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Abstract

In this paper, we propose a novel task IntentQA, a special
VideoQA task focusing on video intent reasoning, which has
become increasingly important for AI with its advantages
in equipping AI agents with the capability of reasoning be-
yond mere recognition in daily tasks. We also contribute
a large-scale VideoQA dataset for this task. We propose a
Context-aware Video Intent Reasoning model (CaVIR) con-
sisting of i) Video Query Language (VQL) for better cross-
modal representation of the situational context, ii) Con-
trastive Learning module for utilizing the contrastive con-
text, and iii) Commonsense Reasoning module for incor-
porating the commonsense context. Comprehensive experi-
ments on this challenging task demonstrate the effectiveness
of each model component, the superiority of our full model
over other baselines, and the generalizability of our model
to a new VideoQA task. The dataset and codes are open-
sourced at: https://github.com/JoseponLee/IntentQA.git.

1. Introduction

Among the recent flourishing studies on cross-modal
vision-language understanding, video question answering
(VideoQA) is one of the most prominent to support interac-
tive AI with the ability to understand and communicate dy-
namic visual scenarios via natural languages [75]. Despite
its popularity, VideoQA is still quite challenging, because
it demands the models to comprehensively understand the
videos to correctly answer questions, which include not
only factual but also inferential ones. The former (factoid
VideoQA) directly asks about the visual facts (e.g., humans,
objects, actions, etc.), while the latter (inference VideoQA)
requires logical reasoning of latent variables (e.g., the spa-
tial, temporal and causal relationships among entities, men-
tal states, etc.) beyond observed visual facts [75]. The
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Figure 1: Illustration of challenges brought by varied con-
texts in video intention reasoning. The same action under
different contexts could mean different underlying intents.

future trend for AI is to study inference VideoQA beyond
factoid VideoQA [75], requiring more reasoning ability be-
yond mere recognition. In this paper, we propose a new task
called IntentQA, i.e., a special kind of inference VideoQA
that focuses on intent reasoning.

Intent understanding is a key building block of human
intelligence. Humans have a strong inclination to interpret
events as a series of goals driven by intentions [10, 58, 59].
In fact, humans do not encode the entirety of action details
but rather interpret actions in terms of intentions and store
these interpretations for later retrieval [3]. As a fundamen-
tal organizing principle that regulates how humans compre-
hend one another and act in the environment, the concept
of intent has been awarded a central position within social
intelligence and should thus be an essential component of
future AI [76, 17]. However, as far as we know, there is no

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11963



VideoQA work focusing on intent understanding. There-
fore, we believe our proposed new task is a great contribu-
tion to the development of intent reasoning in VideoQA.

The biggest challenge for video intent reasoning is con-
text because intent understanding is quite context-sensitive.
As illustrated in Fig. 1, humans can interpret different in-
tents underlying the same action ‘point to a cup’ given dif-
ferent video contexts along with commonsense knowledge.
The intent is more likely to be ‘give me water’ if the given
context is ‘a table at a restaurant’, and ‘clean the cup’ if
the context is ‘a sink full of dirty cups’, and ‘look at the
cup’ if the context is ‘a store selling beautiful cups’. The
uncertainty does not come from the protruding finger, but
from the context, which is the key to solving the overloaded
signal and the ‘dark matter’ mystery. Here, the context in-
cludes the immediate communicative context, the shared
experience, and the commonsense. Context-aware reason-
ing ability plays a significant role in human intelligence.

We contribute a new dataset for IntentQA, as detailed
in Section 3. We also propose a model with three key
modules that deals with three major contexts respectively:
(I) Situational Context; (II) Contrastive Context; (III)
Commonsense Context. Module I (Video Query Language
(VQL)) integrates cross-modal contextual information from
both videos and languages. Module II (Contrastive Learn-
ing) learns to reason from contrasting a triplet of anchor,
positive and negative samples. Module III (Commonsense
Reasoning) further incorporates the commonsense knowl-
edge from the large language model.

Our main contributions can be summarized as follows.
First, we propose a new task IntentQA, a special VideoQA
task focusing on intent reasoning. Given a video and a ques-
tion, the aim is to select the correct answer with the under-
standing of intent. Second, we collect and annotate a large-
scale VideoQA dataset with natural social scene videos. Fi-
nally, we propose a Context-aware Video Intent Reasoning
model (CaVIR) and provide benchmark results.

