
I-ViT: Integer-only Quantization for Efficient Vision Transformer Inference

Zhikai Li1,2, Qingyi Gu1,*

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

{lizhikai2020, qingyi.gu}@ia.ac.cn

Abstract

Vision Transformers (ViTs) have achieved state-of-the-
art performance on various computer vision applications.
However, these models have considerable storage and com-
putational overheads, making their deployment and efficient
inference on edge devices challenging. Quantization is a
promising approach to reducing model complexity, and the
dyadic arithmetic pipeline can allow the quantized models
to perform efficient integer-only inference. Unfortunately,
dyadic arithmetic is based on the homogeneity condition in
convolutional neural networks, which is not applicable to
the non-linear components in ViTs, making integer-only in-
ference of ViTs an open issue. In this paper, we propose I-
ViT, an integer-only quantization scheme for ViTs, to enable
ViTs to perform the entire computational graph of inference
with integer arithmetic and bit-shifting, and without any
floating-point arithmetic. In I-ViT, linear operations (e.g.,
MatMul and Dense) follow the integer-only pipeline with
dyadic arithmetic, and non-linear operations (e.g., Softmax,
GELU, and LayerNorm) are approximated by the proposed
light-weight integer-only arithmetic methods. More specif-
ically, I-ViT applies the proposed Shiftmax and ShiftGELU,
which are designed to use integer bit-shifting to approxi-
mate the corresponding floating-point operations. We eval-
uate I-ViT on various benchmark models and the results
show that integer-only INT8 quantization achieves compa-
rable (or even slightly higher) accuracy to the full-precision
(FP) baseline. Furthermore, we utilize TVM for practi-
cal hardware deployment on the GPU’s integer arithmetic
units, achieving 3.72∼4.11× inference speedup compared
to the FP model. Code of both Pytorch and TVM is released
at https://github.com/zkkli/I-ViT.

1. Introduction

Vision Transformers (ViTs) have recently achieved great
success on a variety of computer vision tasks [13, 10, 4].

*Corresponding author.

Dequantization

Floating-point arithmetic

Quantization

Input (INT8)

output (INT8)

FP32

FP32

(a) FasterTransformer [34]

Input (INT8)

output (INT8)

Integer-only arithmetic
Shiftmax
ShiftGELU

I-LayerNorm

≈
≈
≈

Softmax
GELU
LayerNorm

(b) I-ViT (ours)

Figure 1. Computation flows of Softmax, GELU, and LayerNorm
in FasterTransformer [34] and our proposed I-ViT. I-ViT realizes
the entire computational graph with integer-only arithmetic, which
is more promising and practical for low-cost model deployment
and efficient inference.

Nevertheless, as compared to convolutional neural net-
works (CNNs), ViTs suffer from higher memory footprints,
computational overheads, and power consumption, hinder-
ing their deployment and real-time inference on resource-
constrained edge devices [25, 17, 15, 37]. Thus, compres-
sion approaches for ViTs are being widely researched.

Model quantization, which reduces the representation
precision of weight/activation parameters, is an effective
and hardware-friendly way to improve model efficiency
[12, 20, 7, 35]. With the quantized low-precision param-
eters, previous work [18] presents the dyadic arithmetic
pipeline to realize integer-only inference, where the quan-
tization scaling factors are collapsed into the integer multi-
plication and bit-shifting in the requantization process. This
can enable the quantized models to fully benefit from the
fast and efficient low-precision integer arithmetic units and
thus provides promising speedup effects [41, 44]. For in-
stance, the edge processor core in ARM Cortex-M family
only support the deployment of the integer-only kernels; the
recent Turing Tensor Cores in GPU server class also add
support for integer logical units, and their high through-
put capability enables notably lower latency compared to
floating-point arithmetic.

However, the above integer-only pipeline is designed for

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17065

CNNs and works under the homogeneity condition, mak-
ing it only applicable to linear (e.g., Dense) or piecewise
linear (e.g., ReLU) operations [18, 44]. Therefore, the non-
linear operations (e.g., Softmax, GELU, and LayerNorm)
in ViTs cannot naively follow it. To cope with this prob-
lem, a brute-force scheme is to simply leave the non-linear
operations as dequantized floating-point arithmetic, such
as FasterTransformer [34] shown in Figure 1(a). Unfor-
tunately, this scheme makes them tolerate the inefficiency
of floating-point arithmetic units, and the cut of the com-
putational graph also introduces communication costs be-
tween integer and floating-point units, which severely lim-
its the speedup of inference. In addition, low-cost integer-
only hardware cannot meet mixed-precision computing re-
quirements, hence one has to design heterogeneous chips
by adding floating-point arithmetic units, which definitely
increases the budget for model deployment.

Consequently, integer-only arithmetic for non-linear op-
erations is significant for low-cost deployment and efficient
inference. To this end, several works have attempted on
language Transformer models. Fully-8bit [29] employs L1
LayerNorm to replace the non-linear arithmetic of standard
deviation, and I-BERT [19] proposes integer polynomial ap-
proximations for the non-linear operations. However, such
approaches are inefficient and fail to fully exploit the ben-
efits of hardware logic. Moreover, they are developed for
language models, making it infeasible to properly transfer
to ViTs due to differences in data distribution. For ViTs,
FQ-ViT [30] preliminarily explores the feasibility of inte-
ger arithmetic for part of the operations (e.g., Softmax), but
it is simply built on I-BERT [19] and ignores the notable
GELU operation, leaving a huge gap between it and integer-
only inference. As a result, how to accurately perform the
non-linear operations of ViTs with efficient integer-only
arithmetic remains an open issue.

