduction

Modern deep neural networks have shown strong gen-

eralization ability when training and test data are from the

†indicates corresponding authors.

same distribution [44, 18, 51, 10, 33]. However, encoun-

tering unexpected scenarios is inevitable in real-world ap-

plications. Thus assuring that training and test data share

the same distribution becomes problematic. In applications

like autonomous driving [3, 4] and medical image anal-

ysis [55, 14, 43], it is critical for models to identify in-

puts beyond their recognition capacity – known as out-of-

distribution (OOD) detection. OOD detection algorithms

can enable the system to warn humans promptly in many

safety-related scenarios. Moreover, it has become an im-

portant research topic in the research community of safe ar-

tificial intelligence [21, 29, 23, 32, 56].

Many popular OOD detection methods aim to build

probability models to describe training distributions [29, 56,

46, 24, 23]. With these probability models, they built a

score function that can calculate in-distribution scores for

test samples. These in-distribution scores reflect whether

these samples fall into a given distribution. Then the test

sample can be evaluated by the score function to decide

whether it is an OOD sample or not. Thus modeling fea-

tures of in-distribution data become extremely important.

Previous works [29, 16, 5, 12, 38] build a distribution over

the whole training data. Since training images may come

from various visual categories, the decision boundary be-

tween In-Distribution (InD) and OOD data becomes ex-

tremely complex. To solve this problem, subsequent stud-

ies [24, 7, 15, 56] decomposed the whole dataset into sev-

eral subgroups to simplify the decision boundary. Although

representative algorithms like MOS [24], have gotten im-

pressive performance in identifying OOD samples, they

failed to detect near OOD samples. Because when different

visual categories are grouped together, the OOD decision

boundary will become even more uncertain.

A typical framework for out-of-distribution detection in-

volves two key steps: 1) learning a compact feature rep-
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resentation that can fit probability models easily; 2) mod-

eling features of in-distribution data in complex distribu-

tions accurately. The above two problems are mutually con-

nected because more compact features will make modeling

the data distribution easier, and stronger probability model-

ing techniques will exploit fewer restrictions on represen-

tation learning. However, achieving the above goals is dif-

ficult, even when there are a lot of breakthroughs in deep

learning. Because if training samples from the same cate-

gory are too close in the feature space, it will usually lead to

overfitting. Meanwhile, in-distribution samples may come

from different visual categories that have large variations in

appearance and semantic information, which makes model-

ing complex training distributions become challenging even

for excellent statisticians.

In this paper, we propose a new out-of-distribution detec-

tion framework, called hierarchical visual category model-
ing, to solve the above two issues simultaneously. We hold

an assumption that given a training set that contains multi-

ple visual categories, we can learn a probability model for

every category independently. The out-of-distribution de-

tection problem can be solved easily by aggregating proba-

bility models of known categories. Our motivation is that

decomposing the whole dataset into subsets and model-

ing each category independently can avoid finding com-

mon characteristics shared by different categories. How-

ever, modeling an individual visual category is still chal-

lenging since classical supervised learning won’t lead to

compact feature representation. Thus, for each input sam-

ple, we need to force its feature representation to match the

corresponding statistical model. That means we need to

jointly conduct density estimation and representation learn-

ing. If we can jointly learn visual representations and op-

timize statistical models end-to-end, we can get good fea-

ture representations falling into distributions of the corre-

sponding visual categories. Besides, we exploit knowledge

distillation as done in [6] to learn robust feature represen-

tation. In this way, we can describe the complex training

distribution with multiple Gaussian mixture models while

not impairing the generalization ability of visual features.

In practice, to learn visual concepts that are in com-

plex distributions, we build a Gaussian mixture model

(GMM [39]) for each visual category. Given input samples,

we extract their deep features and project these features into

a high-dimensional attribute space. Different from classi-

cal Gaussian mixture models that send the same input into

K different Gaussian models, we divide the attribute space

into multiple groups and build a Gaussian model in each

group independently. This strategy can give every attribute

group a clear learning target and lead to better convergence.