2. Related Work

2.1. Video Question Answering

As a typical cross-modal task, VideoQA answers the nat-
ural language question according to the given video, which
is challenging because it requires a deep and comprehen-
sive understanding of the semantic information of the video
and question. Notably, recent studies in this domain have
shifted away from the traditional reliance on 3D convolu-
tions [6, 31] as the primary video backbone models. In-
stead, approaches harnessing fine-grained information, such
as objects and relations, are increasingly gaining traction
[64, 65]. A growing body of work recognizes the paramount
importance of ‘context’ in addressing this problem. On the
one hand, VideoQA datasets and techniques jointly evolve

over time [75]. In addition to the early datasets, such as
TGIFQA [24] and MSRVTT-QA [66], many more challeng-
ing datasets have emerged recently, such as NExT-QA [61],
CLEVRER [68], CLEVR HYP [49], AGQA 2.0 [20] and
Causal-VidQA [30], which usually invoke complicated spa-
tial, temporal and causal inference among multiple entities
and relations [75]. On the other hand, various techniques
have been developed for VideoQA [54, 75], such as Mem-
ory [13, 56], Attention [71, 72], Transformer [64, 67], Neu-
ral Modular Networks [28, 47], Neural-Symbolic methods
[68, 7, 11], and Graph-structured methods [62, 64].

Such an inspiring and promising trend from recogni-
tion to reasoning in the field of VideoQA is great progress.
Answering questions like ‘what’ is no longer the core of
VideoQA, we further want to answer questions like ‘why’
and ‘how’. However, although there are studies aiming to
reason about various relationships between the visual facts
(e.g., [32, 42]), few VideoQA work studies the unobserved
human mental state underlying the apparent entities. To
our best knowledge, our study is the first VideoQA work
focusing on ‘intent’. We believe intent-related VideoQA
features human-level in-depth understanding of videos, de-
mands higher-level reasoning abilities, and would promote
VideoQA toward the core of human intelligence.

2.2. Intent Understanding

Upon seeing human actions, humans have an inherent
tendency to infer other people’s intentions from their ac-
tions [4]. Intent understanding plays a key role in hu-
man social intelligence [76, 17, 45, 46]. There have been
some studies exploring intent inference in computer vision,
robotics, etc. Jia et al. [25] collected an social media im-
age dataset Intentonomy with an aim to analyze how visual
information can facilitate recognition of human intent. Pei
et al. [43] inferred the goals and intents of agents through
an event parsing algorithm. Some studies [38, 44, 55, 52]
manifest human intentions by predicting their trajectories.
Holtzen et al. [21] proposed a method for robots to infer a
human’s hierarchical intent from partially observed RGBD
videos. Yu-Ching et al. [8] used a QA approach in robotic
systems to construct interactive dialogue systems, assisting
robots in understanding user intentions. Sap et al. [50]
measured the large language model’s ability to understand
intents and reactions of participants in social interactions.
However, there has not yet been a cross-modal intent rea-
soning video dataset nor a benchmark model in VideoQA.

2.3. Context-aware Reasoning

Context, including not only the immediate context in
videos and languages but also the commonsense knowl-
edge, is very important for answering inference questions
because knowledge underpins reasoning [33, 74, 69]. Re-
search has demonstrated that when relevant knowledge is
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provided as additional context to commonsense question
answering, it can substantially enhance performance [33].
Many methods that utilize objects in images to integrate
context have been proposed [57, 35, 14, 16, 15]. Zheng
et al. [73] proposed a novel approach for generating image
captions with guiding objects. Li et al. [29] introduced a
novel relation consistency loss to address the multi-instance
confusion problem in video relation (context) grounding.

AI continues to be narrow and brittle due to its lack of
reasoning ability of context, such as commonsense [9]. Re-
cent years have brought about a renewed interest in com-
monsense representation and reasoning [23, 22, 51, 18, 70].
Current systems either rely on external knowledge bases
(KBs) to incorporate additional relevant knowledge, or re-
sort to pre-trained language models as the sole implicit
source of world knowledge [53, 5]. Hwang et al. [23]
built a new commonsense knowledge graph, ATOMIC2020.
Lourie et al. [36] argued that QA-based commonsense
datasets transfer well with each other, while common-
sense knowledge graphs do not. Rainier [33] learns to
generate contextually relevant knowledge in response to
given commonsense questions. Arabshahi et al. [2] used
a transformer-based generative commonsense knowledge
base as its source of background knowledge for reason-
ing. In contrast to crowdsourcing, a pre-trained language
model like GPT [41] 1 is a more flexible source of exter-
nal knowledge and a better way to generate large-scale di-
alogue datasets with social commonsense knowledge, such
as SODA [27]. West et al. [60] show how to selectively
distill high-quality causal commonsense from GPT-3. Liu
et al. [34] used external knowledge generated from a lan-
guage model to improve model performance on four com-
monsense reasoning tasks.