In this paper, we propose I-ViT, which quantizes the en-
tire computational graph to fill the research gap of integer-
only quantization for ViTs. Specifically, linear operations
follow the dyadic arithmetic pipeline; and non-linear op-
erations are approximated without accuracy drop by novel
light-weight integer-only arithmetic methods, where Shift-
max and ShiftGELU perform most arithmetic with bit-
shifting that can be efficiently executed with simple shifters
in hardware logic [39], and I-LayerNorm calculates the
square root with integer iterations instead.

The main contributions are summarized as follows:

• We propose I-ViT, which fully quantizes the compu-
tational graph of ViTs and allows performing the en-
tire inference with integer arithmetic and bit-shifting,
without any floating-point operations. To the best of
our knowledge, this is the first work on integer-only
quantization for ViTs.

0 1 5 0 0 3 0 0 0 4 5 0 0 6 0 0 07 0

7 5

8 0

8 5

Top
-1

acc
.(%

)

I m a g e s / s

 F P D e i T b a s e l i n e
 I n t e g e r D e i T (o u r s)
 F P S w i n b a s e l i n e
 I n t e g e r S w i n (o u r s)

Figure 2. Accuracy-speed curves of I-ViT and the FP baseline on
DeiT [38] and Swin [31]. Accuracy is evaluated on ImageNet
dataset, and speed is obtained from the latency on an RTX 2080Ti
GPU (batch=8). As we can see, I-ViT provides significant accel-
erations (3.72∼4.11×) while achieving similar (or even slightly
higher) accuracy.

• We propose novel light-weight integer approximations
for non-linear operations (as shown in Figure 1(b)), in
particular, Shiftmax and ShiftGELU use integer bit-
shifting to accomplish most arithmetic, which fully
benefit from the efficient hardware logic.

• I-ViT is evaluated on various models for the large-scale
classification task, achieving compression with similar
(or even slightly higher) accuracy. Moreover, we de-
ploy I-ViT on an RTX 2080Ti GPU using TVM1 [6],
which accelerates the integer-only inference of ViTs
with Turing Tensor Cores, achieving a 3.72∼4.11×
speedup over the FP model (as shown in Figure 2).

2. Related Works
2.1. Vision Transformers

Thanks to the global receptive fields captured by the at-
tention mechanism, ViTs have shown superior performance
on various computer vision tasks [13, 42, 14]. ViT [10]
is the first effort to apply transformer-based models to vi-
sion applications and achieves high accuracy than CNNs
on the classification task. DeiT [38] introduces an efficient
teacher-student strategy via adding a distillation token, re-
ducing the time and data cost in the training phase. Swin
[31] presents shifted window attentions at various scales,
which boosts the performance of ViTs. Furthermore, ViTs
have also been applied to more complexed vision applica-
tions, such as object detection [4, 51], semantic segmenta-
tion [5], and video recognition [1].

Despite the promising performance, ViTs’ complicated
architectures with large memory footprints and computa-
tional overheads is intolerable in real-world applications
[17, 43, 47, 27], especially in time/resource-constrained

1https://github.com/apache/tvm

17066

scenarios. Thus, the compression approaches for ViTs are
necessary for practical deployments.

2.2. Model Quantization

Model quantization, which converts the floating-point
parameters to low-precision values, is a prevalent solu-
tion to compressing models in a hardware-friendly man-
ner [20, 12, 26, 48]. Most previous works are designed
to quantize CNNs. DoReFa [49] and LQ-Net [46] ap-
proximate the gradient propagation in quantization-aware
training by straight-through estimator (STE) [2]. PACT
[7] and LSQ [11, 3] treat the activation clipping value/step
size as trainable parameters and achieve promising re-
sults on low-bit quantization. In addition, several notable
works adopt more advanced quantization strategies, includ-
ing non-uniform quantization [23], channel-wise quantiza-
tion [22], and mixed-precision quantization [40, 9] etc.

Recently, several quantization methods oriented to ViTs’
unique structures are proposed. Ranking loss [32] is pre-
sented to maintain the correct relative order of the quan-
tized attention map. Q-ViT [28] proposes differentiable
quantization for ViTs, taking the quantization bit-widths
and scales as learnable parameters. PTQ4ViT [45] proposes
twin uniform quantization and uses a Hessian guided metric
to evaluate different scaling factors. FQ-ViT [30] introduces
powers-of-two scale quantization and log-int quantization
for LayerNorm and Softmax, respectively. RepQ-ViT [27]
decouples the quantization and inference processes to ad-
dress the extreme distributions of LayerNorm and Softmax
activations. PSAQ-ViT [25, 24] pushes the quantization of
ViTs to data-free scenarios based on patch similarity.

However, in the above approaches, all or part of the op-
erations are performed with dequantized floating-point pa-
rameters during inference, which fails to fully use efficient
low-precision arithmetic units and thus provides unsatisfac-
tory model acceleration.

2.3. Integer-only quantization

Integer-only quantization, which eliminates dequantiza-
tion and enables the entire inference to be performed with
integer-only arithmetic, can potentially address the above
challenges. Dyadic arithmetic is proposed to perform the
integer-only pipeline for CNNs [18, 44], however, it is de-
signed for linear and piecewise linear operations based on
the homogeneity condition, and thus is not applicable to
non-linear operations in ViTs.