Experimental results indicate that this strategy works quite

well. After the visual representation learning and statisti-

cal model parameters optimization, we can directly aggre-

gate these statistical models to judge whether a test sample

comes from the training distribution or not. To evaluate our

OOD detector, we split ImageNet into ten folds randomly

and select one of these splits as the training set and all other

splits as the OOD dataset to conduct extensive tests. Exper-

iments indicate that the proposed method has a strong abil-

ity to identify OOD samples. We also evaluate our method

on seven popular OOD benchmarks. Experimental results

demonstrate that the proposed method not only can identify

OOD samples efficiently but also improves the discrimina-

tive ability of learned visual representations.

The contributions of this paper are summarized as fol-

lows:

• We introduce a new out-of-distribution detection

scheme, called hierarchical visual category modeling
to conduct joint representation learning and density

estimation. It provides a new perspective for out-of-

distribution detection to learn visual representation and

probability models end-to-end.

• We exploit multiple Gaussian mixture models to model

visual concepts in complex distributions. Visual at-

tributes are divided into subgroups and modeled by

different Gaussian components, which makes param-

eter learning much more efficient.

• We conducted comprehensive experiments and ab-

lation studies on popular benchmarks to investigate

the effectiveness of the proposed method. Experi-

ments demonstrated that our out-of-distribution detec-

tion models achieve better performance clearly when

compared with previous methods.

2. Related Work
Out-Of-Distribution Detection. Out-of-distribution detec-

tion aims to distinguish out-of-distribution samples from

in-distribution data. Numerous methods have been pro-

posed for OOD detection. Maximum softmax probability

(MSP) [21] has been recognized as a strong baseline by us-

ing the maximum score across all classes as an OOD score.

ODIN [30] improves MSP by perturbing the inputs and ad-

justing the logits via rescaling. Gaussian discriminant anal-

ysis has been employed in [29, 56] to detect OOD sam-

ples. ReAct [45] uses rectified activation to reduce model

overconfidence in OOD data. Shama et al. in [42] utilized

Gram matrices to measure feature correlations for OOD de-

tection. Bibas et al. in [2] proposed pNML regret to de-

tect OOD samples with a single-layer neural network. The

Generalized-ODIN approach [23] decomposes the confi-

dence of class probability using a dividend/divisor structure

to incorporate prior knowledge. Another promising line of

work focuses on designing new learning objectives to train
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Figure 1. Illustration of the training pipeline of hierarchical visual category modeling, written as HVCM. In HVCM, we jointly learn the

visual representation and parameters of probabilistic models. We get two different views of an input image and send the outputs into a

knowledge distillation framework (DINO [6]). Image representations are projected into a high-dimensional attribute space. Then these

attributes are divided into different groups and pass SoftMax functions to get attribute distributions. We match attributes in each group

with stored attribute centers of the target visual category. The whole model is trained in an end-to-end manner.

deep models from scratch. Leave-out Classifiers [52] intro-

duces a margin loss to ensure that InD and OOD samples are

separated in the feature space. Lee et al. in [28] proposed

a novel confidence loss to give lower confidence for OOD

samples. There are also some methods [58, 41, 35] designed

to conduct OOD detection based on generative models. Un-

like these methods, our proposed method jointly conducts

representation learning and density estimation to improve

the OOD detection performance and keep the learned fea-

ture with strong discriminative ability.

Density Estimation in Deep Learning. Density estima-

tion tries to describe the probabilistic density distribution

of observed data accurately and has been investigated in

deep learning for a long time [47, 11, 31]. In [1], Chong

et al. employed variational autoencoders for anomaly de-

tection, where the reconstruction probability was used to

compute the anomaly score of each sample. Papamakarios

et al. [36] proposed a novel method for density estimation

based on masked autoregressive flow. Zhou et al. [62] ex-

tended variational autoencoders by incorporating a mixture

of Gaussians to model the latent space distribution, allow-

ing for more flexible and expressive representations. Yang

et al. [13] combined Flow-based generative models with

generative adversarial networks for density estimation and

sample generation. Zhao et al. [11] used discrete latent vari-

ables to conduct density estimation, which has been applied

to many research topics in natural language processing and

image processing. In this paper, we build probabilistic mod-

els that can be jointly learned with deep networks. We wish

latent representations of the visual categories could easily

be modeled by Gaussian mixture models even when com-

plex distributions exist. Besides, we do not use post-hoc

methods to conduct feature learning and density estimation

separately. We aim to use the probabilistic model to guide

the feature-learning process of deep networks.