3. Dataset

We contribute an IntentQA dataset with diverse intents
in daily social activities. Examples are shown in Fig. 2.

Dataset Construction and Annotation. We utilize
NExT-QA [61] as the source dataset to construct our
dataset. NExT-QA dataset is a comprehensive VideoQA
dataset with rich natural daily social activities and detailed
QA annotations. Originally, the NExT-QA dataset catego-
rizes itself into three types, i.e., Causal, Temporal, Descrip-
tive. We select the inference QA types, i.e., Causal and
Temporal, rather than the factoid Descriptive, to build our
IntentQA dataset. Particularly, we select both the Causal
Why and Causal How subtypes under Causal, and the Tem-
poral Previous and Temporal Next subtypes under Tempo-
ral (see examples shown in Fig. 2). The Causal Why (CW)
QA usually takes the form of ‘Why [action]? For [intent]’,

1In this paper, ‘GPT’ without a specified version refers to instructGPT
(text-davinci-003) [41].

Q&A: what did the baby do at the start 

before the girl in white pointed ?

0. point to green spade 

1. supervise 

2. spit

3. say something to boy 

4. feed horse with grass

Q&A: How did the man in light blue 

jacket show that he wanted a drink?

0. point his finger 

1. puts down his phone 

2. bend down

3. rest on leg 

4. with his hands

Causal Why
(CW)

Causal How
(CH)

Q&A: What did the baby do after the boy 

pointed near the middle of the video?

0. shake hands 

1. continue eating snacks 

2. look at what he is pointing

3. closes eyes 

4. point in same direction

Intent: remind the adult to 

pay attention to the baby

Q&A: Why did the man point to the 

screen when talking to the child?

0. looking at the path 

1. draw child s attention 

2. check the hair cut

3. asking something 

4. talking 

Temporal Next
(TN)

Temporal Previous
(TP)

Intent: follow the boy 

to the referred target

Figure 2: Illustration of four types of QA in our dataset. In
the example of CW, a man points to the screen to draw the
child’s attention. In the example of CH, the man points his
finger to express his intent for a drink. The TN example
shows that the boy’s ‘pointing’ leads to the baby’s ‘looking
at what he is pointing’. The TP example shows that the
girl’s ‘pointing’ is motivated by the baby’s ‘spit’ action. The
red box frames the correct answer.

with the key action appearing in the question and the intent
in the answer. On the contrary, the Causal How (CH) QA
usually takes the form of ‘How [intent]? By [action]’, with
the key action appearing in the answer and the intent in the
question. The Temporal Previous (TP) QA usually takes
the form of ‘What [action A] before [action B]? ’, while
the Temporal Next (TN) QA takes the form of ‘What [action
B] after [action A]? ’. In the TP&TN QA, the intent is not
explicitly expressed in the question nor answer, but is the
implicit causal factor linking the two sequential actions.

We use AllenNLP [12] for dependency parsing to ex-
tract the key action in QA, and obtain the Lemmatized Verb
2 of the action from the dictionary [39, 40]. We searched
for synonyms based on each action’s Lemmatized Verb, and
merge the synonyms to assign an action ID for each cluster.
After the preliminary filtering and processing, we further
annotate the dataset on Amazon Mechanical Turk (AMT).
We carefully design four questions to select QAs satisfying
the following criteria: 1) The key action is physical, observ-
able in the video, and conducted by a person; 2) The same
actions refer to semantically the same and physically simi-
lar actions in the videos, rather than different actions under

2https://www.nltk.org/ modules/nltk/stem/wordnet.html
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IntentQA Training Validation Testing Total

# Video 3212 524 567 4303
# Action 605 399 397 624
# Lemmatized Verb 193 188 167 193
# Action ID 162 162 144 162

Table 1: Statistics of IntentQA dataset.

# VQA CW CH TP&TN Total

Training 6989 1940 3190 12119
Validation 1185 334 525 2044
Testing 1250 359 525 2134

Table 2: Statistics of dataset splitting. # VQA refers to the
number of video question answering samples.

the same or similar action words. We construct our dataset
in a contrastive manner that the same actions under different
contexts lead to different underlying intents, as illustrated in
Fig. 1. To ensure the annotation quality, we apply the cross-
validation principle and assign at least three annotators for
each data sample; only when all three annotators agree will
the sample be included in the final IntentQA dataset.