Therefore, several studies are interested in how to
achieve integer arithmetic for non-linear operations in lan-
guage Transformer models. Fully-8bit [29] introduces L1
LayerNorm, which avoids the non-linearity of solving for
the square root when calculating the standard deviation. I-
BERT [19] focuses on integer polynomial approximations
for the non-linear operations, including Softmax, GELU,

I-LayerNorm

INT32

MatMul,
INT32=>INT8

Shiftmax

I-LayerNorm

Dense,
INT32=>INT8

ShiftGELU,
INT32=>INT8

Dense

Q K VQ=(𝑆 , 𝐼)

Integer MatMul
𝐼 ′ = 𝐼 ∗ 𝐼

Requantization

= 𝐷𝑁

𝐼 = (𝐼 ′ 𝑏) ≫ 𝑐

INT32

K=(𝑆 , 𝐼)

(𝑆 , 𝐼)

INT32

Block

※ 𝐼 : Integer weight
𝑆 : Scaling factor

INT32 +

INT32 +

𝐼

Max
-

Shifting-only
Arithmetic

Sum

(𝑆 , 𝐼)

𝐼

𝐼

Σ𝐼

𝐼

÷

𝐼

Max

(𝑆 , 𝐼)

𝐼

𝐼

𝐼

÷

𝐼 >>

(-)
-

+
𝐼

Shifting-only
Arithmetic

×

MatMul

Figure 3. Overview of the proposed I-ViT. The entire compu-
tational graph is performed with integer-only arithmetic, where
linear MatMul and Dense operations follow the dyadic arith-
metic pipeline and the proposed Shiftmax, ShiftGELU, and I-
LayerNorm accomplish the non-linear operations. Except for the
labeled INT32, the remaining data streams are all INT8 precision.

and LayerNorm. It is worth noting that although these three
component approximations can potentially enable integer-
only inference of ViTs (partly verified by FQ-ViT [30]), the
computation of high-order polynomials is inefficient in in-
ference, and they are developed for language models that
do not fit the data distribution of ViTs, leading to mis-
matched approximations. In addition, various approxima-
tion methods that hold floating-point arithmetic are pre-
sented [36, 50]; while they lower certain computational
costs, they cannot meet the demands of integer arithmetic.
As a result, integer-only quantization for ViTs remains a re-
search gap.

3. Methodology

3.1. Overview

The overview of the proposed integer-only quantization
scheme for ViTs is illustrated as Figure 3. The main body
of ViTs is a stack of blocks, and each block is divided into a
multi-head self-attention (MSA) module and a multi-layer
perceptron (MLP) module, which can be formulated as fol-
lows:

X̂ = MSA(LayerNorm(X)) +X (1)

Y = MLP(LayerNorm(X̂)) + X̂ (2)

The MSA module learns inter-patch representations by

17067

calculating the global attention as follows:

MSA(X) = Concat(Attn1,Attn2, . . . ,Attnh)WO (3)

where Attni = Softmax
(
Qi ·KT

i√
d

)
Vi (4)

where h is the number of the attention heads, d is the size of
hidden features, and i = 1, 2, · · · , h. Here, Qi, Ki, and Vi

are query, key, and value, respectively, and they are obtained
by linear projections, i.e., Qi = XWQ

i , Ki = XWK
i , Vi =

XWV
i . Then the MLP module employs two dense layers

and a GELU activation function to learn high-dimensional
representations as follows:

MLP(X̂) = GELU(X̂W1 + b1)W2 + b2. (5)

In this work, we are interested in quantizing the entire
computational graph of ViTs. To facilitate TVM implemen-
tation, we apply the simplest symmetric uniform quantiza-
tion as follows:

I =

⌊
clip(R,−m,m)

S

⌉
, where S =

2m

2k − 1
(6)

where R and I denote the floating-point values and the
quantized integer values, respectively, S is the scaling factor
of quantization, m is the clipping value determined by the
naive min-max method, k is the quantization bit-precision,
and ⌊·⌉ is the round operator.

With the quantized integer values, to avoid dequanti-
zation and achieve integer-only inference, we apply the
dyadic arithmetic pipeline for linear operations, as detailed
in Section 3.2. Since the above pipeline is based on the
homogeneity condition (e.g., MatMul(SQ·IQ, SK ·IK)≡
SQ·SK ·MatMul(IQ, IK)), it is not applicable to the case
of non-linearity (e.g., Softmax(SA·IA) ̸=SA·Softmax(IA)).
Thus, non-linear operations require accurate and efficient
approximations by integer-only arithmetic. To this end,
Shiftmax and ShiftGELU are proposed in this paper, which
utilize efficient shifters in hardware logic to accomplish
most arithmetic, and I-LayerNorm calculates the square
root of the variance in an integer iterative manner. The
above schemes are described in detail in Sections 3.3-3.5,
respectively.

3.2. Dyadic Arithmetic for Linear Operations

The dyadic arithmetic pipeline, which uses integer bit-
shifting to efficiently realize floating-point operations of
scaling factors, allows linear operations to be performed
with integer-only arithmetic. Although it is designed for
CNNs [18, 44], it can also be followed for linear operations
in ViTs, including Conv in the embedding layer, and Mat-
Mul and Dense in the transformer layer.

Taking MatMul as an instance, when the inputs are Q =
(SQ, IQ) and K = (SK , IK), the output is calculated as

follows:

A′ = SA
′ · IA′ = SQ · SK ·

(
IQ ∗ IKT

)
(7)

where IA
′ = IQ ∗ IKT performs integer-only arithmetic.

Following the principle of practical hardware implementa-
tion (e.g., DP4A), when the inputs IQ and IK are INT8
types, the output IA′ is INT32 type. Thus, we need to re-
quantize IA

′ to INT8 type as the input for the next layer,
which is calculated as follows:

IA =

⌊
SA

′ · IA′

SA

⌉
=

⌊
SQ · SK

SA
·
(
IQ ∗ IKT

)⌉
(8)

where SA is the pre-calculated scaling factor of the output
activation. Although the scaling factors remain floating-
point values, their multiplication and division operations in
Eq. 8 can be avoided by converting the rescaling to a dyadic
number (DN) as follows:

DN

(
SQ · SK

SA

)
=

b

2c
(9)

where b and c are both positive integer values. In this
case, the rescaling can be efficiently accomplished by in-
teger multiplication and bit-shifting. To summarize, the
integer-only arithmetic pipeline of MatMul can be denoted
as follows:

IA =
(
b ·
(
IQ ∗ IKT

))
≫ c (10)

where≫ indicates right bit-shifting.