3. Method

3.1. Framework

State-of-the-art methods [21, 30, 29, 24, 46, 32] typically

assume all InD data follow the same distribution. How-

ever, such an assumption will lead to the decision bound-

ary of an OOD detector being doped with some uncertain

space. In this paper, we avoid modeling the whole InD

dataset and only focus on independently modeling each ob-

ject category’s distribution. We propose hierarchical vi-

sual categories modeling to achieve this goal while main-

taining high classification accuracy. In hierarchical visual

categories modeling, we first project image features into

a high-dimensional attribute space (usually 8192 dimen-

sions). These attributes can be grouped into multiple sub-

visual concepts as components of an image category which

can be easily modeled by Gaussian distributions. Then

combinations of multiple sub-visual concepts (abbreviated

as sub-concepts) can be grouped to describe a more com-

plex visual concept of an in-distribution category. Since we

define visual categories based on sub-visual concepts, sim-

ply modeling distributions of these sub-concepts and de-
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scribing visual categories with these sub-concepts hierar-

chically can model complicated training distributions.

Formally, given a visual recognition model f , it maps

an input image x with label y to a high-dimensional fea-

ture vector z ∈ R
q . As described above, we project z

into an attributes space S ∈ R
d with a higher dimension

and get an attribute description a. Attributes in a can be

grouped into multiple attribute subgroups {ai}Gi=1 where

ai ∈ Si ⊂ R
d/G and i ∈ {1, 2, . . . , G}. For images

from a visual category c, we assume that attributes in their

i-th attribute group follow a simple Gaussian distribution

N (μc
i ,Σ

c
i ), where μc

i and Σc
i are the mean and variance re-

spectively. Since attributes are divided into G groups, we

will have G different Gaussian distributions for each visual

category. The benefits of dividing the whole attribute space

into several subspaces come from two folds: (1) modeling

attribute distributions in these groups becomes easier; (2)

assemble of distributions in these attribute groups can de-

scribe complex distributions, which will lead to more ac-

curate decision boundaries. To combine all attributes to

describe every visual category, our OOD detector learns

weights {wc
i }Gi=1 of all attribute groups through exponen-

tial moving averages. Therefore, for each in-distribution

class c, we can model the corresponding visual concept in a

probability perspective with a mixture of Gaussian models:

p (x; c) =

G∑
i=1

wc
iN (ai;μ

c
i ,Σ

c
i ), (1)

where wc
i ∈ R,μc

i ∈ R
d/G,Σa

i ∈ R
d/G×d/G and N (·)

means a normal distribution. We build a Gaussian mixture

model for each class and get C different Gaussian mixture

models. Then, our proposed HVCM focuses on training

deep neural networks to learn image features that follow

the above distributions and parameters of these probability

models jointly.

With the above Gaussian probability models, given a test

sample x′, we define the score function g(x′;wc,μc,Σc)
to measure whether it belongs to the c-th visual category

using the learned probability density function. Here, wc =
{wc

i }Gi=1, μc = {μc
i}Gi=1 and Σc = {Σc

i}Gi=1. This score

function can be used as a reliable metric to detect OOD sam-

ples:

h(x′) =

⎧⎨
⎩
InD, if min

c
g(x′;wc,μc,Σc) ≥ γ,

OOD, if min
c

g(x′;wc,μc,Σc) < γ,
(2)

where γ are thresholds to be determined in subsequent sec-

tions. Eq. (2) indicates that we use the minimal InD score

among all C categories to make the final decision.

Our framework is illustrated in Figure 1, where there are

two steps: (1) jointly learn deep features that fit our proba-

bility models and parameters of these models; (2) calculate

the InD score based on a set of Gaussian mixture models as

the metric for out-of-distribution detection. In the following

subsections, we give more details.