Dataset Statistics. After the filtering and annotation,
our IntentQA dataset eventually contains 4, 303 videos and
16, 297 question-answer pairs. And there are 624 actions,
193 Lemmatized Verbs, and 162 action IDs. See Table 1.
The whole dataset is split into training, validation and test-
ing sets in a ratio of approximately 6:1:1. After splitting, the
training set contains 12, 119 QAs, the validation set con-
tains 2, 044 QAs, and the testing set contains 2, 134 QAs
(see Table 2). We guarantee that each action’s Lemmatized
Verb appearing in the validation/testing sets appears at least
twice in the training set. For action’s Lemmatized Verbs
with sufficient video samples, we try to maintain a 6:1:1 ra-
tio in the three sets. To avoid overfitting, we make sure that
the same video only appears in one set.

4. Model
4.1. Overview

We define the task of IntentQA to be the same as
VideoQA in terms of input and output forms, taking a video
v, a question q and a corresponding answer set A as input,
and outputting the correct answer a∗ from the answer set A.

a∗ = argmax
a∈A

fw(a|q, v,A), (1)

where fw represents a mapping function with learnable pa-
rameters w. Compared to traditional VideoQA tasks, the
difference in our proposed intentQA task lies in that all the
QA are related to intent understanding.

To solve this problem, we propose a Context-aware
Video Intent Reasoning model (CaVIR), as shown in Fig. 3,
which can sense context from three aspects. Firstly, we
obtain the Situational Context from the video related to
the question through VQL. Then, we select the positive and
negative samples with the same action randomly, align the
top-k highest attention nodes in the Situational Context,
calculate the triplet loss, and obtain the Contrastive Con-
text. Finally, we use GPT [41] to obtain the Common-
sense Context, and combine the predicted distribution of
our model based on the Situational Context and Contrastive
Context to get the final result. To further explain the overall
structure of the model, we will start with a single sample.

For a single sample, we use a simplified version of VGT
[64] as our baseline model. As shown in Fig. 4, we use the
frame features Vf and the region features Vr of the video as
inputs. The region features Vr are first modeled by N DGTs
[64] to form the region graph Gr, and then concatenated
with Vf to obtain the frame/region graph Gf,r:

Gf,r = Concat(Vf , DGT (Vr)), (2)

where DGT is from VGT [64], and we use the same settings.
For the language part, we concatenated the questions and
answers together and extract language features with Bert:

Fq,A = Bert(Concat(q,A)). (3)

Then, we use the region graph Gr and the language feature
Fq,A, and employ the VQL model to extract the cross-modal
graph Gr|q,A, i.e., the Situational Context:

Gr|q,A = VQL(Gr, Fq,A). (4)

Next, we use the cross-modal graph Gr|q,A extracted
by VQL to obtain Contrastive Context through con-
trastive learning. Finally, we use a multi-head self-attention
(MHSA) transformer to fuse all the features and obtain a
composite feature representation Ff,r|q,A of the video:

Ff,r|q,A = MHSA(Gf,r +Gr|q,A). (5)

In Section 4.4, we detail how we predict the results
through Commonsense Context for the test pipeline.

4.2. Video Query Language (VQL)

We use a video query language (VQL) approach to ob-
tain visual contexts related to the question from the video.
As shown in Fig. 4, we use the video region graph Gr ob-
tained by extracting features from N DGTs to query the QA
features Fq,A extracted by BERT, and calculate the similar-
ity matrix Sr|q,A:

Sr|q,A = Gr(Fq,A)
⊺. (6)

Multiplying the similarity matrix Sv|q,A and the lan-
guage feature Fq,A, transforming the language feature Fq,A
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Figure 3: Overview of our Context-aware Video Intent Reasoning model (CaVIR). The figure contains a triplet of samples,
i.e., the anchor sample, the positive sample and the negative sample. In the anchor sample, the agent guides the children
to look at the screen. In the positive example, the agent guides the children to learn the skill of ‘crawling’. In the negative
example, the ‘point’ action is a trick used by the agent in green to distract the children’s attention and win the game. Our
model utilizes situational context, contrastive context and commonsense context to solve the IntentQA task. The blue color
highlights the test pipeline. The yellow bounding boxes show the region features fed into our model.

into the visual feature space Gv , and then fusing them to-
gether to form the cross-modal graph Gr|q,A, which is the
question-relevant video contexts we need:

Gr|q,A = Gr + Sr|q,AFq,A. (7)

4.3. Contrastive Learning

We select positive and negative examples based on two
similarity conditions between the action and answer of two
QAs. To control the action similarity, we divide it into three
levels according to action consistency/action’s Lemmatized
Verb consistency/action ID consistency. In order to deter-
mine whether two samples with the same action are positive
or negative to each other, we compare the similarity of their
answers via WUPS score [37]. As formula Eq. (8) shows,
when two QA samples, A and B, have a WUPS score be-
tween their correct answers (a∗A,a∗B) that is greater than or
equal to a threshold t1, we consider A and B to be positive
samples for each other; otherwise, if the WUPS score is be-
low a threshold t2, we regard A and B as negative samples
of each other:

Relation(A,B) =

{
Pos. WUPS (a∗A,a∗B) ≥ t1,

Neg. WUPS (a∗A,a∗B) < t2.
(8)

We collect positive and negative examples for each QA to
allow the anchor sample to randomly select one positive and
one negative example to form a triplet as the input.