3.3. Integer-only Softmax: Shiftmax

Softmax in ViTs translates the attention scores into prob-
abilities, which acts on the hidden features and is calculated
as follows:

Softmax(xi) =
exi∑d
j e

xj

=
eSxi

·Ixi∑d
j e

Sxj
·Ixj

(11)

where i = 1, 2, · · · , d. Due to the non-linearity, Soft-
max cannot follow the dyadic arithmetic pipeline discussed
above, and the exponential arithmetic in Eq. 11 is typically
unsupported by integer-only logic units [36]. To address the
above issues, we propose the approximation method Shift-
max, which can utilize simple hardware logic to achieve
accurate and efficient integer-only arithmetic of Softmax.
First, to smooth the data distribution and prevent overflow,
we restrict the range of the exponential arithmetic as fol-
lows:

Softmax(xi) =
eS∆i

·I∆i∑d
j e

S∆j
·I∆j

=
eSxi

·(Ixi
−Imax)∑d

j e
Sxj

·(Ixj
−Imax)

(12)

17068

where Imax = max{Ix1 , Ix2 , · · · , Ixd
}. Here, I∆i =

Ixi − Imax is a non-positive value and S∆i = Sxi , and
we simplify them as I∆ and S∆ in the following part for
easier expression.

Then, we are motivated to convert the base from e to 2
to fully utilize the efficient shifters. Instead of a brute-force
conversion, we perform an equivalent transformation using
the base changing formula of the exponential function. Im-
portantly, since log2 e can be approximated by binary as
(1.0111)b, the floating-point multiplication with it can be
achieved by integer shifting as follows:

eS∆·I∆ = 2S∆·(I∆·log2 e)

≈ 2S∆·(I∆+(I∆≫1)−(I∆≫4))
(13)

The power term is denoted as S∆·Ip, which is not en-
sured as an integer and cannot be directly used for shifting.
Thus, we decompose it into an integer part and a decimal
part as follows:

2S∆·Ip = 2(−q)+S∆·(−r) = 2S∆·(−r) ≫ q (14)

where S∆·(−r) ∈ (−1, 0] is the decimal part, and q and
r are both positive integer values. For low-cost computa-
tion, we approximate 2S∆·(−r) in range (−1, 0] by the linear
function as follows:

2S∆·(−r) ≈ [S∆ · (−r)]/2 + 1

= S∆ · [((−r)≫ 1) + I0]
(15)

where I0 = ⌊1/S∆⌉. The above completes the approxima-
tion of the numerator in Eq. 12, i.e., S∆·Iexp ≈ eS∆·I∆ ,
where S∆ can be removed via fraction reduction since the
scaling factor of the denominator obtained by summing is
also S∆. This turns Eq. 12 into an integer division, which
is calculated with the specified output bit-precision kout as
follows:

Iouti =
S∆ · Iexpi

S∆ ·
∑d

j Iexpj

= IntDiv(Iexpi
,
∑d

j
Iexpj

, kout)

=

(⌊
2M∑d
j Iexpj

⌋
· Iexpi

)
≫ (M − (kout − 1))

Souti = 1/2kout−1

(16)
where IntDiv(I1, I2, k) implements the integer division
function, and I1, I2, and k are integer dividend, integer di-
visor and output bit width, respectively. Here, M is a suf-
ficiently large integer, and Souti ·Iouti

2 can approximate the
result of Softmax(xi).

2Sout is the scaling factor for the kout-bit symmetric quantization with
m ≈ 1.

Algorithm 1: Integer-only Softmax: Shiftmax
Input: Iin : Integer input

Sin : Input scaling factor
kout : Output bit-precision

Output: Iout : Integer output
Sout : Output scaling factor

Function ShiftExp(I, S):
Ip ← I + (I ≫ 1)− (I ≫ 4); ▷ I · log2 e
I0 ← ⌊1/S⌉;
q ← ⌊Ip/(−I0)⌋; ▷ Integer part
r ← −(Ip − q · (−I0)); ▷ Decimal part
Ib ← ((−r)≫ 1) + I0; ▷ Eq. 15
Iexp ← Ib ≪ (N − q); 3 ▷ Eq. 14
Sexp ← S/(2N);
return (Iexp, Sexp); ▷ Sexp · Iexp ≈ eS·I

End Function

Function Shiftmax(Iin, Sin, kout):
I∆ ← Iin −max(Iin); ▷ Eq. 12
(Iexp, Sexp)← ShiftExp(I∆, Sin);
(Iout, Sout)← IntDiv(Iexp,

∑
Iexp, kout);

▷ Eq. 16
return (Iout, Sout);

▷ Iout · Sout ≈ Softmax(Iin · Sin)
End Function

The integer-only flow of Shiftmax is summarized in Al-
gorithm 1. Instead of complex second-order polynomial ap-
proximations [19], Shiftmax performs all arithmetic with
bit-shifting, except for one integer subtraction, summation,
and division, which significantly improves computational
efficiency. In addition, only Eqs. 13 and 15 are mathemati-
cally approximated, while all others are equivalent transfor-
mations, which ensures the accuracy of Shiftmax.