3.2. Joint Visual Representation Learning and Pa-
rameter Optimization of Probability Models

To learn visual representations that follow Gaussian mix-
ture models and keep their discriminative ability at the
same time, we exploit the knowledge distillation frame-
work DINO [6] to perform the joint learning. As shown
in Figure 1, for an image x, we sample ten different views
of x and send them into teacher and student branches si-
multaneously to perform self-distillation. During knowl-
edge distillation, we project ResNet50 [19] features in 2048
dimensions into an attribute space with dimension d(=
8192). Apart from the learning objective produced by self-
distillation, we force the attributes of each class to follow
a class-specific Gaussian mixture model. We divide the at-
tributes a ∈ R

d of x into G groups to learn the Gaussian
mixture model parameters. However, in practice, it’s too
hard to directly learn the mean and variance of Gaussian
models. We follow He et. al [20] to learn attribute cen-

ters {μc
i}Gi=1 of the c-th category (the image label y is c).

A linear projection layer is exploited to predict the weights
{wc

i (x)}Gi=1 of x on all G attribute groups. Our learning
objective can be written as follows:

L = LKD + α

G∑

i=1

KL(ai||μc
i ) + β

T∑

i=1

wc
i (x)KL(μc

i ||ai)

(3)

where LKD stands for the cross entropy loss in self-

distillation, KL stands for the Kullback-Leibler(KL) diver-

gence, and α and β are hyperparameters. The reason why

we exploit two KL divergences is that experiments indi-

cate that the term KL(ai||μc
i ) will favor learning attribute

centers and the term KL(μc
i ||ai) is more suitable to learn

image attribute descriptions and group weights. Note that

softmax operations normalize attributes and their learnable

centers in each group before calculating learning objectives.

With the learning objective in Eq. (3), student network

parameters θs, and weights {wc
i }Gi=1 and attribute centers

{μc
i}Gi=1 of all groups are learnt at the same time. They are

updated using the following equations:

θt+1
s = θts − γ1

∂L
∂θts

, (4)

μc,t+1
i = μc,t

i − γ2
∂L
∂μc,t

i

, (5)

wc,t+1
i = (1− γ3)w

c,t
i + γ3w

c
i (x), (6)

where γ1, γ2 and γ3 are the learning rates. γ1, γ2 control the

gradient update speed, while γ3 controls the updating speed

of the group weights. Following He et. al [20], θs, {wc}Cc=1

and {μc}Cc=1 are initialized with Gaussian noises. We use
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Figure 2. Illustration of attribute group visualization and Maha-

lanobis distance distribution. Both attribute groups are visual-

ized by t-SNE [49]. The colors encode different in-distribution

data(ImageNet), and out-of-distribution features(SUN) marked as

gray points. Models are trained on ResNet-50 [18] using DINO(a)

and HVCM(b).

Adam optimizer [25] with momentum to update both θs and

{μc}Cc=1. While the attribute weights are learned through

exponential moving averages [17].

3.3. Out-of-Distribution Detection based on Proba-
bility Models in Hierarchy

When the training of our hierarchical probability model

converges, we will get visual attributes that follow learned

Gaussian distributions hierarchically for in-distribution

samples. Meanwhile, we also get weights and centers of

all attribute groups for each class. However, the mean at-

tributes are updated frequently during the training and are

thus not suitable to be used as group centers. So we need

to recalculate the attribute centers for each visual category.

Given an in-distribution visual category c, we estimate the

mean vector and covariation matrix of the i-th attribute

group:

μc
i =

1

Nc

Nc∑
m=1

am
i (7)

Σc
i =

1

Nc − 1

Nc∑
m=1

(am
i − μc

i )(a
m
i − μc

i )
�, (8)

where Nc notes the number of samples in the c-th class, and

am
i is the sub-attribute vector of the m-th sample. With

these weights, means, and covariances, we can describe

each visual category in the hierarchy accurately. We try

to use the probability density function in Eq. (1) as the

in-distribution function. However, we will encounter the

problem of numerical overflow when calculating the deter-

minants of covariance matrices as [48]. Instead, we com-

pute the Mahalanobis distance between the i-th sub-visual

attributes a′
i of a test sample x′ and the corresponding

attribute center μc
i to measure the likelihood of these at-

tributes belongs to the target category:

M c
i (x) = −(a′

i − μc
i )

� (Σc
i )

−1
(a′

i − μc
i ). (9)

The above equation gives the in-distribution measure for

one attribute group. While, for every category, we have

multiple attribute groups and need to assemble related in-

distribution measures to get the class-level in-distribution

score. Since we have gotten the weights of attribute groups

for each category, we can easily assemble them and get the

class-level score function:

g(x′;wc,μc,Σc) =
G∑
i=1

wc
iM

c
i (x

′). (10)

With this score function, we can easily get the in-

distribution score of a test sample on each visual category.