As shown in Fig. 3, we first extract the features Fr|q,A of
the top-k nodes from cross-modal graph Gr|q,A responding
most to the question and answer set according to the simi-
larity matrix Sr|q,A:

Fr|q,A = top-k(Gr|q,A). (9)

We repeat this operation for the three samples in the triplet
to obtain F a

r|q,A, F p
r|q,A, Fn

r|q,A. Then we align the features
of the negative example Fn

r|q,A and the positive example
F p
r|q,A to the anchor sample:

F p
r|q,A

align
= (F a

r|q,A(F
p
r|q,A)

⊺)F p
r|q,A,

Fn
r|q,A

align = (F a
r|q,A(F

n
r|q,A)

⊺)Fn
r|q,A.

(10)

The distance between the anchor sample and the posi-
tive/negative samples, d(a, p) and d(a, n) are computed as:

d(a, p) = (F a
r|q,A − F p

r|q,A
align

)2,

d(a, n) = (F a
r|q,A − Fn

r|q,A
align)2.

(11)
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Figure 4: The model architecture for a single sample input. Green colors highlight the input. Orange highlights the modules
borrowed from VGT [64]. Blue highlights our new modules for extracting different contexts. b represents the batch size.
numc indicates the number of clips. numf denotes the number of frames in each clip. numr denotes the number of regions
per frame. d is the dimension of the features. lenl is the length of Q&A. k refers to the top-k nodes selected.

The triplet loss is:

Ltriplet = max(d(a, p)− d(a, n) + margin, 0). (12)

For each sample of the triplet, the cross-entropy loss is:

Lce = −
|A|∑
i=1

yi logSi. (13)

The matching score S is calculated as Eq. (15). The com-
plete loss L calculated as:

L = La
ce + Lp

ce + Ln
ce + Ltriplet. (14)

4.4. Commonsense Reasoning

We propose a simple method that allows the model to
combine the prior commonsense information provided by
GPT [41] in the test stage.

As shown in the Test Pipeline of Fig. 3, the language fea-
ture Fq,A and the composite feature Ff,r|q,A after the global
MHSA transformer are calculated by dot product to obtain
the matching scores S of the answer set A:

S = Ff,r|q,A(Fq,A)
⊺. (15)

Then, we prompt GPT [41] with the following template:
‘[question]. Please choose the most likely answer from the
following options according to the given question and com-
monsense. [answer set]’ to get the confidence distribution
Sgpt of the question’s answer set from GPT [41]. We com-
bine the two distributions with a penalty coefficient λ as:

Sjoint = S + λSgpt, (16)

where Sjoint is the joint distribution of the matching score
for the answer set A. Consequently, the candidate answer
with highest confidence is returned as the final prediction:

a∗ = argmax
a∈A

Sjoint. (17)

5. Experiments
5.1. Ablation Experiments

5.1.1 Model Component Diagnosis

To assess the effectiveness of our essential components,
we design the following comprehensive ablation experi-
ments, as shown in Table 3. ‘Blind GPT’ only use GPT
[41] for the IntentQA task, and thus with no video input.
‘Base Model’ is a simplified VGT model. ‘+ VQL’ adds
Video Query Language onto the base model to get a cross-
modal graph for better situational context representation. ‘+
Triplet Loader’ loads the anchor sample together with the
positive and negative samples during training. ‘+ Triplet
Loss’ continue to add triplet margin loss. ‘+ GPT’ adds
commonsense prior of GPT during the test. All the com-
ponents are subsequently and cumulatively added to the
previous model.