3.4. Integer-only GELU: ShiftGELU

GELU is the non-linear activation function in ViTs,
which, from the study [16], can be approximated by a sig-
moid function as follows:

GELU(x) = x · 1√
2π

∫ x

−∞
e−t2/2dt

≈ x · σ(1.702x)
= Sx · Ix · σ(Sx · 1.702Ix)

(17)

Thus, the challenge becomes the realization of the sig-
moid function’s integer-only arithmetic. First, 1.702 can
be approximated by binary as (1.1011)b, thus 1.702Ix can
be achieved by integer shifting, i.e., Ip = Ix + (Ix ≫
1)+(Ix ≫ 3)+(Ix ≫ 4). Then, we equivalently transform

3To avoid too small values after right shifting, we first have a N -bit left
shifting.

17069

Algorithm 2: Integer-only GELU: ShiftGELU
Input: Iin : Integer input

Sin : Input scaling factor
kout : Output bit-precision

Output: Iout : Integer output
Sout : Output scaling factor

Function ShiftGELU(Iin, Sin, kout):
Ip ← Iin+(Iin ≫ 1)+(Iin ≫ 3)+(Iin ≫ 4);

▷ 1.702I
I∆ ← Ip −max(Ip);
(Iexp, Sexp)← ShiftExp(I∆, Sin);
(I ′exp, S

′
exp)← ShiftExp(−max(Ip), Sin);

(Idiv, Sdiv)← IntDiv(Iexp, Iexp+I ′exp, kout);
▷ Eq. 18

(Iout, Sout)← (Iin·Idiv, Sin·Sdiv);
return (Iout, Sout);

▷ Iout · Sout ≈ GELU(Iin · Sin)
End Function

the sigmoid function as follows:

σ(Sx·Ip) =
1

1 + e−Sx·Ip

=
eSx·Ip

eSx·Ip + 1

=
eSx·(Ip−Imax)

ee
Sx·(Ip−Imax)

+ eSx·(−Imax)

(18)

where, interestingly, the numerator is in exact correspon-
dence with the numerator of Eq. 12, thus the two imple-
mentations are identical. After that, the integer approxima-
tion of GELU is done by following the integer division in
Eq. 16 and then multiplying it with Sx·Ix.

Algorithm 2 shows the integer-only flow of ShiftGELU.
Except for a few fundamental arithmetic operations, Shift-
GELU utilizes shifters in hardware logic to perform all
other arithmetic and thus enables the efficient inference of
ViTs. Furthermore, compared to the second-order polyno-
mial method that only approximates for a specific interval
[19], the approximation of ShiftGELU works on the entire
domain of definition, which can potentially provide higher
accuracy and robustness.

3.5. Integer-only LayerNorm: I-LayerNorm

LayerNorm in ViTs normalizes the input in the hidden
feature dimension as follows:

LayerNorm(x) =
x−Mean(x)√

Var(x)
· γ + β (19)

where γ and β are linear affine factors. In contrast to Batch-
Norm that holds fixed parameters from training and can be

folded during inference, LayerNorm needs to dynamically
compute statistics (i.e., mean and standard deviation) in the
inference phase. The integer arithmetic units allow straight-
forward calculation of the mean and variance of the data,
yet they fail to support the square root arithmetic for ob-
taining the standard deviation [29]. Thus, we improve the
light-weight integer iterative approach [8] via bit-shifting as
follows:

Ii+1 = (Ii + ⌊Var(Ix)/Ii⌋)/2
= (Ii + ⌊Var(x)/Ii⌋)≫ 1

(20)

where Ii is the result of the i-th iteration, and I0 is initialized
as 2⌊bit(Var(Ix))/2⌋. The naive stopping criterion for the iter-
ations is Ii+1 ≥ Ii, which unfortunately cannot guarantee a
constant latency. We experimentally find that 10 iterations
can achieve most convergence, thus we modify the stopping
criterion to the iteration counts to facilitate hardware imple-
mentation.

4. Experiments

We evaluate I-ViT in both accuracy on the large-scale
classification task and latency on the practical hardware to
fully demonstrate the superiority, and I-ViT can accelerate
3.72∼4.11× over the FP model while achieving similar (or
even slightly higher) accuracy. Besides the FP baseline, I-
ViT is compared end-to-end with the following methods:

• FasterTransformer [34]: leaving non-linear operations
as floating-point arithmetic.

• I-BERT [19]: approximating non-linear operations
with integer second-order polynomials.

Notably, several methods achieve integer inference for
only part of the operations, making it impractical to perform
end-to-end comparisons, hence we evaluate the following
individual components in ablation studies.

• L1 LayerNorm in Fully-8bit [29]: using L1 norm to
replace the calculation of standard deviation.

• LIS in FQ-ViT [30]: using Log-Int-Softmax, which
builds opon I-BERT and adds the logarithmic function.

4.1. Accuracy Evaluation

Implementation Details: I-ViT is evaluated on vari-
ous popular models, including ViT [10], DeiT [38], and
Swin [31] on ImageNet (ILSVRC-2012) [21] dataset for the
large-scale image classification task. The pre-trained mod-
els are all obtained from timm4 library. First, we use Eq.
6 to quantize the weights of the pre-trained FP model for
the initialization of I-ViT. Then, we perform quantization-
aware fine-tuning using naive STE [2] to recover the ac-
curacy. The optimizer we adopt is AdamW [33], and the
search space of the learning rate is [2e-7, 5e-7, 1e-6, 2e-

4https://github.com/rwightman/
pytorch-image-models

17070

Table 1. Accuracy and latency results on various model benchmarks. Here, accuracy is evaluated on ImageNet dataset, and latency is
evaluated on an RTX 2080Ti GPU (batch=8). Compared to the FP baseline, I-ViT, which quantizes the entire computational graph and
enables integer-only inference on Turing Tensor Cores, can achieve similar or even slightly higher accuracy and provides a significant
3.72∼4.11× speedup. In addition, I-ViT consistently outperforms existing works FasterTransformer [34] and I-BERT [19] in terms of
both accuracy and latency.