Since there are C categories in the whole in-distribution

dataset, we get the maximal in-distribution score across dif-

ferent visual categories as the in-distribution score on the

whole dataset:

g(x′) = max
c

g(x′;wc,μc,Σc). (11)

A high in-distribution score g(x′) indicates that the seman-

tic attributes of a test sample lie very close to one or multi-

ple in-distribution visual categories(as shown in Figure 2).

On the contrary, if a sample does not belong to the previ-

ously modeled categories, it will get a low in-distribution

score. We follow Eq. (2) to set thresholds to judge whether

a sample is an out-of-distribution sample. In the experiment

section, we discuss how to set these thresholds.

4. Experiments
4.1. Experimental Setup

In-distribution Datasets. We use ImageNet-1K [40] and

CIFAR10 [27] as our in-distribution datasets. ImageNet-1K

is a large-scale visual recognition dataset containing 1000

object categories and 1281167 images. We split it into 10

folds randomly and ensured each fold contain 100 object

categories. Since our computation resources are limited,

we randomly select one fold as the in-distribution dataset.

There other nine folds are used as OOD datasets as other

popular benchmarks to test the performance of the pro-

posed method in detecting near OOD samples. For CI-

FAR10 [27], there are 60000 color images in 10 classes.

We conduct OOD algorithm evaluation as previous meth-

ods [30, 9, 46, 32, 45, 54].
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Table 1. OOD detection performance comparison of HVCM and existing methods. All comparison methods rely on ResNet-50 trained

with cross-entropy loss. * indicates that the method is fine-tuned on InD data. ↑ indicates larger values are better, and ↓ is the opposite.

Bold numbers are superior results. All values are percentages.

Method
OOD Datasets Average InD AcciNaturalist SUN Places Textures

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP [21] 68.12 87.48 58.59 89.76 59.53 89.18 72.66 82.71 64.73 87.28

85.74

ODIN [30] 55.78 85.92 60.47 83.83 60.94 88.06 64.06 81.28 60.31 84.77

Maha [29] 97.00 55.12 98.80 51.93 97.20 50.52 20.00 94.99 78.25 63.14

Energy [32] 58.91 86.45 27.03 93.44 38.75 91.51 56.25 87.26 45.24 89.67

GODIN* [23] 72.00 79.86 60.09 84.58 64.94 82.30 39.50 89.28 59.13 84.01

MOS* [24] 52.94 91.41 67.78 86.82 71.31 84.38 73.65 80.56 66.42 85.79

ReAct [45] 58.48 82.60 78.18 69.11 86.33 59.84 50.53 87.03 68.38 74.65

HVCM(Ours) 21.56 92.19 17.20 94.44 19.98 93.62 29.22 90.68 21.99 92.73 88.28

Table 2. Evaluation on more challenging detection tasks. * indi-

cates that the method is fine-tuned on InD data. ↑ indicates larger

values are better, and ↓ is the opposite. Bold numbers are superior

results. All values are percentages.

Method ImageNet-O OpenImage-O
FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP [21] 72.50 83.33 89.11 57.99

ODIN [30] 73.44 71.03 64.06 79.88

Maha [29] 54.40 79.30 59.20 77.62

Energy* [32] 66.56 81.06 62.34 84.61

GODIN* [23] 71.55 79.89 73.57 77.27

MOS* [24] 87.40 64.87 66.78 81.42

ReAct [45] 87.05 64.15 84.17 64.30

HVCM(Ours) 42.86 86.72 28.58 90.26

Out-of-distribution Dataset. On ImageNet, we follow

Huang et al. [24] to test our methods and use Tex-

ture [8], iNaturalist [50], Places365 [61], and SUN [57])

as OOD test sets. To further explore the limitation of

our approach, we evaluate our method on another two

OOD datasets, OpenImage-O [26] and ImageNet-O [22].