As shown in Table 3, our entire model achieves the best
performance during all tests, and each component of our
model contributes remarkably to the performance improve-
ments. In particular, ‘+ GPT’ performs the best on all three
types of QAs, and brings the biggest performance increase
in the total test (+3.14%). In addition, ‘+ Triplet Loader’
also achieves great total accuracy improvement (the second
largest). Among all the experiments, TP&TN-type QAs
seem to be the hardest compared to CW and CH, which
might be due to the fact that intents are not explicitly ex-
pressed in TP&TN-type QAs. We further examined the
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Model ID Model
CW CH TP&TN Total

Val. Test Val. Test Val. Test Val. Test

0 Blind GPT - 52.16 - 61.28 - 43.43 - 51.55

1 Base Model 50.89 51.76 54.79 56.27 48.00 47.05 50.78 51.36
2 + VQL 51.65 52.32 54.49 58.77 47.62 48.00 51.08 52.34 (+0.98)
3 + Triplet Loader 51.56 53.60 56.89 60.72 48.00 49.52 51.52 53.80 (+1.46)
4 + Triplet Loss 52.57 55.28 57.47 61.56 46.10 47.81 51.71 54.50 (+0.70)
5 + GPT - 58.40 - 65.46 - 50.48 - 57.64 (+3.14)

Table 3: Ablation diagnosis of our model components. We use accuracy (%) as the metric.

Model ID Model
CW CH TP&TN Total

Val. Test Val. Test Val. Test Val. Test

5 Ours full - 58.40 - 65.46 - 50.48 - 57.64
4 Ours - GPT 52.57 55.28 57.47 61.56 46.10 47.81 51.71 54.50
6 Ours - Triplet Loader - Triplet Loss - 57.20 - 63.51 - 46.86 - 55.72
7 Ours - VQL - 58.56 - 62.67 - 49.71 - 57.08

Table 4: Ablation diagnosis of individual components. We use accuracy (%) as the metric.

performance contributions of each component within the
model by selectively removing individual components. As
shown in Table 4, the omission of any single component
led to a discernible degradation in the performance of the
complete model.

5.1.2 Contrastive Learning Analysis

To further verify our contrastive learning approach, we
analyze how the selection criterion for contrastive samples
would influence the performance. We control two factors
for selecting positive and negative samples: (1) What is
used to calculate the action similarity, which could be ‘Ac-
tion’, ‘lemmatized verb’ or ‘Action ID’; (2) The WUPS
score threshold for answer similarity. We set the threshold
t2 in Eq. (8) to 0.5, and discuss on the value of threshold
t1, i.e., t1 = 0.85 or t1 = 1. As shown in Table 5, model
4 (‘Action, t1 = 1’) achieves the best performance. The
result indicates the stricter criterion of action/answer simi-
larity, the better performance.

5.1.3 Context Attention Analysis

In order to verify whether our model learns to extract
the most significant context information to solve the Inten-
tQA task, we add two more analysis experiments: (i) Mask
Randomly. We randomly mask k nodes of the cross-modal
graph (Gr|q,A, see Section 4.1). (ii) Mask Lowest Atten-
tion. We mask the bottom k nodes of the cross-modal graph
with the lowest attention. As shown in Table 5, randomly
masking the nodes severely hurts the model performance
(decrease from 54.5 to 51.5), while masking the nodes with
the lowest attention only influences the model performance
very slightly (decrease from 54.5 to 54.05). The results

verify that our model’s capability in paying attention to the
most valuable parts of the context.

5.1.4 Prompt Engineering Analysis

To mitigate the potential impact of prompt engineer-
ing on performance, we experimented with several other
prompts. We took into account the influence of the ‘chain of
thought’ and further incorporated ‘let’s think step by step’
to achieve additional improvements. As can be observed in
Table 6, without considering the ‘chain of thought’, the per-
formance across different prompts is comparable. However,
after adding ‘let’s think step by step’, the model’s perfor-
mance showed a notable enhancement.

5.2. Comparison with VideoQA Baselines

We compare our full model with several established
VideoQA baseline models, as shown in Table 7. We select
several established VideoQA models from 2015 to 2022 as
the baselines, including EVQA [1] proposed for the earli-
est VQA task, CoMem [19] and HME [13] using memory
modules to model visual appearance, motion and language,
as well as HGA [26], VGT [64] and HQGA [63] using the
graph to model videos. These selected baseline models re-
spectively represent several typical methods for VideoQA.

As shown in Table 7, our full model performs the best,
and our model without GPT performs the second best. The
early VideoQA models may focus on QA about video con-
tent description, i.e., the factoid VideoQA, they perform
poorly on our IntentQA task, which requires better rea-
soning abilities of the unobservable intent. However, even
the most recent SOTA models VGT and HQGA still have
a large performance gap with our model. Contrastive sit-
uational context effectively improves model performance
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Model ID Model CW CH TP&TN Total
Val. Test Val. Test Val. Test Val. Test