Model Method Bit-prec. Size (MB) Int.-only Top-1 Acc. (%) Diff. (%) Latency (ms) Speedup

ViT-S

Baseline FP32 88 × 81.39 - 11.5 ×1.00

FasterTransformer [34] INT8 22 × 81.07 -0.32 3.26 ×3.53
I-BERT [19] INT8 22 ✓ 80.47 -0.92 3.05 ×3.77
I-ViT (ours) INT8 22 ✓ 81.27 -0.12 2.97 ×3.87

ViT-B

Baseline FP32 344 × 84.53 - 32.6 ×1.00

FasterTransformer [34] INT8 86 × 84.29 -0.24 8.51 ×3.83
I-BERT [19] INT8 86 ✓ 83.70 -0.83 8.19 ×3.98
I-ViT (ours) INT8 86 ✓ 84.76 +0.23 7.93 ×4.11

DeiT-T

Baseline FP32 20 × 72.21 - 5.99 ×1.00

FasterTransformer [34] INT8 5 × 72.06 -0.15 1.74 ×3.45
I-BERT [19] INT8 5 ✓ 71.33 -0.88 1.66 ×3.61
I-ViT (ours) INT8 5 ✓ 72.24 +0.03 1.61 ×3.72

DeiT-S

Baseline FP32 88 × 79.85 - 11.5 ×1.00

FasterTransformer [34] INT8 22 × 79.66 -0.19 3.26 ×3.53
I-BERT [19] INT8 22 ✓ 79.11 -0.74 3.05 ×3.77
I-ViT (ours) INT8 22 ✓ 80.12 +0.27 2.97 ×3.87

DeiT-B

Baseline FP32 344 × 81.85 - 32.6 ×1.00

FasterTransformer [34] INT8 86 × 81.63 -0.22 8.51 ×3.72
I-BERT [19] INT8 86 ✓ 80.79 -1.06 8.19 ×3.88
I-ViT (ours) INT8 86 ✓ 81.74 -0.11 7.93 ×4.11

Swin-T

Baseline FP32 116 × 81.35 - 16.8 ×1.00

FasterTransformer [34] INT8 29 × 81.06 -0.29 4.55 ×3.69
I-BERT [19] INT8 29 ✓ 80.15 -1.20 4.40 ×3.82
I-ViT (ours) INT8 29 ✓ 81.50 +0.15 4.29 ×3.92

Swin-S

Baseline FP32 200 × 83.20 - 27.8 ×1.00

FasterTransformer [34] INT8 50 × 83.04 -0.34 7.35 ×3.78
I-BERT [19] INT8 50 ✓ 81.86 -1.34 7.13 ×3.90
I-ViT (ours) INT8 50 ✓ 83.01 -0.19 6.92 ×4.02

6]. The above implementations are done on PyTorch5, and
the model inference details (e.g., bit-shifting) follow the
TVM implementation to ensure consistent accuracy with
the TVM deployment.

Table 1 reports the accuracy results of I-ViT and vari-
ous baselines on multiple benchmark models on ImageNet
dataset. Although I-ViT reduces the bit-precision of the
parameters and enables integer-only inference, it maintains
comparable accuracy, even slightly more than the FP base-
line, which adequately demonstrates the effectiveness and
robustness of the proposed approximation schemes. For in-
stance, DeiT-S obtained by I-ViT achieves 80.12% Top-1
accuracy with 8-bit integer-only inference, which is even
0.27% higher than the FP baseline. In addition, I-ViT is
consistently superior to FasterTransformer [34] and I-BERT
[19], and in particular, the naive application of I-BERT to
ViTs suffers from mismatched approximations, making the
results far from satisfactory. For Swin-S, I-BERT results in
a noticeable 1.34% accuracy drop, while I-ViT still offers
high robustness.

5https://github.com/pytorch/pytorch

4.2. Latency Evaluation

Implementation Details: We deploy I-ViT on an RTX
2080Ti GPU using TVM to measure the real hardware la-
tency. First, we use TVM to build and compile the same
model as PyTorch, followed by the auto-tuning to optimize
the computational schedule, and then we perform the end-
to-end latency tests. Note that although the GPU is not
an integer-only hardware, depending on the DP4A instruc-
tions, I-ViT can perform efficient integer-only inference on
its Turing Tensor Cores. Since ViT [10] and DeiT [38] have
the same model structure in the inference process, ViT en-
joys the same acceleration as DeiT.

The latency results of I-ViT on an RTX 2080Ti GPU
(batch=8) are also shown in Table 1. FasterTransformer
[34], which leaves non-linear operations as floating-point
arithmetic and cannot be deployed on integer-only hard-
ware, produces disappointing acceleration effects. In the
case of DeiT-T and DeiT-S quantization, it only acceler-
ates the model by 3.45× and 3.53×, respectively. Note
that the disappointing acceleration stems not only from the
inefficiency of the floating-point arithmetic units, but also

17071

Table 2. Ablation studies of accuracy and latency of Shiftmax, ShiftGELU, and I-LayerNorm. Latency is evaluated on an RTX 2080Ti
GPU (batch=8). Replacing (→) Shiftmax and ShiftGELU with second-order polynomial approximations [19] leads to lower accuracy and
higher latency, and I-LayerNorm suffers from non-trivial accuracy loss due to the mismatch in the data distribution.