For CIFAR10, as in [46, 32, 45, 54], we selected eight

widely-used datasets, including Texture [8], SVHN [34],

Places365 [61], iSUN [59], LSUN-Crop [60], LSUN-

Resize [60],ImageNet-Resize [40], and ImageNet-Fix [40]

as our test sets. Besides, to test the ability of HVCM to

identify near OOD datasets, we use the remaining nine Ima-

geNet subsets as the OOD test sets. Note that since our eval-
uation on ImageNet differs from previous methods [24, 45],
we implement these algorithms with open source provided
by authors and follow standard experimental settings.
Evaluation Metrics. We employ the commonly used met-

rics in OOD detection [24, 45] to evaluate our approach, in-

cluding AUROC, FPR95 and InD Acc. AUROC stands for

the area under the receiver operating characteristic curve,

FPR95 is short for TPR@FPR95 and represents the false

positive rate when the true positive rate is 95%, and InD

Acc is the classification accuracy of in-distribution data.

Training Details. We utilize ResNet-50 [19] as the feature

backbone for ImageNet and the dimension of the attribute

space is set to 8192. The training is finished in 300 epochs.

On CIFAR10, we use ResNet-18 [19] as our feature back-

bone, and the dimension of the attribute space is set to 1024.

The training on CIFAR10 is finished in 200 epochs. The

number of attribute groups is set to 32, and α, β, γ1, γ2, and

γ3 are set to 1, 0.1, 1, 1 and 1×10−4, respectively. Updating

μ too fast can lead to the oscillation of group centers, neg-

atively influencing the precision of probabilistic modeling.

So we utilize a smaller β than α to update μ. All the hyper-

parameters are tuned according to the experimental results.

We employ SGD with a momentum of 0.9, an initial learn-

ing rate of 0.1, and a batch size of 128. The learning rate

is reduced by a factor of 10 at 50% and 75% of the total

training epochs. We train all backbones from scratch using

random initialization. All experiments are performed us-

ing PyTorch [37] with default parameters on four NVIDIA

GeForce RTX 3090.

4.2. Comparison with State-of-the-Art Algorithms

Standard evaluation on ImageNet. We compare our

HVCM with seven popular OOD detection methods, in-

cluding MSP [21], ODIN [30], GODIN [23], Maha [29],

Energy [32], MOS [24], and ReAct [45]. For datasets that

describe objects or scenes, such as SUN, Places, and iNat-

uralist, HVCM achieves better AUROC and FPR95 met-

rics. When we summarize the results of all four datasets,

HVCM achieves 21.99% on FPR95 and 92.73% on AU-

ROC, which outperforms the previous best method En-

ergy [32] by 23.25% and 3.06%. This is a significant im-

provement, which demonstrates that end-to-end training is

very important to get good results. When compared to

Maha [29], our proposed method exhibits inferior perfor-

mance in terms of both FPR95 and AUROC. This observa-

tion suggests that our method is less effective in describing

textures. We attribute this limitation to the fact that tex-

tures often encompass numerous repeated patterns, which

differ from the characteristics required for general object
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Table 3. Comparison of OOD detection performance of HVCM and existing methods on CIFAR10 dataset. All compared methods use

ResNet-18 trained with cross-entropy loss except our proposed method, which uses HVCMLoss. The performance is evaluated based on

AUROC (A) and FPR95 (F). ↑ indicates larger values are better and ↓ indicates the opposite. Bold numbers indicate superior results. All

values are expressed in percentages.