2 Base Model + VQL 51.65 52.32 54.49 58.77 47.62 48.00 51.08 52.34
4-1 Action ID, t1 = 0.85 51.48 52.32 50.60 58.77 48.38 47.62 50.54 52.25
4-2 Action ID, t1 = 1 50.13 53.12 54.49 57.66 47.24 48.19 50.10 52.67
4-3 Lemmatized Verb, t1 = 0.85 51.90 53.36 55.99 62.12 44.00 45.52 50.54 52.91
4-4 Lemmatized Verb, t1 = 1 50.80 54.56 55.09 62.67 48.00 46.10 50.78 53.84
4-5 Action, t1 = 0.85 50.21 52.00 56.29 59.61 48.95 49.52 50.88 52.67
4 Action, t1 = 1 52.57 55.28 57.47 61.56 46.10 47.81 51.71 54.50

4-6 Mask Randomly 50.89 51.28 53.89 56.27 45.14 48.76 49.90 51.50
4-7 Mask Lowest Attention 52.83 54.72 57.49 59.89 46.86 48.38 52.05 54.05

Table 5: Analysis of contrastive learning (best shown in bold) and context attention (best shown with underline). We use
accuracy (%) as the metric.

Model ID Model CW CH TP&TN Total
Val. Test Val. Test Val. Test Val. Test

5 prompt 1 - 58.40 - 65.46 - 50.48 - 57.64
5-1 prompt 2 - 58.64 - 64.07 - 49.52 - 57.31
5-2 prompt 3 - 58.24 - 63.51 - 50.29 - 57.17
5-3 prompt 1 + ‘Let’s think step by step’ - 59.12 - 65.74 - 51.81 - 58.43
5-4 prompt 2 + ‘Let’s think step by step’ - 59.28 - 65.74 - 48.95 - 57.83
5-5 prompt 3 + ‘Let’s think step by step’ - 58.00 - 64.07 - 51.24 - 57.36

Table 6: Prompt ablations. Prompt 1 is the original one. Prompt 2 is ‘According to the given question and common sense,
please choose the most likely intention of the protagonist in the question from the following options.’ Prompt 3 is ‘From the
perspective of understanding the intention of the protagonist in the question, select the most likely answer from the following
options.’ We use accuracy (%) as the metric.

on CW and CH QA, but only slightly improves the perfor-
mance on TP&TN QA. Commonsense context further sig-
nificantly improve the model performance in all types of
QA tasks.

In addition, we reported human results in Table 7, which
are far superior to our model and other established models.
This indicates that compared to existing models, humans
still have a great advantage in understanding the intentions
of humans in social contexts. At the same time, this also
highlights the importance of the task we proposed, and the
exploration of model understanding of social intentions and
human cognition is still in its early stages. This problem is
distinct from the traditional video understanding problem.
It comprehends the video from the perspective of human
cognition, exploring the hidden human intentions beneath
the surface visual context, providing a novel perspective for
video understanding.

5.3. Generalization Test

We test our IntentQA model’s generalization ability to
other VideoQA tasks. We choose a large-scale open-ended
VideoQA dataset MSRVTT-QA, which contains 244k de-
scriptive QA pairs and is a challenging traditional factoid
VideoQA dataset, different from our inference VideoQA
dataset. All the models, i.e., VGT, Ours (w/o triplet loss)
and Ours (w/ triplet loss), are pre-trained on our IntentQA
dataset, and then finetuned on MSRVTT-QA. Table 8 shows

the results. Both of our two models achieve better accuracy
than the baseline, and the model with triplet loss generalizes
better. The test verifies our conjecture that intent reasoning
and understanding based on contrastive situational context
would help the model to better understand the video con-
texts, and generalize well to a new factoid VideoQA task.

5.4. Qualitative Results and Analysis

How Does VQL Work? In the example illustrated in
Fig. 5 (a), there are three men playing different instruments.
To answer the question correctly, the model needs to under-
stand that the question is asking about ‘the man in brown
checkered’, and pay attention to the correct context in the
video while ignoring other contexts. Our base model gets
the wrong answer, but our model with VQL successfully
predicts the correct answer. Blind GPT could not answer
correctly without any video context input.

How Does Commonsense Context Work? In the exam-
ple shown in Fig. 5 (b), the question asks why the child put
the spoon into his mouth, and the candidates ‘scoop food’,
‘eat’, ‘feed’, and ‘drop food’ all appear in the video, which
might confuse the model a lot. The basic two models simply
choose the most obvious action ‘scoop food’ in the video.
The two models with contrastive learning correctly under-
stand that the subject is the baby, but still get the wrong an-
swer. Note that it’s the mother that is feeding the baby, thus
the most appropriate answer is ‘eat food’. The slight differ-
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Model ID Model Text Rep. CW CH TP&TN Total
Val. Test Val. Test Val. Test Val. Test