Model Method Shifting-oriented Top-1 Acc. (%) Diff. (%) Latency (ms) Diff. (ms)

DeiT-B

I-ViT(ours) ✓ 81.74 - 7.93 -

Shiftmax → Poly. [19] × 81.62 -0.12 8.04 +0.11
ShiftGELU → Poly. [19] × 80.88 -0.86 8.10 +0.17

Shiftmax → LIS [30] × 81.66 -0.08 8.05 +0.12
I-LayerNorm → L1 LayerNorm [29] - 79.25 -2.49 7.91 -0.02

Swin-S

I-ViT(ours) ✓ 83.01 - 6.92 -

Shiftmax → Poly. [19] × 82.79 -0.22 7.02 +0.10
ShiftGELU → Poly. [19] × 82.10 -0.91 7.08 +0.16

Shiftmax → LIS [30] × 82.89 -0.12 7.03 +0.11
I-LayerNorm → L1 LayerNorm [29] - 79.69 -3.32 6.90 -0.02

×3.87

×3.72

×3.83

×3.96

Figure 4. Latency results of DeiT-S [38] evaluated on an RTX
2080Ti GPU with various batch sizes. I-ViT maintains a constant
acceleration effect for the same model architecture at various batch
sizes.

from the data interaction overheads between the integer and
floating-point arithmetic units, since the integer results from
the previous layers need to be passed to the floating-point
units and returned later. In contrast, I-BERT [19] and I-
ViT can achieve integer-only inference by utilizing the in-
teger arithmetic units of Turing Tensor Cores. Importantly,
compared to I-BERT, our proposed I-ViT makes fuller use
of the efficient shifters in hardware logic and thus has a
more advantageous 3.72∼4.11× speedup. For instance, for
DeiT-B with 32.6ms latency at FP baseline, the integer in-
ference latencies of the quantized models obtained by I-
BERT and I-ViT are 8.19ms and 7.93ms, respectively, with
the latter being 0.26ms faster. Moreover, from the results, I-
ViT is more effective in accelerating more computationally-
intensive models.

4.3. Ablation Studies

Here, we perform ablation studies for comparison with
the second-order polynomial approximations in I-BERT
[19], LIS in FQ-ViT [30], and L1 LayerNorm in Fully-8bit
[29], and the results are shown in Table 2. Due to the dif-
ferences in data distribution of ViTs and language models,
replacing Shiftmax and ShiftGELU with the polynomial ap-

proximations results in severe accuracy degradation, with
performance losses of 0.95% and 1.15% in the quantization
of DeiT-B and Swin-S, respectively. In particular, polyno-
mial GELU that only approximates for the specific interval
is not applicable to ViTs and thus has most contribution in
the accuracy degradation. For instance, polynomial GELU
reduces the Top-1 accuracy by 0.86% and 0.91% compared
to ShiftGELU in the quantization of DeiT-B and Swin-S,
respectively. It is also worth mentioning that the proposed
schemes are shifting-oriented arithmetic and can thus bene-
fit more from the efficient hardware logic, while the second-
order polynomial approximations lack this advantage. LIS
also encounters the above problems, since it is simply built
on top of I-BERT. For L1 LayerNorm, although it simplifies
the computation to achieve faster speed, its low approxima-
tion capability leads to non-trivial accuracy loss.

In addition, we also evaluate the latency of DeiT-S with
various batch sizes, as shown in Figure 4. It can be seen
that I-ViT is robust to the batch size and can maintain a con-
stant acceleration effect. Also, it should be highlighted that
despite the significant speedup on the RTX 2080Ti GPU
that provides an evident strength of I-ViT, both the software
support of TVM and the hardware support of Turing Ten-
sor Cores are not optimal. For instance, there is no full
parallelism after increasing the batch size in both FP and
quantized cases, i.e., increasing the batch size results in a
corresponding increase in latency. Therefore, it is believed
that deploying I-ViT on dedicated hardware (e.g., FPGAs)
will further enhance the acceleration potential.

5. Conclusions

In this paper, we propose I-ViT, which is the first integer-
only quantization scheme for ViTs to the best of our knowl-
edge. I-ViT quantizes the entire computational graph to
enable the integer-only inference, where linear operations
follow the dyadic arithmetic pipeline; and non-linear op-
erations are performed by the proposed novel light-weight
integer-only approximation methods. In particular, Shift-
max and ShiftGELU perform most arithmetic with bit-

17072

shifting, which can fully benefit from the efficient hardware
logic. Compared to the FP baseline, I-ViT achieves similar
(or even slightly higher) accuracy on various benchmarks.
In addition, we utilize TVM to deploy I-ViT on an RTX
2080Ti GPU, whose Turing Tensor Cores can accelerates
the integer-only inference of ViTs, achieving a 3.72∼4.11×
speedup over the FP model.

In the future, we will consider deploying I-ViT on ded-
icated integer-only hardware (e.g., FPGAs) to obtain better
acceleration performance. Furthermore, we also plan to ex-
tend I-ViT to more complex vision tasks (e.g., object detec-
tion and semantic segmentation).

Acknowledgement

This work was supported in part by the National Key
Research and Development Program of China under Grant
2022ZD0119402; in part by the National Natural Science
Foundation of China under Grant 62276255.