Method
OOD Dataset Average

Texture SVHN Places365 iSUN LSUN(C) LSUN(R) ImageNet(R) ImageNet(F)
F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓ A↑

CELoss

MSP 56.47 90.20 58.40 90.56 51.86 91.98 53.84 91.64 46.22 92.74 49.10 92.48 59.65 89.35 59.90 89.40 54.43 91.04
ODIN 40.37 91.98 27.82 93.28 31.80 94.23 17.59 96.60 25.23 95.31 14.74 97.21 27.18 94.65 45.26 90.62 28.75 94.24
Gram 10.81 97.73 2.58 99.39 30.15 93.37 1.11 99.76 13.91 97.03 0.52 99.86 1.61 98.38 66.94 82.02 15.95 95.94
Gram+pNML 7.18 98.50 1.63 99.60 23.21 95.13 0.83 99.80 9.42 98.00 0.42 99.88 1.24 98.76 57.90 85.53 12.73 96.90

HVCMLoss HVCM(ours) 1.88 99.31 1.32 99.47 0.95 99.54 0.65 99.71 0.77 99.66 0.51 99.96 1.80 99.20 4.77 98.19 1.58 99.38
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Figure 3. HVCM performance comparison as the increasing dis-

tances between InD and OOD data.

recognition. It is important to note that our method only

utilizes features from the last layer of the network, while

Maha [29] leverages features from both intermediate and

deep network layers. However, although our results are

worse than Maha [29], we are better than all the other meth-

ods. This still indicates that the proposed method is very ro-

bust in identifying different types of outliers. Furthermore,

we build a cosine classifier with the learned attribute centers

for image classification. We got 88.28% accuracy which is

2.57% higher than our supervised learning baseline. This is

solid evidence to show that our proposed method can model

the InD data accurately and ensure the learned features keep

high discriminative ability simultaneously.

Standard evaluation on CIFAR10. We performed a more

conventional OOD detection task on CIFAR10. This exper-

iment aims twofold: firstly, to demonstrate that our method

is not dependent on self-distillation (DINO [6]), and sec-

ondly, to validate the effectiveness and robustness of our

HVCM. Table 3 compares our method with several clas-

sic and top-performing algorithms. All comparison meth-

ods use ResNet-18 as the main backbone network and are

trained with cross-entropy loss, while our method uses only

the loss function in Eq. (3). As shown in Table 3, the

proposed method outperforms the previous best methods

Gram [42] and pNML [2] on both average FPR95 and AU-

ROC obviously. These results demonstrate the proposed

method can perform well even on small datasets. Mean-

Table 4. The performance of HVCM with varying numbers of

group centers G. Results are averaged across four standard OOD

datasets, consistent with the main results.

Concepts Number FPR95↓ AUROC↑

G=8 24.37 91.73

G=16 23.07 92.24

G=32 21.99 92.73

while, there is no self-distillation exploited, which indicates

our joint representation learning and statistical modeling is

independent of self-supervised learning algorithms [6].

Results on more challenging OOD datasets. To over-

come the limitations of current OOD benchmarks [53] and

evaluate the robustness of our approach against adversar-

ial attacks, we conducted experiments on two challenging

datasets, namely OpenImage-O [26] and ImageNet-O [22].

As shown in Table 2, HVCM achieves the highest AUROC

and lowest FPR95 among all methods on the OpenImage-O

dataset. Although ImageNet-O contains adversarial exam-

ples and is more challenging, HVCM still outperforms other

methods on this dataset.

Results on near-to-far OOD datasets. To investigate the

ability of the proposed method to detect near OOD samples,

we construct 9 OOD test sets with the remaining ImageNet

images. We rank the semantic distance between the remain-

ing 900 visual categories with the 100 categories in the InD

dataset. We use the average cosine distance as the measure

and construct 9 different OOD test sets. Details are intro-

duced in the supplementary material. For convenience, we

denote these datasets from OOD 1 to OOD 9. The experi-

mental results are depicted in Figure 3, and several samples

are displayed in Figure 4. We can find that the proposed

method achieves good AUROC even when the test set is

very close to the InD dataset. When the test sets become

farther, FPR95 decreases quickly, which indicates the pro-

posed method is very sensitive to the semantic distances of

OOD datasets.
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InD data OOD 1 OOD 2 OOD 3 OOD 4 OOD 5 OOD 6 OOD 7 OOD 9OOD 8

Figure 4. Each dataset exhibits displayed two categories of images. The leftmost samples belong to the InD dataset, while the categories

on the right correspond to nine OOD datasets arranged in ascending order of distance. It can be observed that the gap between the OOD

samples and InD samples gradually widens as the distance increases.