- EVQA [1] GloVe 25.99 25.92 37.43 34.54 28.00 25.52 28.38 27.27
- CoMem [19] GloVe 31.56 30.00 35.63 28.69 28.57 28.95 31.46 29.52
- HGA [26] GloVe 29.45 32.00 35.03 30.64 29.71 31.05 30.43 31.54
- HME [13] GloVe 30.97 34.40 35.33 34.26 34.29 29.14 32.53 33.08
- HQGA [63] GloVe 32.49 33.20 38.32 34.26 34.48 36.57 33.95 34.21
- CoMem [19] BERT 46.75 47.68 57.49 54.87 41.71 39.05 47.21 46.77
- HGA [26] BERT 43.54 44.88 56.89 50.97 42.48 39.62 45.45 44.61
- HME [13] BERT 46.50 46.08 51.20 54.32 44.76 40.76 46.82 46.16
- HQGA [63] BERT 45.91 48.24 57.78 54.32 44.76 41.71 47.55 47.66
- VGT [64] BERT 50.46 51.44 55.99 55.99 48.19 47.62 50.78 51.27
- Blind GPT [41] - - 52.16 - 61.28 - 43.43 - 51.55

4 Ours w/o GPT BERT 52.57 55.28 57.47 61.56 46.10 47.81 51.71 54.50
5 Ours BERT - 58.40 - 65.46 - 50.48 - 57.64
- Human - - 77.76 - 80.22 - 79.05 - 78.49

Table 7: Comparison results with the established VideoQA baseline models. We use accuracy (%) as the metric.

(a) (b) (c)

Model Answer ID Predicted Answer

Base Model 4 ready to dance

+ VQL 4 ready to dance

+ Triplet Loader 2 the girl hit herself

+ Triplet Loss 2 the girl hit herself

+ GPT 2 the girl hit herself

Blind GPT 3 do not want to give … 

Q&A: why did the girl intially cry after taking 
off the first sock?
0. get dog to follow her 
1.to pose 
2.the girl hit herself  
3. do not want to give him 

4. ready to dance
Model Answer ID Predicted Answer

Base Model 0 scoop food

+ VQL 0 scoop food

+ Triplet Loader 2 to feed himself

+ Triplet Loss 2 to feed himself

+ GPT 1 eat food

Blind GPT 1 eat food

Q&A: why did the baby put the spoon into his 
mouth?
0. scoop food 
1. eat food 
2. to feed himself 
3. baby drop food halfway while eating 

4. sunk

Model Answer ID Predicted Answer

Base Model 4 press the keys

+ VQL 2 hitting the …

+ Triplet Loader 2 hitting the …

+ Triplet Loss 2 hitting the …

+ GPT 2 hitting the …

Blind GPT 4 press the keys

Q&A: How is the man in brown checkered 
making music with his instrument?
0. move fingers across piano 
1. speaking in microphone 
2. hitting the instrument with his hand 
3. strumming guitar  

4. press the keys

Figure 5: Qualitative Results and Analysis. The yellow boxes highlight the evidence contexts used to determine the correct
answer. The red box frames the correct answer. Actions are colored in red while intents are colored in blue.

Model ID Model MSRVTT-QA (OE)
Val. Test

- VGT [64] 38.26 39.00
3 Ours (w/o triplet loss) 38.11 39.21
4 Ours (w/ triplet loss) 38.98 39.39

Table 8: Generalization test on dataset Open-ended
MSRVTT-QA. We use accuracy (%) as the metric.

ence between ‘feed’ and ‘eat’ requires deep commonsense
knowledge, and thus only our model with GPT and Blind
GPT get the answer right. Blind GPT can even answer cor-
rectly based solely on text and commonsense without the
video context, just as humans do.

How Does Contrastive Learning Work? As shown in
Fig. 5 (c), to answer the question ‘why the girl cry after
taking off the first sock’, Blind GPT guessed the answer
to be ‘do not want to give him’ based on commonsense,
but it’s wrong. The two basic models with situational con-
text exaggerate the girl’s physical movement and choose the
wrong answer ‘ready to dance’. The real context causing
‘cry’ is very subtle, being the instant moment when the girl

hit foot on ground after taking off the sock. Through con-
trastive learning with other positive and negative samples,
the model learns that usually cry is caused by injury; thus
the three models with contrastive context are correct.

6. Conclusion
We address a new problem of IntentQA, and build a

new large-scale VideoQA dataset. We propose a new
model called Context-aware Video Intent Reasoning model
(CaVIR), which utilizes three different contexts including
situational, contrastive, and commonsense contexts. Com-
prehensive experiments verify the effectiveness, superiority
and generalizability of our model. We hope our work will
draw the field’s attention and serve as important resources.
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