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6836–6846,
2021. 2

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3, 6

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 696–
697, 2020. 3

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, Cham,
2020. 1, 2

[5] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-
to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 18), pages 578–594, 2018. 2

[7] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 1, 3

[8] Richard Crandall and Carl Pomerance. Prime numbers.
Springer, 2001. 6

[9] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-
honey, and Kurt Keutzer. Hawq: Hessian aware quantization
of neural networks with mixed-precision. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 293–302, 2019. 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 1, 2, 6, 7

[11] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. arXiv preprint
arXiv:1902.08153, 2019. 3

[12] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quanti-
zation methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021. 1, 3

[13] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen,
Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao, Chun-
jing Xu, Yixing Xu, et al. A survey on vision transformer.
IEEE transactions on pattern analysis and machine intelli-
gence, 2022. 1, 2

[14] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,
and Yunhe Wang. Transformer in transformer. Advances in
Neural Information Processing Systems, 34, 2021. 2

[15] Zhiwei Hao, Jianyuan Guo, Ding Jia, Kai Han, Yehui Tang,
Chao Zhang, Han Hu, and Yunhe Wang. Learning efficient
vision transformers via fine-grained manifold distillation. In
Advances in Neural Information Processing Systems, 2022.
1

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5

[17] Zejiang Hou and Sun-Yuan Kung. Multi-dimensional vi-
sion transformer compression via dependency guided gaus-
sian process search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3669–3678, 2022. 1, 2

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 1, 2, 3, 4

[19] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Ma-
honey, and Kurt Keutzer. I-bert: Integer-only bert quantiza-
tion. In International conference on machine learning, pages
5506–5518. PMLR, 2021. 2, 3, 5, 6, 7, 8

[20] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 1, 3

17073

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 6

[22] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Jun-
jie Yan, and Rui Fan. Fully quantized network for ob-
ject detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2810–
2819, 2019. 3

[23] Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-
two quantization: An efficient non-uniform discretization for
neural networks. In International Conference on Learning
Representations, 2020. 3

[24] Zhikai Li, Mengjuan Chen, Junrui Xiao, and Qingyi
Gu. Psaq-vit v2: Towards accurate and general data-
free quantization for vision transformers. arXiv preprint
arXiv:2209.05687, 2022. 3

[25] Zhikai Li, Liping Ma, Mengjuan Chen, Junrui Xiao, and
Qingyi Gu. Patch similarity aware data-free quantization for
vision transformers. In European conference on computer
vision, pages 154–170, 2022. 1, 3

[26] Zhikai Li, Liping Ma, Xianlei Long, Junrui Xiao, and Qingyi
Gu. Dual-discriminator adversarial framework for data-free
quantization. Neurocomputing, 2022. 3

[27] Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-
vit: Scale reparameterization for post-training quantization
of vision transformers. arXiv preprint arXiv:2212.08254,
2022. 2, 3

[28] Zhexin Li, Tong Yang, Peisong Wang, and Jian Cheng. Q-
vit: Fully differentiable quantization for vision transformer.
arXiv preprint arXiv:2201.07703, 2022. 3

[29] Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran Liu,
and Jingbo Zhu. Towards fully 8-bit integer inference for
the transformer model. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences
on Artificial Intelligence, pages 3759–3765, 2021. 2, 3, 6, 8

[30] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and
Shuchang Zhou. Fq-vit: Post-training quantization for fully
quantized vision transformer. In Proceedings of the Thirty-
First International Joint Conference on Artificial Intelli-
gence, IJCAI-22, pages 1173–1179, 2022. 2, 3, 6, 8

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2, 6

[32] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34, 2021. 3

[33] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-
ularization in adam. 2018. 6

[34] NVIDIA. FasterTransformer,
https://github.com/nvidia/fastertransformer.git, 2022. 1,
2, 6, 7

[35] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai,
Jingkuan Song, and Nicu Sebe. Binary neural networks: A
survey. Pattern Recognition, 105:107281, 2020. 1

[36] Jacob R Stevens, Rangharajan Venkatesan, Steve Dai,
Brucek Khailany, and Anand Raghunathan. Softermax:
Hardware/software co-design of an efficient softmax for
transformers. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 469–474, 2021. 3, 4

[37] Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan
Guo, Chao Xu, and Dacheng Tao. Patch slimming for ef-
ficient vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12165–12174, 2022. 1

[38] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 2, 6, 7, 8

[39] Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z
Pan, and Song Han. On-chip qnn: Towards efficient on-
chip training of quantum neural networks. arXiv preprint
arXiv:2202.13239, 2022. 2

[40] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612–
8620, 2019. 3

[41] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and
Paulius Micikevicius. Integer quantization for deep learn-
ing inference: Principles and empirical evaluation. arXiv
preprint arXiv:2004.09602, 2020. 1

[42] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative posi-
tion encoding for vision transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10033–10041, 2021. 2

[43] Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and
Jan Kautz. Nvit: Vision transformer compression and param-
eter redistribution. arXiv preprint arXiv:2110.04869, 2021.
2

[44] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gho-
lami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida
Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural
network quantization. In International Conference on Ma-
chine Learning, pages 11875–11886. PMLR, 2021. 1, 2, 3,
4

[45] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu,
and Guangyu Sun. Ptq4vit: Post-training quantiza-
tion framework for vision transformers. arXiv preprint
arXiv:2111.12293, 2021. 3

[46] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. Lq-nets: Learned quantization for highly accurate and
compact deep neural networks. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 365–
382, 2018. 3

[47] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin
Xiao, Jianlong Fu, and Lu Yuan. Minivit: Compressing vi-
sion transformers with weight multiplexing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12145–12154, 2022. 2

17074

[48] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017. 3

[49] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016. 3

[50] Danyang Zhu, Siyuan Lu, Meiqi Wang, Jun Lin, and
Zhongfeng Wang. Efficient precision-adjustable architecture
for softmax function in deep learning. IEEE Transactions on
Circuits and Systems II: Express Briefs, 67(12):3382–3386,
2020. 3

[51] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2020. 2

17075