Table 5. A set of ablation results about HVCM. The top row inves-

tigates the effect of using MSE, KL divergence, or JS divergence

on the model performance; the bottle row compares the perfor-

mance of different OOD detection methods. Results are averaged

across four standard OOD datasets following the main results.

Strategy Ablation FPR95↓ AUROC↑

Learning Objective
L2 23.59 92.26

KL 22.99 92.58

JS 21.99 92.73

InD Distance

Cosine 66.37 84.06

Linear 36.77 86.59

Maha 21.99 92.73

4.3. Ablation Study

Number of attribute groups. We varied the number of

attribute groups from 8 to 32 to analyze the components in

Gaussian mixture models. In Table 4, we find a positive cor-

relation between the number of attribute groups and model

performance, with the best performance achieved when G is

set to 32. We also try to set G to bigger numbers and list the

results in the supplementary material. However, more at-

tribute groups will lead to bigger correlation matrices when

computing the InD score. Thus, we finally set G to 32 to

balance performance and inference speed.

Choice of learning objectives. The first row of Table 5 in-

vestigates how the choice of the learning objective influence

the performance of HVCM. We test three learning objec-

tives, including the L2 loss, JS divergence loss, and KL di-

vergence loss. The results show that compared with the L2

loss and KL divergence loss, the JS divergence loss achieves

the lowest FPR95, demonstrating its superiority for statisti-

cal modeling. We attribute this to the fact that the group

centers and features need to learn from each other, and the

JS divergence loss is symmetrical in enclosing them.

Different InD distance metrics. In Table 5, we also com-

pared our Maha metric with two different InD distance met-

rics. The cosine distance metric directly measures the dis-

tance by calculating the cosine similarity between the input

feature and the mean of Gaussian distribution models. The

linear distance metric is used to calculate the distance with

trainable linear layers. The results show that our Maha met-

ric is an effective metric compared with its counterparts. We

attribute this to the Maha distance space can better fit the

training distribution in realistic scenes.
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Figure 5. The performance of HVCM is evaluated as the number

of InD classes increases across four OOD datasets.

Increasing numbers of InD Categories in ImageNet. We

test how the OOD detection performance varies with the in-

creasing of object categories in the in-distribution dataset.

Following Wang et al. [53], we test on four popular bench-

marks and set C to {50, 100, 200, 300} respectively. As de-

picted in Figure 5, the performance of HVCM fluctuates on

different datasets with the increasing of the InD object cat-

egories, which suggests that the number of categories has

little impact on our approach. These results validate our

assumption that we only need to model in-distribution im-

age categories, and the out-of-distribution samples can be

detected easily then.

Different thresholds for OOD detection. Figure 6 illus-

trates the accuracy of OOD detection for our method across

various datasets. On most datasets, our method exhibits the

same trend for accuracy variation with thresholds. This in-

dicates that our approach has strong generalization and ideal

performance to domains with significant differences. We

explain the performance of Imagenet-O as its task difficulty

with adversarial samples.
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Figure 6. The accuracy of HVCM varies with different thresholds

across all OOD datasets.

5. Conclusion

In this paper, we introduce a hierarchical visual category

modeling scheme for out-of-distribution detection, which

combines visual representation learning and parameter opti-

mization of probability models. It provides a novel perspec-

tive for OOD detection by conducting representation learn-

ing and density estimation end-to-end. By modeling visual

categories with mixtures of Gaussian models, we describe

visual categories in very complex distribution and don’t rely

on outlier training data to perform OOD detection. Exper-

iments demonstrate that the proposed method outperforms

state-of-the-art algorithms clearly and does not hinder the

discriminative ability of deep features.

Limitations. However, our method needs to map deep fea-

tures into high-dimensional attribute spaces and build plen-

tiful Gaussian mixture models. These Gaussian mixture

models bring a lot of computational costs and make the

inference of the OOD detector become inefficient. Thus,

simplifying the probability models and accelerating the in-

ference process will be the future direction.
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